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Abstract  

 The application of a two-stage electrokinetic washing system on remediation of lead (Pb) 

contaminated soil was investigated. The process consisted of an initial soil washing, followed by an 

electrokinetic process. The use of electrokinetic process in soil washing could provide additional 

driving force for transporting the desorbed Pb away from the soil even in the absence of pore flow. 

Thus, high usage of wash solution may be mitigated. In this study, the effect of operating conditions 

such as electric potential difference, wash solution concentration and initial Pb concentration on the 

feasibility of a two-stage electrokinetic washing on Pb removal was investigated using response 

surface methodology based on Box-Behnken design. The wash solution used was citric acid and three 

main aspects were examined, namely: i) removal efficiency, ii) effluent generated, and iii) power 

consumption. The results revealed that the increase in electric potential difference and wash solution 

concentration generally enhanced Pb removal efficiency and the interactions of these parameters were 

significantly positive. However, undesirable high effluent generation and power consumption were 

also caused by these increments. Optimisation study revealed that 84.14% removal efficiency with 

zero effluent generation and 2.27kWh/kg Pb removed could be achieved at 7.58V and 0.057M citric 

acid concentration. In comparison to normal soil washing, two-stage electrokinetic washing showed 

an enhancement in removal efficiency by ≈16% via electromigration under optimum conditions using 

similar solution: soil ratio of <0.8mL: 1g soil. The study reveals that incorporation of electrokinetic 

process in soil washing is feasible as it not only enhances Pb removal efficiency at minimum wash 

solution usage in comparison to normal soil washing, but also provides in situ Pb recovery in cathode 

chamber via electrodeposition.       
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1. Introduction 

Lead (Pb) is a highly toxic substance to living organisms. Its ability to bio-accumulate 

often causes acute and chronic illnesses which damage human body systems when it is 

inhaled and ingested [1-2]. Pb has been extensively used as a raw material in manufacturing 

processes such as ammunition, batteries, bearings, plumbing, ceramic glazes, weights, caulks, 

dyes, pigments and pesticides [2-3]. In order to support huge demand for Pb in the world, 

global Pb production as high as 10,654,000 tonnes was reported in 2012. As a result of its 

huge production and usage, human can be easily exposed to Pb via variety pathways. Soil 

contamination is one of the pathways for Pb exposure especially from industrial lands with 

the activities like battery manufacturing, gould casing, scrap Pb handling [4] as well as Pb 

smelting and mining [1-2]. High Pb concentration in the range of 751.98-138,000mg/kg was 

reported in the soil from these industries [3, 5-8]. Thus, a proper treatment to these soils is 

necessary. 

Soil washing has been reported as one of the effective soil remediation methods for 

removing Pb and heavy metals [9]. However, it is worth noting that soil washing requires 

high amount of wash solution for effective treatment. A high solution: soil ratio of 3.33-

20mL: 1g [10-12] shows the disadvantage of applying soil washing as the amount of spent 

wash solution that requires post treatment is large. In contrast, electrokinetic process could 

reduce the amount of wash solution needed in soil remediation. Electrokinetic process is one 

of the soil remediation methods that show great potential to remove organic compounds and 

heavy metals [13-15]. This process is conducted by inducing low magnitude direct current 

through the soil as the driving force for contaminants removal. [13, 15-16]. For metal ions 

removal, electromigration is the main mechanism for the transport in the soil under electric 

field influence towards their respective electrodes. It is worth noting that electromigration is 

independent of the pore fluid movement [13]. This suggests the potential of electrokinetic 



process to be incorporated into soil washing so that the wash solution usage in the 

remediation of high permeability soil could be reduced.   

Electrokinetic process has been applied in the treatment of soils with high 

permeability [15, 17-21]. The work of Kim et al. [19] in treating Co and Cs contaminated 

sandy soil showed that electrokinetic process not only provided favourable removal 

efficiency but also lower effluent generation which was only 5% of the effluent generated by 

soil washing. Furthermore, Kim et al. [19-20] also reported further enhancement in the 

removal efficiencies of Co and Cs were achieved when electrokinetic process was 

incorporated into soil flushing. However, this was found to increase the effluent generation 

slightly in comparison to normal electrokinetic process. Recently, a study on the 

incorporation of electrokinetic process into soil washing as a two-stage electrokinetic 

washing for Pb removal from sandy soil has been investigated [22]. This process of soil 

remediation method which consisted of: i) initial soil washing, and ii) electrokinetic process 

was conducted at different stages in single equipment, as shown in Fig. 1 [22]. The process 

was initiated by filling up the anode chamber with wash solution such as NaNO3, HNO3, 

citric acid and EDTA while the cathode chamber was left empty. Due to hydraulic gradient 

difference between the chambers, soil washing occurred via the diffusion and advection of 

wash solution from anode chamber to the cathode chamber through the soil column. This 

provide a “flushing” effect for Pb desorption and transport to the cathode chamber during 

wash solution filling process. When the cathode chamber was completely filled up, soil 

washing stopped, as shown in Fig. 1. Then, a constant voltage was applied through the soil as 

second stage of the treatment by providing electrical driving forces to further transport Pb 

away from the soil while preventing local concentration polarisation for Pb desorption.  

Previous work showed that two-stage electrokinetic washing enhances soil remediation 

efficiency in comparison to soil washing [22]. Among the solutions investigated, citric acid 



was identified as the best wash solution as it had provided high enhancement in Pb removal 

efficiency mainly via electromigration even at low wash solution consumption of <1mL: 1g. 

This eliminated the disadvantage of soil washing having high wash solution consumption. 

However, it is worth noting that significant volume of effluent was still generated via 

electroosmosis, which is not desirable. Hence, in order to limit the electroosmosis while 

maintaining high removal efficiency, the effects of operating parameters such as electric 

potential difference and wash solution concentration must be evaluated. 

 
Fig. 1. Schematic diagram for two-stage electrokinetic washing [22] 

The main goal of the present study is to investigate the effect of operating parameters 

such as electric potential difference, wash solution concentration and initial Pb concentration 

on the performance of two-stage electrokinetic washing process as soil remediation method 

for Pb removal. Unlike most of the studies for electrokinetic process, this study was 

conducted using statistical response surface methodology based on Box-Behnken Design 

such that the effects of the parameters and their mutual interactions can be adequately 

analysed. The performance of the system was evaluated for: i) removal efficiency, ii) effluent 



generated, and iii) power consumption. Finally, an optimisation test was conducted to 

investigate the possibility of two-stage electrokinetic washing to obtain high removal 

efficiency at negligible effluent generation and low power consumption.    

 

2. Materials and Methods 

2.1 Chemicals and soil 

Table 1: The characteristics of the soil in this study 

Soil properties Value Method 

pH  3.97 USEPA SW-846 Method 9045D 

Specific gravity 2.5 ASTM D 854 - Water pycnometer method 

CEC (meq/100g) 5.1 Ammonium acetate method 

Organic matter content 1.4% Loss of weight on ignition 

Soil metal content 
Concentration 

(mg/kg) 
Method 

Iron  3719  

Aluminium  2400  

Manganese  185 USEPA 3050B 

Magnesium  635  

Lead  11  

Zinc  18  

 

 All the chemicals used in this study were of analytical grade and were supplied by 

R&M Chemicals, Malaysia. The soil used was taken from Hulu Langat, Malaysia and was 

sieved to a particle size of <0.85mm. The soil was classified as sandy soil according to 

USDA Soil Classification as it had 92% sand content, with 8% silt and clay. General 

properties of uncontaminated soil are as shown in Table 1. The soil had high iron (Fe) and 

mineral content and posed potential risk for Pb contamination via adsorption with a 

maximum contamination level of 1000mg/kg [23], which is higher than the regulatory limit 

in Malaysia [24]. In this study, artificially contaminated soil was prepared by spiking the soil 

with Pb(NO3)2 solution to create Pb contaminated soil with desired contamination level. The 



slurry was then homogenised using spatula and dried for one week. The contaminated soil 

was then stored in a dark place. 

 

2.2 Response Surface Methodology 

 Response surface methodology (RSM) was used in this study to evaluate the effect of 

operating parameters on Pb removal in two-stage electrokinetic washing. RSM is a collection 

of mathematical and statistical techniques that are useful for modelling and analysis of 

problems for which a response on outcome is influenced by several variables and the 

objective of RSM is to optimise this response [26]. The use of RSM and Analysis of Variance 

(ANOVA) could give a suitable approximation for the true functional relationship between 

the response and the set of independent variables. In this study, a polynomial equation as 

shown in Equation (1) was generated, where y is the response, β is the regression coefficient, 

and x is the independent parameter [26]. 

3 3 2 3
2

0

1 1 1 1

i i ii i ij i j

i i i j i

y x x x x   
    

           (1) 

Box-Behnken Design was used in this study in combination with the Design Expert 

software. This design is a spherical three level design by combining 2
k
 factorial with 

incomplete block design and it is most efficient in terms of number of required runs in 

comparison to Central Composite Design [26]. Three parameters were investigated, namely 

electric potential difference (A), wash solution concentration (B) and initial Pb concentration 

(C). The levels of each parameter were coded as -1, 0 and 1 and the ranges of the parameters 

are shown in Table 2. The responses investigated in this study were i) removal efficiency, ii) 

effluent generated, and iii) power consumption. Based on Box-Behnken design, 17 

experiments were conducted with five replicates of centre point experiments to estimate pure 

error for the models generated. The experiments were conducted in a random sequence to 



improve the precision of the experiments. The results obtained were then analysed using 

ANOVA and F-test with 95% confidence level. The numerical models generated from this 

method were used to analyse the importance of the parameters and their interaction effects. 

Finally, optimisation of these parameters was conducted based on the mathematical models 

generated. 

Table 2: Experimental range and level of the parameters 

Parameters Symbol Range and level 

-1 0 1 

Electric potential difference, V A 7.5 18.75 30 

Wash solution concentration, M B 0.001 0.0505 0.1 

Initial Pb concentration, mg/kg C 400 700 1000 

 

2.3 Experimental 

 
Fig. 2. Schematic diagram for the experimental setup [22] 

Fig. 2 illustrates the schematic diagram for two-stage electrokinetic washing. A PTFE 

soil column with a dimension of 15cm length and 4cm diameter was used in the study. A 

mass of 250g of contaminated soil was compacted into the column slowly to yield an average 

soil voidage of 0.47. The anode and cathode chambers, each having a size of 4cm diameter 

and 7.4cm length were connected to two ends of the column and they were separated from 

the soil column by filter papers. Then, cylindrical graphite electrodes discs were installed at 

the other ends of the chambers. In this study, the overflow level for cathode chamber was 



adjusted to ≈0.6cm higher than the overflow level for anode chamber to ensure that the 

effluent flushed out was mainly attributed to electroosmosis only. Citric acid was chosen as 

the wash solution in this study due to its ability to provide high removal efficiency with stable 

system performance in the previous study [22]. The solution was pumped into the anode 

chamber from the bottom of the chamber at a rate of 15mL/min while the cathode chamber 

was left empty. Soil washing process was initiated when citric acid was transported through 

the soil column and filled up the cathode chamber as a result of a hydraulic head gradient 

between the chambers. This process faded once the cathode chamber was fully filled up. 

Then, second stage of treatment was initiated by applying constant voltage across the soil via 

the electrodes in the chambers as secondary driving force to further transport the desorbed Pb 

from the soil to the cathode chamber. The experiment was conducted for 24 hours. The 

details of the experiments based on Box-Behnken design as well as the results obtained are as 

shown in Table 3.  

 

2.4 Analytical Methods 

Electric current across the soil was determined during the experiments by Multimeter 

Sunwa TE-832B. The soil was sliced into five sections which were dried before property 

estimation. Soil pH at each section was determined by USEPA SW-846 method 9045D and 

was analysed using a calibrated pH meter (Crison Multimeter MM26+). Pb concentration in 

the soil section was extracted using KSTM method, as reported by Kim et al. [27]. The 

supernatant obtained from the method mentioned above was analyzed using ICP-OES for 

determining Pb concentration. Based on the analysis, the removal efficiency provided by two-

stage electrokinetic washing was calculated using Equation (2), where C0 was the initial Pb 

concentration in soil and Ct was Pb concentration that remained in soil after the experiment. 

The power consumption for the system was determined using Equation (3), where E is the 



power consumption per kg Pb removal, V is the electric potential difference used, I is the 

current of the system, t is the experiment duration and mPb is the mass of Pb removed. 

0

0

 -  
Removal Efficiency, % = 100tC C

C
      (2)  

0

1
.

t

Pb

E VI dt
m

          (3)  

 

3. RESULTS AND DISCUSSION 

3.1. ANOVA Analysis  

Table 3: Details of the experiments using Box-Behnken design and the results obtained 

Run 

A, Electric 

potential 

difference, 

V 

B, Wash 

solution 

concentration, 

M 

C, Initial Pb 

concentraiton, 

mg/kg 

Removal 

efficiency, 

% 

Effluent 

generated, 

mL 

Power 

consumption, 

kWh/kg Pb 

removed 

*Average 

current, 

mA 

1 18.75 0.0505 700 86.29 2.25 25.45 8.65 

2 7.5 0.001 700 53.99 0 1.06 0.55 

3 18.75 0.1 400 78.60 27.7 51.17 9.30 

4 30 0.0505 1000 96.98 115.3 45.04 16.01 

5 7.5 0.1 700 77.38 0 4.22 3.31 

6 7.5 0.0505 1000 82.93 0 1.69 2.15 

7 18.75 0.001 1000 84.52 0 6.23 2.93 

8 18.75 0.0505 700 82.78 4.35 25.55 8.37 

9 18.75 0.1 1000 90.79 27 21.49 11.40 

10 18.75 0.0505 700 84.85 1.50 24.82 8.31 

11 18.75 0.001 400 58.24 0 14.11 1.82 

12 30 0.001 700 83.72 0 21.98 4.33 

13 18.75 0.0505 700 85.19 3 25.37 8.58 

14 30 0.1 700 94.62 103.35 79.53 18.61 

15 18.75 0.0505 700 84.07 6.25 26.68 8.75 

16 7.5 0.0505 400 61.12 0 5.82 2.11 

17 30 0.0505 400 88.34 43.5 92.48 12.02 

* The electric current was stable throughout the experiment. Thus, average current was used for analysis. 

 

The experimental design and the results for: i) removal efficiency, ii) effluent 

generated, and iii) power consumption are as shown in Table 3. These results were analysed 

using ANOVA statistical models and Table 4 shows an example of the ANOVA analysis for 



removal efficiency, which is the main response in this study. The F-statistic is used to test the 

significance of each parameter and their interactions. 

Table 4 shows that the model has F-Value of 79.22 with a (Prob > F) of <0.0001. This 

implies that the model is significant. Among the model parameters, A, B, C, B
2
, AB, AC, BC 

are significant terms as they have (Prob >F) value of <0.05, which shows 95% of confidence 

level. The “Lack of fit” value of 3.27 with a (Prob >F) value of 0.1388 further suggests that 

there is 13.88%  probability that the “Lack of Fit” value this large could occur due to noise, 

which is desired for the model. Moreover, a reasonable difference between the predicted and 

adjusted R
2
 <0.2 [28] and adequate precision/ signal to noise ratio of > 4 [29] also indicate 

the adequacy of the model. The validity of the model was further tested from the aspect of 

normal probability plot and no apparent problem was found. A reasonably close value 

between the predicted and experimental results, as shown in Fig. 3a validates the accuracy of 

the models. Similar ANOVA analysis is also conducted for effluent generated as well as 

power consumption and appropriate models which predict the results well are obtained (Figs. 

3b and 3c). The coded statistical models generated from ANOVA for removal efficiency, 

effluent generated, and power consumption are described by Equations (4), (5) and (6), 

respectively. 

2 2Removal Efficiency, % 84.28 11.03 7.62 8.62 1.5 5.8

3.12 3.29 3.52

A B C A B

AB AC BC

     

  
   (4) 

2 2

2 2 2

2

Effluent generated, mL 3.47 39.70 13.68 0.18 24.2 1.83

12.03 25.84 17.95 12.16 18.13

13.86

A B C A B

C AB AC A B A C

AB

     

    



  (5) 

2

2 2 2

ln(power consumption/kg Pb removed) 3.24 1.5 0.65 0.42 0.61

0.39 0.021 0.024 0.13 0.068

A B C A

B C AB AC A C

    

    
 (6) 

  

 



Table 4: ANOVA analysis for removal efficiency 

  

 Sum of Square DF Mean Square 

F-Value 

Value Prob > F 

 

Model 2319.02 8 289.88 79.22 < 0.0001 significant 

A 973.29 1 973.29 265.99 < 0.0001  

B 463.91 1 463.91 126.78 < 0.0001  

C 593.75 1 593.75 162.27 < 0.0001  

A
2
 9.45 1 9.45 2.58 0.1467  

B
2
 142.09 1 142.09 38.83 0.0003  

AB 39.00 1 39.00 10.66 0.0114  

AC 43.36 1 43.36 11.85 0.0088  

BC 49.63 1 49.63 13.56 0.0062  

Residual 29.27 8 3.66 

  

 

Lack of Fit 22.42 4 5.60 3.27 0.1388 Not significant 

Pure Error 6.85 4 1.71 

  

 

Cor Total 2348.30 16 

   

 

Std. Dev. 1.91 

 

R-Squared 0.99 

 

 

Mean 80.85 

 

Adj R-Squared 0.98 

 

 

C.V. 2.37 

 

Pred R-Squared 0.90 

 

 

PRESS 229.07 

 

Adeq Precision 31.56 

 

 

 



 

Fig. 3. Comparison between predicted value from the statistical models and actual 

experimental results for: a) removal efficiency, b) effluent generated, c) power consumption  

 

 

 



3.2 Removal Efficiency 

The response surface plot for removal efficiency under different operating parameter 

levels based on the statistical model in Equation (4) is shown in Fig. 4. The plots reveal that 

electric potential difference, wash solution concentration and initial Pb concentration have 

positive effects on the removal efficiency. Figs. 4a and 4b shows that electric potential 

difference is proportional to the removal efficiency, regardless of the other two parameters. In 

the navigation space, an increase in electric potential difference from 7.5V to 30V is observed 

to enhance the removal efficiency steadily from 53.99% to 83.72% and 77.38% to 94.62% 

when wash solution concentration used are 0.001M and 0.1M, respectively. The use of higher 

electric potential difference promotes higher removal efficiency by mainly enhancing 

electromigration rate via higher current and electric field strength through the soil. This is due 

to the fact that electromigration rate for metal ions is directly dependent on the electric field 

strength, as shown in Equation (7) where EM is the velocity for electromigration/ion 

transport, u is the ionic mobility and E is the magnitude of electric field strength, E [16, 30]. 

This observation was also in line with other works on the removal of heavy metals by 

electrokinetic process whereby higher electric potential difference was reported to improve 

the migration and removal efficiency [31-33].  

.EMv u E
           (7)        

In addition, wash solution concentration also showed positive impact on the removal 

efficiency. As shown in Fig. 4a, when electric potential difference is constant, the increase in 

wash solution concentration from 0.001M to 0.1M steadily enhances the removal efficiency. 

When other parameters were held constant, the increase in citric acid concentration not only 

provided higher Pb desorption via higher amount of H
+
 ions for desorption enhancement [34-

35], but also prevented the increase of pH in the cathode chamber, which further prevent the 



reduction in Pb electromigration due to hydroxide precipitation process at cathode region 

[36]. Moreover, citric acid was also reported to increase Pb solubility via water soluble 

complex formation [37]. It was also worth noting that citric acid could promote dissolution of 

Fe and Al, which were the binding sites for Pb, from soil surface [22]. All of these 

mechanisms could contribute to the improvement in Pb desorption and removal efficiency. 

However, Fig. 4a also suggests that the effect of wash solution concentration is more 

significant at low electric potential difference. As the electric potential difference was 

increased from 7.5V to 30V, the enhancement caused by the increment in wash solution 

concentration from 0.001M to 0.1M was 23.39% and 10.9%, respectively. Moreover, the 

effect of wash solution is optimum at a concentration of 0.075M for any electric potential 

difference used, as shown in Fig. 4a. Further improvement on the removal efficiency can only 

be achieved by increasing electric potential difference for better Pb desorption and 

electromigration rate. Thus, it is suggested that high removal efficiency could be attained by 

fine tuning the electric potential difference and wash solution concentration. This is 

especially important when both efficiency and cost are to be considered. 

The study also suggests that two-stage electrokinetic washing is suitable for the soil 

with high contamination level as higher removal efficiency is observed in the case of higher 

initial Pb concentration when other parameters are held constant, as illustrated in Figs. 4b and 

4c. This is mainly due to the removal of higher amount of Pb under high initial Pb 

concentration. In terms of Pb residual in the soil, initial Pb concentration did not show 

significant effect. The residual Pb concentration in the soil after the experiments remained 

close when treating soil with different initial Pb concentrations, as shown in four cases, which 

were i) Tests 11 vs 7 (171mg/kg vs 163mg/kg), Tests 3 vs 9 (88mg/kg vs 97mg/kg), iii) Tests 

17 vs 4 (48mg/kg vs 32mg/kg) and iv) Test 16 vs 6 (160mg/kg vs 180mg/kg). This 



observation suggests that the amount of residual Pb after the treatment was generally less 

dependent of initial Pb concentration, even though higher removal efficiency was achieved. 

 

Fig. 4. Interaction effect of parameters on Pb removal efficiency: a) electric potential 

difference and wash solution concentration (initial Pb concentration: 700mg/kg); b) electric 

potential difference and initial Pb concentration (wash solution concentration: 0.0505M); c) 

wash solution concentration and initial Pb concentration (electric potential difference: 

18.75V) 



3.3 Effluent generated 

 The interaction plots shown in Fig. 4 illustrate that high removal efficiency could be 

achieved using high electric potential difference with high wash solution concentration. 

However, it may be noted that the generation of high electric field/current under this 

condition can induce high electroosmosis, resulting in higher effluent generation. Even 

though electroosmosis may also contribute to Pb removal efficiency, this is not favoured as it 

entails higher cost for spent wash solution treatment. Thus, the effect of the above mentioned 

parameters on effluent generation was investigated so that an optimisation of two-stage 

electrokinetic washing could be performed based on both technical and economic 

considerations. 

The experimental setup was configured based on minimising the effluent flow from 

hydraulic gradient. Thus, the amount of effluent collected in this work was mainly attributed 

to electroosmosis only. Helmholtz-Smoluchowski theory as shown in Equation (8) suggests 

that the electroosmotic flow (EOF) velocity, vEO (m/s), is directly proportional to permittivity 

of a vacuum, ε0, electric field of the system, E, dielectric constant of the solution, D, zeta 

potential of the soil,  , and inversely proportional to dynamic viscosity of the solution, η 

[16, 38-39]. In this work, the electric field strength showed higher impact than soil zeta 

potential, considering that the average soil pHs for the tests were stable within the range of 

2.66-3.35, as a result of negligible base front effect. Thus, the effect of soil zeta potential 

difference was relatively small.  

0
EO

D
v E

 


 

        (8) 

The results in Table 3 show that EOF is not significant or low (<7mL) in most of the 

cases, except for Tests 3, 4, 9, 14 and 17, which are under two conditions: i) electric potential 



difference of ≥18.75V, and ii) wash solution concentration of ≥ 0.0505M. These conditions 

shared one similarity, which is they have electric current of >9mA, as shown in Table 3. The 

volume of effluent generated by EOF is found to be dependent on the electric current, 

whereby the higher current produces more effluent, as shown in Table 3.  

    

Fig. 5. Interaction effect of parameters on the amount of cumulative effluent generated: a) 

electric potential difference and wash solution concentration (initial Pb concentration = 

700mg/kg); b) electric potential difference and initial Pb concentration (wash solution 

concentration = 0.0505M) 

The response surface plots as shown in Fig. 5 suggest that electric potential difference 

is the most dominant factor that influences effluent generation in comparison to the other 

two. This was also reported by Zhou et al. [33] whereby the increase in electric potential 



difference increased the electroosmosis. However, it was also noted that the effect of electric 

potential difference was also dependent on wash solution concentration as well as initial Pb 

concentration. Fig. 5a reveals that at wash solution concentration of 0.001M, the increase in 

electric potential difference does not cause effluent generation. This could be due to relatively 

low electric current generated at low citric acid concentration (maximum ≈4mA), which 

indicated high electrical resistance in the overall system. When the wash solution 

concentration was increased, the reduction of EOF, as a result of the compression of the 

diffuse double layer thickness at higher ionic strength solution [13, 40-41] was not observed. 

Instead, an increase in electric current is observed when the wash solution concentration and 

initial Pb concentration are increased from 0.001M to 0.1M and 400mg/kg to 1000mg/kg, 

respectively (Table 3), and higher amount of effluent is obtained, especially at high electric 

potential difference (≥18.75V), as shown in Table 3 and Fig. 5. This was also in line with the 

works of Yang and Long [42] and Kim et al. [43] which reported that higher electroosmosis 

was achieved when the current density across the system was enhanced. Nevertheless, the 

effect given by wash solution concentration and initial Pb concentration is less significant 

when electric potential difference is low, as shown in Fig. 5.  

 

3.4 Power Consumption 

The ANOVA shows that the power consumption is an exponential function for the 

parameters studied, as shown in Equation (6). The response surface curve of ln(power 

consumption/kg Pb removed) versus the above-mentioned parameters, as illustrated in Fig. 

6a, show that the use of higher electric potential difference and wash solution concentration 

increase the power consumption. This was mainly due to high electric current available as a 

result of higher electrical driving force and higher amount of ions available via electrolysis 



and wash solution concentration. This not only enhanced Pb transport towards the cathode 

chamber, but also the transport of non-targeted ions such as H
+
, Fe, Al and other ions that are 

dissolved, which consumed unnecessary electrical power. Hence, it could be said that 

excessive increases in electric potential difference and wash solution concentration to 

enhance removal efficiency are not attractive options, as it in turn adversely the process 

feasibility. On the other hand, higher initial Pb concentration is found to reduce the power 

consumption, as shown in Fig. 6b. This suggests that two-stage electrokinetic washing is 

more economical for treating highly contaminated soil. 

 

Fig. 6. Interaction effect of parameters on power consumption: a) electric potential difference 

and wash solution concentration (initial Pb concentration: 700mg/kg); b) electric potential 

difference and initial Pb concentration (Wash solution concentration: 0.0505M) 



3.5 Optimization Study  

 The results discussed in Sections 3.2 to 3.4 suggest that higher Pb removal efficiency 

can be achieved at high electric potential difference and wash solution concentration. 

However, the increase in the value of these parameters also caused undesirable effluent 

generation via electroosmosis and high power consumption. An optimisation study was 

carried out based on the statistical models presented. This was aided by the desirability 

function in Design Expert 6.0.1 software so that the optimum Pb removal efficiency given by 

two-stage electrokinetic washing at efficient low power consumption and low effluent 

generation could be determined. Optimum operating parameters for electric potential 

difference and wash solution concentration were investigated for 1000mg/kg Pb 

contaminated soil, which was at the highest Pb contamination level. Three constraints in the 

process were set at: i) lowest power consumption, ii) lowest effluent generation, and iii) 

maximum removal efficiency. The analysis suggested that a combination of electric potential 

difference of 7.58V and wash solution concentration of 0.057M had the highest desirability 

of 0.887. This was expected to give 84.58% removal efficiency with a power consumption of 

1.89kWh/kg Pb removed and negligible effluent generation.  

An experiment was conducted based on the conditions given for validation purpose. 

Table 5 shows that the experimental result of 84.14% removal efficiency is in close 

agreement with the predicted result with an error of less than 1%. The power consumed under 

this condition was 2.27kWh/kg Pb removed and no effluent was detected during the 

experiment.  

 

 



Table 5: Predicted and experimental results for removal efficiency, effluent generated and 

power consumption under the optimum conditions  

Parameters Predicted Value Experimental  

Electric potential difference, V 7.58 7.58 

Wash solution concentration, M 0.057 0.057 

Effluent generated, mL 0.017 0 

Removal efficiency, % 84.58 84.14 

Power consumption, kWh/kg Pb  1.89 2.27 

 

 

3.6 Performance of two-stage electrokinetic washing under optimum conditions  

 A comparative study of the performance of two-stage electrokinetic washing and 

normal soil washing (without application of electricity) was made using the optimum 

conditions obtained in Section 3.5. Table 6 shows that, in general, two-stage electrokinetic 

washing enhanced the removal efficiency to ≈84% in comparison to normal soil washing 

(≈68%) when 0.057M citric acid concentration was used at similar low solution: soil ratio of 

<0.8mL: 1g where the volume of wash solution used was attributed to soil saturation and 

cathode chamber filling. The application of constant voltage of 7.58V supported 

electromigration of Pb in the soil after initial soil washing stage even though the pore flow 

was absent. Besides enhancing Pb removal efficiency, the results also suggested that the 

application of low magnitude electricity across the soil for 24 hours provided stable system 

condition. A stable low electric current as shown in Fig. 7a provides minimum change in the 

recorded pHs in wash solution chambers (anode and cathode chambers) and the soil pH, as 

shown in Table 6 and Fig. 7b. This observation confirmed that the effect of electrolysis and 

base front in cathode chamber were minimum in this process as citric acid served as a buffer 

solution in the cathode chamber to prevent pH change in soil and cathode chamber.   

 

 



Table 6: Comparison of removal efficiency and wash solution chambers’ pHs between 

normal soil washing and two-stage electrokinetic washing 

 Soil washing Two-stage electrokinetic washing 

Removal efficiency, % ≈68% ≈84% 

pH in anode chamber 2.17 2.14 

pH in cathode chamber 2.13 2.23 

 

 The use of 0.057M citric acid in two-stage electrokinetic washing was found to 

provide one way electromigration for Pb. As shown in Fig. 7c, two-stage electrokinetic 

washing results in lower Pb residual than normal soil washing in any soil sections, suggesting 

that one way Pb electromigration towards the cathode chamber is the main mechanism during 

electrokinetic process whilst electroosmosis in these conditions is insignificant. This is in 

agreement with the proposed mechanism suggested in a previous investigation when citric 

acid was used as the wash solution in a two-stage electrokinetic washing [22].  

 

 
Fig. 7. (a) Change of electric current across the soil at different time; (b) soil pH at different 

soil sections after the experiments; (c) normalised Pb concentration at different soil sections 

after the experiments 
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The application of electricity was also found to cause electrodeposition on cathode. 

As shown in Fig. 8, grey solid was found to be deposited on the cathode after the experiment 

while the anode was free from corrosion and deposition. The deposit was dissolved in 0.1M 

HNO3 for Pb content analysis. It was found that 49% of Pb in the contaminated soil was 

electrodeposited on the cathode surface after 24 hours experiment under the optimum 

conditions. Thus, it can be suggested that two-stage electrokinetic washing not only favours 

enhancement in Pb removal efficiency in comparison to normal soil washing but also 

facilitates in situ Pb recovery from the solution in the cathode chamber via electrodeposition. 

 
Fig. 8. Physical observation on (a) anode and (b) cathode after the experiment based on 

optimum conditions 

 

4. Conclusions 

Incorporation of electrokinetic process in soil washing as a two-stage electrokinetic 

washing was investigated in this study to remove Pb from sandy soil. The effects of operating 

parameters such as electric potential difference, wash solution (citric acid) concentration and 

initial Pb concentration were investigated on i) Pb removal efficiency, ii) effluent generated, 

and iii) power consumption. Unlike other studies, the effect of operating parameters was 

evaluated using response surface methodology based on Box-Behnken Design. From the 

study, several conclusions could be made: 



i) Pb removal efficiency was strongly dependent on electric potential difference 

and wash solution concentration. The increase in these parameters increased 

Pb removal efficiency, and the interaction among these parameters was 

significantly positive.  

ii) However, the increase in electric potential difference and wash solution 

concentration increased effluent generation (via electroosmosis) and power 

consumption, as a result of the increase in electric current. 

iii) Optimisation study based on the response surface plots showed that at 

optimum operating conditions of 7.58V and 0.057M wash solution 

concentration, Pb removal efficiency of ≈84% was achieved at negligible 

electroosmosis and a power consumption of 2.27kWh/kg Pb removed. In 

comparison to normal soil washing, an enhancement in removal efficiency by 

≈16% was achieved by two-stage electrokinetic washing at low solution: soil 

ratio (<0.8mL:1g). Furthermore, electrokinetic process also facilitated in situ 

Pb recovery in cathode chamber via electrodeposition.  

iv) Incorporation of electrokinetic process in soil washing is a feasible soil 

remediation process as it not only enhances Pb removal efficiency at minimum 

wash solution usage in comparison to normal soil washing, but also provides 

in situ recovery of Pb in cathode chamber via electrodeposition. Nevertheless, 

the feasibility of this system in treating other types of soil, as well as real 

contaminated soils should be further evaluated in the future works. 
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