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Abstract

Ambient energy harvesting has great potential to contribute to sustainable development and
address growing environmental challenges. Converting waste energy from energy-intensive
processes and systems (e.g. combustion engines and furnaces) is crucial to reducing their
environmental impact and achieving net-zero emissions. Compact energy harvesters will also be
key to powering the exponentially growing smart devices ecosystem that is part of the Internet of
Things, thus enabling futuristic applications that can improve our quality of life (e.g. smart homes,
smart cities, smart manufacturing, and smart healthcare). To achieve these goals, innovative
materials are needed to efficiently convert ambient energy into electricity through various physical
mechanisms, such as the photovoltaic effect, thermoelectricity, piezoelectricity, triboelectricity, and
radiofrequency wireless power transfer. By bringing together the perspectives of experts in various
types of energy harvesting materials, this Roadmap provides extensive insights into recent advances
and present challenges in the field. Additionally, the Roadmap analyses the key performance
metrics of these technologies in relation to their ultimate energy conversion limits. Building on
these insights, the Roadmap outlines promising directions for future research to fully harness the
potential of energy harvesting materials for green energy anytime, anywhere.


mailto:vincenzo_pecunia@sfu.ca
mailto:sk568@cam.ac.uk
mailto:s.silva@surrey.ac.uk

10P Publishing J. Phys. Mater. 6 (2023) 042501 V Pecunia et al
Contents
1. Introduction 6
2. Materials for indoor photovoltaics 9
2.1. Introduction to indoor photovoltaics 9
2.2. III-V compound semiconductors for indoor photovoltaics 12
2.3. CdTe solar cells for indoor applications 14
2.4. Kesterites for indoor photovoltaics 17
2.5. Organic photovoltaics for indoor-light-to-electricity conversion 20
2.6. Dye-sensitized photovoltaics for indoor applications 24
2.7. Lead-halide perovskites for indoor photovoltaics 27
2.8. Lead-free halide perovskites and derivatives for indoor photovoltaics 31
2.9. Quantum-dot absorbers for indoor photovoltaics 35
2.10. Accurate characterization of indoor photovoltaic performance 38
3. Materials for piezoelectric energy harvesting 41
3.1. Introduction to piezoelectric energy harvesting—Ilead-based oxide perovskites 41
3.2. Lead-free oxide perovskites for piezoelectric energy harvesting 44
3.3. Nanostructured inorganics for piezoelectric energy harvesting 47
3.4. Nitrides for piezoelectric energy harvesting 50
3.5. Two-dimensional materials for piezoelectric energy harvesting 53
3.6. Organics for piezoelectric energy harvesting 55
3.7. Bio-inspired materials for piezoelectric energy harvesting 58
4. Materials for triboelectric energy harvesting 60
4.1. Introduction to materials for triboelectric energy harvesting 60
4.2. Synthetic polymers for triboelectric energy harvesting 64
4.3. Nanocomposites for triboelectric energy harvesting 66
4.4. Surface texturing and functionalization for triboelectric energy harvesting 69
4.5. Nature-inspired materials for triboelectric energy harvesting 72
4.6. MXenes materials for triboelectric energy harvesting 76
4.7. Perovskite-based triboelectric nanogenerators 79
4.8. Towards self-powered woven wearables via triboelectric nanogenerators 82
4.9. Theoretical investigations towards the materials optimization for triboelectric nanogenerators 86
5. Materials for thermoelectric energy harvesting 90
5.1. Introduction on materials for thermoelectric energy harvesting 90
5.2. Chalcogenides for thermoelectric energy harvesting 93
5.3. Full Heuslers for thermoelectric energy harvesting 96
5.4. Half Heuslers for thermoelectric energy harvesting 99
5.5. Clathrates for thermoelectric energy harvesting 102
5.6. Skutterudites for thermoelectric energy harvesting 105
5.7. Oxides for thermoelectric energy harvesting 108
5.8. SiGe for thermoelectric energy harvesting 111
5.9. Mg, IV (IV = Si, Ge and Sn)-based systems for thermoelectric energy harvesting 114
5.10. Zintl phases for thermoelectric energy harvesting 116
5.11. Molybdenum-based cluster chalcogenides as high-temperature thermoelectric materials 119
5.12. Organic thermoelectrics 122
5.13. Two-dimensional materials for thermoelectric applications 125
5.14. Carbon nanotubes for thermoelectric energy harvesting 128
5.15. Polymer-carbon composites for thermoelectric energy harvesting 131
5.16. Hybrid organic—inorganic thermoelectrics 134
5.17. Halide perovskites for thermoelectric energy harvesting 137
5.18. Metal organic frameworks for thermoelectric energy conversion applications 140
6. Materials for radiofrequency energy harvesting 143
6.1. Introduction to materials for radiofrequency energy harvesting 143
6.2. Organic semiconductors for radiofrequency rectifying devices 145
6.3. Metal-oxide semiconductors for radiofrequency rectifying devices 149

4



10P Publishing J. Phys. Mater. 6 (2023) 042501 V Pecunia et al

6.4. Carbon nanotubes for radiofrequency rectifying devices 152
6.5. Two-dimensional materials for radiofrequency energy harvesting 155
6.6. Materials for rectennas and radiofrequency energy harvesters 158
7. Sustainability considerations on energy harvesting materials research 160
Data availability statement 162
References 163




10P Publishing

J. Phys. Mater. 6 (2023) 042501 V Pecunia et al

1. Introduction

Vincenzo Pecunia’ and S Ravi P Silva®

! School of Sustainable Energy Engineering, Simon Fraser University, Surrey V3T ON1, BC, Canada

2 Advanced Technology Institute, Department of Electrical and Electronic Engineering, University of Surrey,
Guildford, Surrey GU2 7XH, United Kingdom

In the face of the rising global energy demand and the existential challenge posed by climate change, it is
more urgent than ever to generate green energy in order to preserve our planet and sustain human
development. Alongside the need for renewable energy technologies for the conversion of primary green
energy into electricity in large-scale installations (e.g. solar, wind, and wave farms), reducing our carbon
footprint also requires harnessing the vast energy reservoir all around us in the form of ambient light,
mechanical vibrations, thermal gradients, and radiofrequency electromagnetic waves [1]. Harvesting this
energy via compact harvesters paves the way not only for more efficient use of our energy sources (for
instance, consider the recycling of waste heat from an oven or industrial machinery) but also for sustainably
powering technologies with considerable potential to enhance our quality of life without increasing our
carbon footprint [2, 3]. Prominently, compact energy harvesters are key to enabling the Internet of Things
(IoT), which aims to make our everyday objects and environments ‘smart’ via its ecosystem of
interconnected smart sensors, thereby allowing for better functionality of technology and its optimum use
(for instance, leading to smart homes, smart cities, smart manufacturing, precision agriculture, smart
logistics, and smart healthcare) [4]. Importantly, the IoT device ecosystem will comprise several trillions of
sensors in the near future [5]. This would make it unfeasible and unsustainable to exclusively rely on
batteries as their power source—due to their environmental impacts as well as the challenge and cost of
replacing hundreds of millions of batteries globally every day. However, compact energy harvesters could
overcome this challenge by allowing IoT devices to operate continuously and in an eco-friendly manner
throughout their lifetime [6, 7]. The burgeoning of wearable electronics, with its vast potential for health and
wellness applications [8], is another related domain that would greatly benefit from compact energy
harvesters—given that, in addition to being surrounded by ambient energy, the human body itself is a source
of waste energy in the form of body heat and motion.

Energy harvesting is critically dependent on the availability of suitable materials (and devices thereof) to
convert ambient energy into usable electric energy. Therefore, research in materials and devices for energy
harvesting is key to providing energy harvesting technologies that can meet the needs of real-world
applications. Such research requires a broad, cross-cutting effort, ranging from the discovery of new materials
to the study of their energy harvesting properties, the engineering of their compositions, microstructure, and
processing, and their integration into devices and systems. Given the diverse forms of ambient energy,
materials are being developed to convert such energy through various physical mechanisms, the most
prominent of which are the photovoltaic effect, piezoelectricity, triboelectricity, thermoelectricity, and
radiofrequency power transfer (figure 1). The rapid rise in the number of publications in this field (figure 2)
demonstrates its growing importance and the breadth of the community that has joined this research effort.

While the vision of ‘green energy anytime, anywhere’ may still be some way into the future, energy
harvesting technologies already offer numerous opportunities. For instance, photovoltaic harvesters have
already been commercialized to power various smart sensors, while triboelectric, thermoelectric,
piezoelectric, and radiofrequency energy harvesters have already been demonstrated to be capable of
powering wearable devices [9-12].

Although the various energy harvesting technologies rely on considerably different classes of materials
and devices, they all share the same overarching goals and challenges—which will continue to drive future
research pursuits in this area—as discussed below.

Efficiency

A major challenge faced by all energy harvesting technologies is the limited power density available from
ambient energy sources, which makes it essential to develop energy harvesting materials and devices that can
efficiently convert such energy. Current energy harvesting technologies typically deliver electric power
densities well below the mW cm 2 when harvesting ambient energy. This can be limiting for
energy-intensive applications that do not allow aggressive duty cycling (i.e. a system operation pattern with
long intervals in sleep mode, during which the harvested energy can be stored, alternating with short
intervals in active mode, during which the stored energy is consumed) [2, 7]. Additionally, many emerging
applications require compact energy harvesters with feature sizes in the millimetre-to-centimetre range.
Therefore, boosting power conversion efficiencies is a vital goal of energy harvesting research. The success of
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Figure 1. Prominent energy harvesting technologies covered in this Roadmap (RF: radiofrequency). Reproduced from [7] under
the terms of a CC BY 4.0 open-access license.

Figure 2. Publications per year for the various energy harvesting technologies covered in this Roadmap. This data was obtained
from the Web of Science by searching the phrases ‘indoor photovoltaics), ‘piezoelectric harvesting), ‘triboelectric harvesting),
‘thermoelectric harvesting), and ‘RF harvesting’ (PV: photovoltaics; RF: radiofrequency).

this endeavour critically depends not only on characterizing and gaining insight into the fundamental
properties of energy harvesting materials, but also on the discovery of new materials and the engineering of
their device architectures to reduce loss mechanisms.

Manufacturability

Real-world applications critically require the development of energy harvesting technologies that can be
manufactured at scale. Therefore, a priority is to develop energy harvesting materials that can be produced
with simple methods, involving low capital cost and low material and energy consumption.
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Environmental Sustainability

While energy harvesters inherently have no carbon emissions during operation, they will fully realize their
purpose of providing green energy if they have minimal environmental impacts throughout their lifecycle.
Therefore, a priority is to develop energy harvesting technologies that rely on Earth-abundant, non-toxic
source materials and can be processed with low energy consumption. Additionally, it is important to
consider the fate of these materials and devices at their end of life. Therefore, a key priority is to pursue
energy harvesting materials and devices that lend themselves to be easily recycled from cradle to grave [13].
Moreover, for applications that involve a short life cycle, energy harvesters that are biodegradable would be
highly desirable.

Cost

For any energy harvesting technology to have a practical impact, it is necessary that its cost is sufficiently low
to enable widespread deployment. In contrast to large-scale installations for the conversion of primary green
energy into electricity (e.g. solar and wind farms), the crucial cost-related objective for ambient energy
harvesters is not necessarily to minimize the cost per Watt. Indeed, the paramount aim is to ensure that
ambient energy harvesters have a cost that is a manageable fraction of the system cost, while also being
capable of supplying an energy output adequate for the application at hand. Cost is obviously a challenging
metric to evaluate at the early stage of a technology, given that learning curves typically result in substantial
cost reductions over time. Nonetheless, it is important to keep cost considerations in context as energy
harvesting technologies are being developed, prioritizing solutions that rely on Earth-abundant materials
and low-energy manufacturing processes.

Form Factors

For energy harvesters to be deployed ubiquitously, it is essential to develop them in flexible form factors so as
to seamlessly place them on all kinds of objects and surfaces. Therefore, a research direction of paramount
importance is to develop energy harvesting materials and devices capable of high power conversion
efficiencies while being mechanically flexible or stretchable and optimized for small areas. The ubiquity and
functionality of this novel system will act as an overlay to future wearables.

This Roadmap provides extensive insights into the status and prospects of the various energy harvesting
technologies being researched to address the aforementioned challenges. It does so by covering the various
classes of materials being developed for photovoltaic (section 2), piezoelectric (section 3), triboelectric
(section 4), thermoelectric (section 5), and radiofrequency (section 6) energy harvesting. In particular, this
Roadmap highlights the key trends in materials properties and device performance underlying these
prominent energy harvesting technologies, also discussing the open challenges and the potential strategies to
overcome them. Finally, a perspective is presented on the key sustainability challenges that need to