A Normal I/O Order Radix-2 FFT Architecture to Process Twin Data Streams for MIMO

Citation for published version:

Digital Object Identifier (DOI):
10.1109/TVLSI.2015.2504391

Link:
Link to publication record in Heriot-Watt Research Portal

Document Version:
Peer reviewed version

Published In:
IEEE Transactions on Very Large Scale Integration (VLSI) Systems

Publisher Rights Statement:
(c) 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.

General rights
Copyright for the publications made accessible via Heriot-Watt Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
Heriot-Watt University has made every reasonable effort to ensure that the content in Heriot-Watt Research Portal complies with UK legislation. If you believe that the public display of this file breaches copyright please contact open.access@hw.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Abstract—Nowadays, many applications require simultaneous computation of multiple independent FFT (fast Fourier transform) operations with their outputs in natural order. Therefore, this paper presents a novel pipelined FFT processor for FFT computation of two independent data streams. The proposed architecture is based on MDC (multi-path delay commutator) FFT architecture. It has an $N/2$-point DIT FFT and $N/2$-point DIF FFT to process the odd and even samples of two data streams separately. The main feature of the architecture is that the bit reversal operation is performed by the architecture itself so the outputs are generated in normal order without any dedicated bit reversal circuit. The bit reversal operation is performed by the shift registers in the FFT architecture by interleaving the data. Therefore, the proposed architecture requires less number of registers and has high throughput.

Index Terms—Fast Fourier transform, Multi-path delay commutator FFT, Bit reversed order, Normal order, Bit reversal.

I. INTRODUCTION

Fast Fourier transform is one of the most commonly used operation in the wireless communication applications such as OFDM (Orthogonal frequency division multiple accesses), UWB (Ultra wide band), DVB-T and signal processing application as well. A family of pipelined FFT architectures is discussed in [1] in which SDF (Single path delay feed-back) and MDC (multi-path delay commutator) are very popular. There are applications such as image processing, array signal processing, MIMO OFDM, etc in which more than one data stream need to be processed. Therefore, simultaneous multiple FFT operations are required and a dedicated bit reversal circuit is also required to generate the outputs in natural order.

There are FFT architectures [2]–[5] which can handle multiple independent data streams. However, all the data streams are processed by a single FFT processor in [2], [5]. In [5], four independent data streams are processed one by one. Similarly, eight data streams are processed at two domains in [2]. Thus, the outputs of multiple data streams are not available in parallel. In order to process the data streams simultaneously, more than one FFT processors need to be employed. In [3], one to four data streams are processed using multiple data paths for WLAN application. Data of different data streams are interleaved to process them simultaneously in [4]. Nevertheless, the architectures in [2]–[4] do not have any specific bit reversal circuit.

In [6]–[9], certain circuits are proposed to reorder the bit reversed FFT output into normal order. The bit reversal circuits are proposed for different radices in [8]. In [9], a similar structure is proposed for variable length FFT, whose register complexity is N. These circuits are suitable for bit reversing the data from pipelined FFT architecture. However, only the bit reversal structures are proposed in [8], [9]. In [6], the bit reversal circuit is integrated to FFT architecture as a result the total register requirement of the design is reduced from $5N/2$ to $2N$. Two, four, eight-parallel pipelined radix-2^k DIF feed forward FFT architectures are proposed in [10] and they need extra N registers to generate the output in natural order. Moreover, these two, four and eight-parallel FFT architectures can start its operation only when $x(n+N/2)$, $x(n+3N/4)$ and $x(n+7N/8)$ samples arrive respectively. Therefore, hardware is underutilized and additional registers are required to store the first $N/2$, $3N/4$ and $7N/8$ samples respectively.

In [7], a modified MDC FFT architectures with a new data scheduling method and rearranging structure are proposed in which the draw backs of [10] are eliminated. The architectures in [2]–[6], [8]–[10] operated at the frequency of incoming sample rate but the architecture in [7] operates half the clock frequency to generate same throughput as that of [2]–[4], [6], [8]–[10]. Thus, the throughput of the architecture in [7] is doubled if all the architectures are operated at the same speed. Similarly, a combined SDC-SDF FFT architecture [11] with I/O in natural order is proposed in which the bit reversal is carried out only with $N/2$ registers. However, its throughput is low and required number of register is high. In [12], low complexity FFT architectures are proposed but these architectures can process only real-valued signals (signals only with real part). Moreover, they generate two outputs per clock cycle and these outputs are not in natural order. Thus, most of the recent architectures require bit reversal structures to generate the outputs in natural order.

The proposed architecture is designed to process two independent data streams simultaneously with less amount of hardware. The odd inputs which are in natural order are first bit reversed and then they are processed by $N/2$-point DIT FFT. The even samples are directly processed by $N/2$-point DIF FFT so its outputs are in bit reversed order. Therefore, the outputs of $N/2$-point DIF FFT are bit reversed. The outputs of the two $N/2$-point FFTs are further processed by the two parallel butterflies to generate the outputs of N-point FFT in natural order. The bit reversing is carried out by the scheduling registers which are actually used to delay the samples for
performing the butterfly operations. Thus, the FFT architecture does not use any dedicated circuit to bit reverse the data. As a result the proposed architecture requires less number of registers than the prior FFT designs.

The proposed architecture is explained in detail in the section-II. In section-III, the results are compared with prior designs. The paper is concluded in the section-IV.

II. PROPOSED PIPELINED FFT ARCHITECTURE

The idea of computing an N-point FFT using two N/2-point FFT operations with additional one stage of butterfly operations is shown in the Fig.1 which is not the exact architecture but provides the methodology. The reordering blocks in the Fig.1 are present merely to state that the N/2 odd samples \((x(2n+1))\) are reordered before N/2-point DIT FFT operation and N/2 even samples \((x(2n))\) are reordered after N/2-point DIF FFT operation. In order to compute the N-point DIT FFT from the outputs of two N/2-point FFTs, additional one stage of butterfly operations are performed on the results of the two FFTs. Thus, the outputs generated by additional butterfly stage is in natural order.

For the purpose of simplicity, the proposed 16-point FFT architecture in the Fig.2 is explained. It has two 8-point MDC FFT architectures to process two data streams. The delay commutator units present at the left side of \(SW_1\) dissociates the odd and even samples. The shift registers in the delay commutator units which receive inputs, are used to bit reverse the odd input samples. These shift registers are called RSR (reordering shift registers). The RSR in the last stage store outputs from the 8-point DIF FFT and bit reverse them. The BF2 carries out two-parallel butterfly operations between the bit reversed data in the RSR in the last stage and outputs from the 8-point DIT FFT. Thus, the upper and lower BF2 in the last stage generate the FFT outputs of the first and second data streams in normal order. The two data paths from \(SW_2\) are combined together so the word length of the data path in last stage is twice and so thick lines are used for representing the data paths and registers.

A. Operation of the Proposed Architecture

The FFT architecture in the Fig.2 is divided into six levels \((L_1, L_2, L_3, M_1, M_2\) and \(M_3\)). The RSR registers in the levels \(L_1\) and \(M_1\) reorder the odd input data and the RSR registers in the level \(L_1\) and \(M_3\) reorder the partially processed even data. The 8-point DIF and DIT FFT operations are performed in the levels \(L_2\) and \(M_2\) respectively. The data from \(L_1\) and \(M_1\) can be forwarded to \(L_2\) and \(M_2\) respectively or vice versa with help of \(SW_1\). Similarly, the data from \(L_2\) and \(M_2\) can be forwarded to \(L_3\) and \(M_3\) respectively or vice versa with help of \(SW_2\). The \(SW_1\) and \(SW_2\) have two switches (SW) to swap the data path and propagate the data to different levels. During the normal mode, the switches \((SW_1\) or \(SW_2\)) pass the data at \(u_1, u_2, u_3\) and \(u_4\) to \(v_1, v_2, v_3\) and \(v_4\) respectively. However, during the swap mode, the switches \((SW_1\) or \(SW_2\)) pass the data at \(u_1, u_2, u_3\) and \(u_4\) to \(v_1, v_2, v_3\) and \(v_4\) respectively.

The \(SW_1\) is in swap mode during first N/2 clock cycles and it is in normal mode during N/2 + 1 to N. On other hand, the \(SW_2\) is in normal mode during first N/2 clock cycles and it is in swap mode during N/2 + 1 to N. Thus, \(SW_1\) and \(SW_2\) are in different mode at any time and change their modes for every N/2 clock cycles. Moreover, if there is transition of data between \(L_n\) to \(L_{n+1}\) or \(M_n\) to \(M_{n+1}\) (where \(y\) can be 1 or 2) then the switches \((SW_1\) or \(SW_2\)) are in normal mode and if there is transition of data between \(L_n\) to \(M_{n+1}\) or \(M_n\) to \(L_{n+1}\) then the switches \((SW_1\) or \(SW_2\)) are in swap mode. Like other control signals in the design, the control signals to the switches \(SW_1\) and \(SW_2\) are provided externally and these switch control signals swap at every N/2 clock cycles.

The two input streams to the FFT processor are represented as \(X_1\) and \(X_2\). The odd and even samples of two input streams are disassociated by the delay commutator units in \(L_1\) and \(M_1\) \((X_1\) is disassociated into \(E_1(i), O_1(i)\) and \(X_2\) is disassociated into \(E_2(i, j), O_2(i, j)\)). In these representations, \(i\) defines the nature of the data and \(j\) defines the number of the data set whose FFT has to be computed. The even set of input data \((x(0), x(2), x(4)...)\) is defined as \(E(1, j)\) and odd set of input data \((x(1), x(3), x(5)...)\) is defined as \(O(1, j)\). \(E(2, j)/O(2, j)\) is the set of scheduled or ordered even/odd data which are ready to fed to 8-point DIF/DIT FFT. The outputs of 8-point DIF/DIT FFT are defined as \(E(3, j)/O(3, j)\) which are fed to the third level for 16-point FFT computation. The Table I explains the operation of FFT and the data propagation through different levels.

1) The first eight samples of \(X_1\) are loaded into the registers \((4D\) in upper and lower arm of delay commutator unit) in \(L_1\). After eight clock cycles, the switch \((SW_1)\) is set in normal mode and the first eight samples of \(X_2\) are loaded into the registers \((4D)\) in \(M_1\). Simultaneously, \(E_1(1,1)\) (even samples of \(X_1\)) is forward from \(L_1\) to \(L_2\) as \(E_1(2,1)\) to perform 8-point FFT operation. The odd samples of \(X_1\) and \(X_2\) are bit reversed by the RSR in \(L_1\) and \(L_2\). The operation of bit reversing is explained in the next subsection.

2) After eight clock cycles, the positions of the switches \(SW_1\) and \(SW_2\) are set in swap mode and normal mode respectively. The odd samples \((O_1(1,1))\) of \(X_1\) are forwarded

<table>
<thead>
<tr>
<th>Level</th>
<th>Time</th>
<th>(L_1)</th>
<th>(L_2)</th>
<th>(L_3)</th>
<th>(M_1)</th>
<th>(M_2)</th>
<th>(M_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(E_1(1,1))</td>
<td>(O_1(1,1))</td>
<td>(E_1(2,1))</td>
<td>(O_1(2,1))</td>
<td>(O_1(3,1))</td>
<td>(O_1(3,2))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(E_2(1,2))</td>
<td>(O_2(1,2))</td>
<td>(E_2(2,2))</td>
<td>(O_2(2,2))</td>
<td>(O_2(3,1))</td>
<td>(O_2(3,2))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(E_3(3,1))</td>
<td>(O_3(3,1))</td>
<td>(E_3(3,2))</td>
<td>(O_3(3,2))</td>
<td>(E_3(3,1))</td>
<td>(O_3(3,2))</td>
</tr>
</tbody>
</table>

Figure 1: Idea of the proposed method.
from L_1 to M_2 as $O_3(2, 1)$ and the even samples ($E_3(1, 1)$) of X_2 is forwarded from M_1 to L_2 as $E_2(2, 1)$. Simultaneously, $E_3(1, 1)$ is forward from L_2 to L_3 as $E_3(3, 1)$ and reordering is performed.

3) After eight clock cycles, the SW_1 and SW_2 are set in normal mode and swap mode respectively. The odd samples of X_2 ($O_2(1, 1)$) are forwarded from M_1 to M_2 as $O_2(2, 1)$ and $O_2(1, 1)$ is forwarded from M_2 as $O_1(3, 1)$ to L_3 where the butterfly operations with $E_1(3, 1)$ corresponding to the last stage (of the data stream X_1) are performed. In the meantime, $E_2(2, 1)$ from L_2 are forwarded to M_3 as $E_2(3, 1)$ and reordering is performed in the RSR.

4) After eight clock cycles, the switch (SW_2) is set to normal position to allow the partially processed odd samples ($O_3(3, 1)$) from M_2 to M_3 and perform the butterfly operations of the last stage (of the data stream X_2).

Instead of using radix-2 FFTs as in Fig.2, any higher radix FFTs architecture can be used. In the Fig.3, two radix-23 64-point FFTs are used to realize 128-point FFT whose multiplier complexity is $4(\log_2(N/2) - .5)$ and working is almost same as 16-point FFT. The multiplier complexity of N-point radix-k FFT algorithm is $4(\log_2(N/2) - .5)$.

B. Bit Reversing

The proposed architecture is inspired from the architecture in [7] where $N/2$ data scheduling registers before the first butterfly unit, are used to separate odd samples from the even samples and delay them to generate $x(n)$ and $x(n+N/2)$ in parallel. In proposed architecture, this data scheduling registers are reused to bit reverse odd samples. Similarly, $N/2$ data scheduling register are used before the last butterfly unit to store the partially processed even samples until the arrival odd samples in [7] and here, these registers are reused to bit reverse the partially processed even samples (outputs from DIF FFT). In [8], circuits that use multiplexers and shift registers for bit reversal, are proposed. According to [8], if N is even power of r, the number of registers required to bit reverse N data is $(\sqrt{N} - 1)^2$. If N is odd power of r, the number of registers required to bit reverse N data is $(\sqrt{rN} - 1)(\sqrt{N}/(r - 1))$ where r is the radix of the FFT algorithm. In the proposed architecture, these bit reversal circuits are incorporated in the data scheduling register to perform dual role.

The RSR used in the 16-point FFT and 64-point FFT architectures are show in the Fig.4a and Fig.4b. Actually, these structure are present in the places of the shift registers marked with RSR. Generalized RSR for N-point is shown in the Fig.4c in which c_0 is $N/4 - (\sqrt{N/4} - 1)^2$ or $N/4 - (\sqrt{(N/4)} - 1)(\sqrt{N/(4r)} - 1)$. These registers in c_0 do not
Table II: BIT REVERSAL OPERATION IN THE LEVELS L1 & M1

<table>
<thead>
<tr>
<th>Cnk</th>
<th>v1</th>
<th>v2</th>
<th>R0</th>
<th>R10</th>
<th>R12</th>
<th>R14</th>
<th>R16</th>
<th>R18</th>
<th>R20</th>
<th>R22</th>
<th>u1</th>
<th>u2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>X(3)</td>
<td>X(7)</td>
<td>X(2)</td>
<td>X(1)</td>
<td>X(0)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X(3)</td>
<td>X(2)</td>
<td>X(1)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X(3)</td>
<td>X(2)</td>
<td>X(1)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X(3)</td>
<td>X(2)</td>
<td>X(1)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X(3)</td>
<td>X(2)</td>
<td>X(1)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Table III: BIT REVERSAL OPERATION IN THE LEVELS L3 & M3

<table>
<thead>
<tr>
<th>Cnk</th>
<th>v1</th>
<th>v2</th>
<th>R0</th>
<th>R10</th>
<th>R12</th>
<th>R14</th>
<th>R16</th>
<th>R18</th>
<th>R20</th>
<th>R22</th>
<th>u1</th>
<th>u2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>X(3)</td>
<td>X(7)</td>
<td>X(2)</td>
<td>X(1)</td>
<td>X(0)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X(3)</td>
<td>X(2)</td>
<td>X(1)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X(3)</td>
<td>X(2)</td>
<td>X(1)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X(3)</td>
<td>X(2)</td>
<td>X(1)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X(3)</td>
<td>X(2)</td>
<td>X(1)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Involve in reordering. The control signals to the multiplexer in RSR are properly varied to interleave the data. If \(\log_2 N \) is even, \(\log_2 N - 2 \) multiplexers are required otherwise \(\log_2 N \) multiplexers are required for bit reversal. For more details on bit reversal [8] may be referred.

In the proposed FFT architecture, the first \(N/4 \) and next \(N/4 \) odd input data to DIF FFT are separately bit reversed as they are required in parallel. Thus, \(N/4 \)-point bit reversing algorithm is enough and the number of registers required to bit reverse \(N/4 \) data is either \((\sqrt{N/4} - 1)^2 \) or \((\sqrt{N(7/4)} - 1) \sqrt{N/4} \) – 1) depending upon the power of two. In the Fig.2, the RSR is shown in \(M_1 \) bit reverse the first \(N/4 \) odd input data (\(x(1), x(3), x(5), x(7) \)) and store them in \(R_8 - R_{16} \) (\(x(1), x(5), x(3), x(7) \)). After that, the next \(N/4 \) odd input data (\(x(9), x(11), x(13), x(15) \)) are bit reversed in \(R_1 - R_4 \) (\(x(9), x(13), x(11), x(15) \)) which is explained in the table II. The delay commutator unit in \(L_1 \) and \(M_1 \) feed the bit reversed odd input samples to \(u_1 \& u_2 \) and \(u_3 \& u_4 \) (in \(S W_1 \)) respectively. Similarly, in \(M_3 \), the RSR (\(R_9 - R_{12} \)) bit reverse the first \(N/4 \) output data (\(x(0), x(2), x(4), x(6) \)) and the RSR (\(R_{13} - R_{16} \)) bit reverse the next \(N/4 \) output data (\(x(8), x(10), x(12), x(14) \)) of DIT FFT respectively, which is explained in the table III. Thus, the RSR in \(L_3 \) and \(M_3 \) bit reverse the partially processed even data samples from \(v_1 \& v_2 \) and \(v_3 \& v_4 \) (in \(S W_2 \)) respectively and feeds to BF2 (via \(o_1 \& o_2 \)).

III. COMPARISON

Though several architectures [2–5] are proposed for processing multiple independent data streams, each stream is not processed by an individual FFT processor simultaneously. Moreover, the architecture in [5] has disadvantage such as throughput per data stream is low and complicated dual port RAMs are required. The computation complexities of the architecture [5] listed in the table IV correspond to two streams (\(N_2 = 2 \)) as proposed architecture processes two streams. If the single stream architectures [6, 7] need to process two or more streams, two or more such architectures are required in parallel.

Although the four parallel architecture [10] generates four outputs in parallel, its hardware utilization is only 25% and require additional \(3N/4 \) registers to hold the first \(3N/4 \) data in real-time applications. In [8], [9], only the reordering circuits are proposed for SDF and MDC architectures respectively so theadder and internal register complexities in the table IV remain same as MDC and SDF architecture. The table IV has two types of registers which are internal registers (Int. registers, used to perform FFT operation) and reordering registers (Reo. Registers, used to reorder the FFT outputs in normal order). \(N_5 \) is number of independent data streams processed. The extend to which the architecture is utilized during FFT computation of a single set of data is called utilization and it is equal \(T_{\text{operation}}/T_{\text{idle}} \). \(T_{\text{operation}} \) and \(T_{\text{idle}} \) are the time period for which the architecture is operational and idle respectively. \(N_p \) is number of parallel outputs, \(T_P \) is throughput of the architecture which is the product of utilization and \(N_p \).

The total number of registers (including reordering registers) required by an FFT processor [6–11] is greater than or approximately equal to \(2N \). If these architectures are employed to process two independent data streams simultaneously, their hardware requirements have to be doubled. As a result the required number of registers may increase to \(4N \) or more. The proposed architecture uses two \(N/2 \)-point MDC FFT architectures and two butterflies (BF2) to process two data streams but its register requirement is only \(3N - 4 \).

Though the architectures in [6, 11] require less number of adders when compare to the proposed architecture, its throughput is lesser than the proposed architecture. Moreover, complexity of adder and multiplier depend logarithmically on \(N \) whereas the complexity of register depends linearly on \(N \). Hence, registers occupy more area of the design than the adders and multipliers. The typical number of transistors required for one bit register and full adder are eight and fourteen respectively but these numbers may vary with different logic styles. We use these data to estimate the hardware.
Table IV: COMPARISON OF THE PROPOSED ARCHITECTURES WITH PRIOR DESIGNS FOR THE FFT COMPUTATION OF N-POINTS

Architecture	Adders	Int. Buffer	Reo. Buffer	Multiplier	N_S	Utilization	Latency	N_P	TP
SDF R2 FFT	2log_2N	N − 1	N	2log_2N − 1	100%	N + N − 1	1	1	1
MDC R2 FFT	2log_2N	3N/2 − 2	N	2log_2N − 1	50%	3N/4 + N − 1	2	2	1
MDC R2 FFT [5]	2log_2N	2N − 2	9N/8 + 192	2log_2N − 1	2	Not specified	2	2	1
MDC R2 FFT [6]	log_2N	3N/2	N/2	2log_2N − 1	1	Not specified	1	1	1
MDC R2 FFT [7]	2log_2N	3N/2 − 2	5N/8 − 3	2log_2N − 1	100%	(11N/8) − 5	2	2	1
SDF R2 FFT [8]	2log_2N	N − 1	(N/2 − 1)	2log_2N − 1	100%	N + (N/2 − 1)	1	1	1
MDC R2 FFT [9]	2log_2N	3N/2 − 2	N	2log_2N − 1	50%	3N/4 + N/4 − 2	2	2	1
MDC R4 FFT [10]	8log_2N	N + N/4	N	3log_2N − 3	25%	3N/4 + N/4 + N	4	1	1
SDF-3DC R2 FFT [11]	4log_2N + 1	1.5N + 1.5log_2N − 1.5	0.5N	log_2N − 3	100%	2N + log_2N − 1	1	1	1
Proposed	4log_2N + 4	3N − 4	0	4log_2N − 4	100%	3N/4 − 1	4	4	1
Normalized	2log_2N + 2	3N/2 − 2	0	2log_2N − 2	100%	3N/4 − 1	2	2	2

The critical path of the proposed architecture is \(2T_{MUX} + T_A + T_M\) (the path along \(SW, SW_1\) and PE). If the value of \(N\) is large, the critical path may depend upon the bit reversal circuits as the multiplexers in the reordering circuit are connected in serial. The proposed architecture has two \(N\)-point FFT architectures and can process two data streams simultaneously. Therefore, the complexity of proposed is normalized to single data stream, which results in \(2log_2N + 2\) adders, \(3N/2 − 2\) registers and \(log_2N − 2\) multipliers. Thus, the proposed architecture remains dominant in terms of register complexity and throughput. The outputs of [7] have to propagate through the additional registers so the designs in [7] have longer latency. The proposed architecture is implemented and validated on Xilinx Vertex-5 FPGA (XC5VLX110T-1 FF1136) for different values of \(N\) with word length of 16 bits and the results are shown in the table V. The architectures operate up to 380 MHz and generates four outputs per clock.

Unlike the proposed architecture, the architectures implemented in [10], [11] have only one FFT processor and their throughput is one fourth of the proposed architecture as the architecture [10] is underutilized by 75% and the architecture [10] generates one output per clock. Thus, proposed FFT architectures has high throughput and less area.

IV. Conclusion

This paper has presented a novel FFT processor whose outputs are generated in natural order. The proposed processor can process two independent data streams simultaneously, makes it suitable for many high speed real-time applications. The bit reversal circuit present in prior designs are eliminated by integrating two FFT processors and the registers which are present in the architecture are reused for bit reversal. As a result, the need of additional registers to bit reverse the outputs is avoided. Moreover, the proposed architecture provides throughput higher than the prior architectures. These attributes make the proposed FFT processor superior in sense of hardware complexity and performance.

V. Acknowledgement

The authors acknowledge the UKIERI project (UKUTP201100134) and the second author MS acknowledges the EPSRC project EP/M01426/1

REFERENCES
