A $\{\text{Gd}_{12}\text{Na}_6\}$ Molecular Quadruple-Wheel with a Record Magnetocaloric Effect at Low Magnetic Fields and Temperatures

Citation for published version:

Digital Object Identifier (DOI):
10.1021/jacs.3c01610

Link:
Link to publication record in Heriot-Watt Research Portal

Document Version:
Publisher's PDF, also known as Version of record

Published in:
*Journal of the American Chemical Society*

Publisher Rights Statement:
© 2023 The Authors.

General rights
Copyright for the publications made accessible via Heriot-Watt Research Portal is retained by the author(s) and/or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
Heriot-Watt University has made every reasonable effort to ensure that the content in Heriot-Watt Research Portal complies with UK legislation. If you believe that the public display of this file breaches copyright please contact open.access@hw.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
A \{\text{Gd}_{12}\text{Na}_{6}\} Molecular Quadruple-Wheel with a Record Magnetocaloric Effect at Low Magnetic Fields and Temperatures

Thomais G. Tziotzi, David Gracia, Scott J. Dalgarno, Jürgen Schnack,* Marco Evangelisti,* Euan K. Brechin, * and Constantinos J. Milios*  

ABSTRACT: Reaction of \text{Gd(OAc)}_{3}·4\text{H}_{2}\text{O}, salicylaldehyde and \text{CH}_{3}\text{ONa} in \text{MeCN}/\text{MeOH} affords \{\text{Gd}_{12}\text{Na}_{6} (\text{OAc})_{2} (\text{HCOO})_{2} (\text{CO})_{2} (\text{H}_{2}\text{O})_{3} \}_{9} \text{H}_{2}\text{O}·0.5\text{MeCN} (1·\text{H}_{2}\text{O}·0.5\text{MeCN}), whose structure describes a quadruple-wheel consisting of two \{\text{Na}_{3}\} and two \{\text{Gd}_{4}\} rings. The magnetic properties of 1 reveal very weak antiferromagnetic interactions between the \text{Gd}^{III} ions, which give rise to a record magnetocaloric effect at low applied magnetic fields and low temperatures. The magnetic entropy change reaches −Δ\text{S}_{m} = 29.3 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} for full demagnetization from \text{B} = 1 \text{ T} at \text{T} = 0.5 \text{ K}.

Magnetocaloric materials that can be operated at both low and very low temperatures with applied fields produced with permanent magnets (typically 1–2 T) are therefore sought after.\textsuperscript{15,25,26} Here, we report the new molecular nanomagnet \{\text{Gd}_{12}\text{Na}_{6} (\text{OAc})_{2} (\text{HCOO})_{2} (\text{CO})_{2} (\text{H}_{2}\text{O})_{3} \}_{9} \text{H}_{2}\text{O}·0.5\text{MeCN} (1·\text{H}_{2}\text{O}·0.5\text{MeCN}) that demonstrates an unprecedentedly large low-field MCE for low and very low temperatures.

Complex 1 crystallizes in the rhombohedral space group R-3. Its structure (Figure 1) describes a quadruple-wheel comprising two \{\text{Na}_{3}\} and two \{\text{Gd}_{4}\} rings held together by a combination of acetate, formate, and carbonate ligands, the latter arising from the fixation of atmospheric CO\textsubscript{2} (see the Supporting Information (SI) for full details). The metallic skeleton, when viewed in the \textit{ab} plane, is a layered structure comprising a \{\text{Na}_{3}\} triangle atop a \{\text{Gd}_{4}\} wheel atop a second \{\text{Gd}_{4}\} ring atop a second \{\text{Na}_{3}\} triangle. The \{\text{Gd}_{4}\} unit therefore describes a distorted hexagonal prism and the \{\text{Na}_{3}\} moiety a trigonal antiprism (Figure 2). The six lanthanide centers in each \{\text{Gd}_{4}\} ring are coplanar, displaying a deviation from the mean plane of ∼0.2 Å. The six carbonate ions sit in
the center of the \( \{\text{Gd}_6\} \) belt and each bond in a \( \eta_2^3\eta_1^2\mu_5 \) fashion to four Gd ions and one Na ion (SI, Figure S1), defining a \( \{\text{Gd}_4\text{Na}\} \) pentagon. An alternative view of the metallic core is therefore six edge-sharing \( \{\text{Gd}_4\text{Na} (\text{CO}_3)\} \) pentagons fused into a “spherical” cluster. The Gd···Gd distances within each \( \{\text{Gd}_4\text{Na}\} \) pentagon are \( \sim 4.0 \) Å, the Gd···Na distances fall in the range 3.61−3.75 Å. Twelve acetates \( \eta^2\eta'\eta''\mu \) bridge between the Gd ions in the \( \{\text{Gd}_6\} \) belt (SI, Figure S2), six along the length of the belt (three in each \{Gd\} wheel) and six across the breadth of the belt (between the \{Gd\} wheels). The remaining 18 acetates/formates bond in a \( \eta^2\eta'\eta''\mu \) fashion to two Gd and two Na ions, lying on the inner rim of the \{Na\} triangles. It is these carboxylates that show acetate/formate disorder (see the SI for full details); twelve bond in a \( \eta^2\eta'\eta''\mu \) fashion to one Gd ion and one Na ion, sitting on the exterior of the cage between the \{Gd\} and \{Na\} rings.

The two symmetry inequivalent Gd ions (Gd1, Gd2) are both in \{GdO9\} capped square antiprismatic geometries, the ninth site on Gd1 being occupied by a H₂O molecule (SI, Figure S3). The symmetry equivalent Na ions (Na1) are six coordinate and in distorted \{NaO6\} octahedral geometries, the sixth site being occupied by a H₂O molecule. These are H-bonded to acetate O atoms on neighboring clusters, creating an ABC hexagonal close packed arrangement of cages in the lattice (SI, Figure S4). Nearest intercluster Gd···Na and Gd···Gd distances are \( \sim 7.1 \) and \( \sim 8.1 \) Å, respectively. Complex 1 has an internal cavity of \( \sim 52 \) Å³ (Figure 2), which is partially (50%) occupied by a MeCN molecule of crystallization which aligns along the \( c \)-axis of the cell. A search of the Cambridge Structural Database reveals that 1 has a unique structure type.

DC magnetic susceptibility and magnetization measurements (Figure 3, SI, S5) reveal the presence of very weak antiferromagnetic exchange between the GdIII ions. The susceptibility follows a Curie−Weiss law with \( \theta = -0.3 \) K. The \( \chi T \) product (\( \chi = \) molar magnetic susceptibility, \( T = \) temperature) at \( T = 300 \) K is equal to the Curie constant expected for 12 noninteracting GdIII ions (94.5 cm³ K mol⁻¹) and is essentially invariant as \( T \) drops to \( \sim 25 \) K, wherefrom it decreases to \( \sim 84 \) cm³ K mol⁻¹ at 2 K. Magnetization (\( M \)) data saturate at a value of 84 \( \mu_B \) at \( T = 2 \) K and a field of \( B = 5 \) T, as expected for 12 uncorrelated \( s = 7/2 \) ions. The susceptibility and magnetization data can be simulated using a spin-Hamiltonian \( \hat{H} = -2J \sum_{i=1}^{12} \hat{s}_i \hat{s}_{i+1} \) with just one parameter, \( J = -0.01 \) K with \( g = 2.00 \), employing a model (SI, Figure S6) that assumes the exchange is mediated through the single O atom.
acetate bridges and ignores the three atom Gd–O–C–O–Gd bridges.27,28
The same model can be used to simulate the magnetic contribution to the heat capacity ($c_p$, Figure 4). All observables, $\chi, M, c_p$ can be reproduced nicely, except for the zero-field $c_p$, where a small internal magnetic field due to dipolar ordering must be assumed. This is a typical procedure for dipolar materials; for large external fields and temperatures, the internal field becomes irrelevant. Assuming an internal field value of $B = 0.22$ T, the Schottky anomaly resulting from the sum of 12 noninteracting Gd$^{III}$ ions per formula unit mimics well the behavior of the zero-field magnetic heat capacity. At high temperatures, $c_p$ is dominated by the lattice contribution (dashed line in Figure 4), which follows Debye’s law below 5 K, $c_{lat}/T^3 = 3.8 \times 10^{-3}$ R.

The temperature and field dependencies of the absolute entropy ($S$, Figure 4) are calculated from the heat capacity data, as $S(T,B) = \int_{0}^{T} c_p (T',B)/T' \ dT'$. Because $c_p$ was recorded to 0.4 K, the entropy for lower temperatures is obtained from the zero-field Schottky calculation. For fields other than zero, no extrapolation toward absolute zero is needed to obtain $S$.

The zero-field entropy data shows that the available magnetic entropy content of I, $S_m = 12 \times R \times \ln(2s + 1) = 24.95$R = 46.3 J kg$^{-1}$ K$^{-1}$, is fully attained at very low-temperatures, ca. 2–3 K, as a result of the very weak magnetic interactions. At much higher temperatures, $S(T,B)$ curves increase steadily and tend to overlap because of the nonmagnetic lattice contributions.

Complex I meets all the requirements for a large MCE at low and very low temperatures.23,24,25 The largest possible value of the spin ground state and the negligible anisotropy, combined with very weak magnetic interactions, lead to the absence of phase transitions, at least down to 0.4 K, and to the presence of a large zero-field entropy below 2–3 K. The use of lightweight ligands promotes a large magnetic:nonmagnetic atom ratio and a large magnetic entropy per unit mass.15 The MCE figures of merit, $\Delta S_m$ and $\Delta T_{ad}$, in Figure 5, are obtained as differences between the entropy curves shown in Figure 4, for the magnetic field changes $\Delta B = B = 0$, i.e., after a full demagnetization from B. $\Delta S_m$ is also calculated from the magnetization data in Figure 3 (top inset) and SI, Figure S5, using the Maxwell relation $\Delta S_m = \int [\partial M/\partial T]_B \ dB$. Both methods provide identical results.

The magnetic entropy change reaches the value of $-\Delta S_m = 46.0$ J kg$^{-1}$ K$^{-1}$, which corresponds to $\sim 99\%$ of the available entropy at $T = 1.8$ K for the largest applied field change $\Delta B = 7$ T (Figure 5). This value is exceptionally large and lags behind only a handful of magnetic refrigerants, all of which are nonmolecular, including Gd(HCOO)$_3$,15 Gd$PO_4$,16 Gd$VO_4$, GdLiF$_3$,16 Gd(OH)$_3$,17 F$_{13}$ and LiErF$_4$.18 In contrast to I, all of these materials undergo a transition to a magnetically

Figure 3. DC magnetic susceptibility at $B = 0.1$ T vs temperature and low-temperature magnetization vs field (inset) for I. Experimental data = symbols, theoretical simulations = lines.

Figure 4. Heat capacity and entropy (inset) vs temperature for selected applied field values for I. Experimental data = symbols, theoretical simulations = lines. The arrow highlights the adiabatic demagnetization cooling for the targeted application.

Figure 5. Magnetic entropy change (top) and adiabatic temperature change (bottom) for I, calculated from magnetization (empty symbols) and heat capacity (filled symbols) data. Bottom inset: magnification of the low-field/low-temperature (yellow) area. The intersection of the dashed lines (yellow symbol) highlights the targeted temperature (cf. arrow in Figure 4), which is attained for $\Delta B = 1.5$ T. Solid lines are theoretical simulations.
ordered state between ~0.5 and 0.8 K, which sets the lowest limit of cooling by demagnetization. Where I stands apart is in the MCE values attained for far smaller applied field strengths, due to the large entropy that I reaches at very low temperatures. For instance, for $\Delta B = 1$ T, we observe the unprecedented value of $-\Delta S_m = 29.3$ J kg$^{-1}$ K$^{-1}$, which corresponds to ~63% of the available entropy at a remarkably low $T = 0.5$ K (Figure 5). The adiabatic temperature change follows a similar trend. For the largest $\Delta B = 7$ T, $\Delta T_{ad}$ reaches 11.3 K at $T = 1.3$ K. Complex I therefore joins the few Gd-based molecular nanomagnets whose $\Delta T_{ad}$ maximum is known to occur below 2 K for $\Delta B = 7$ T, namely $[(\text{Gd}-(\text{OAc})_2)(\text{H}_2\text{O})_2]_2\cdot4\text{H}_2\text{O}$ ($\Delta T_{ad} = 12.6$ K at $T = 1.4$ K), $[(\mu_3-\text{CO}_3)]_2[(\text{Zn}(\mu-L)\text{Gd(NO}_3)_2)_2]_2\cdot4\text{CH}_3\text{OH}$ (9.6 at 1.4 K), $[\text{Gd}_2(\text{OH})_5(\text{thmeH}_3)_5(\text{thmeH})(\text{tpa})(\text{MeCN})_2]_2(\text{NO}_3)_2$ (9.4 at 1.8 K), $[\text{Pr}_2\text{NH}_3]_2[\text{Gd}(\mu_3-\text{OH})(\text{CO}_3)_3(\text{O}_2\text{CCBu})]_2$ (9.4 at 1.8 K), and $[\text{Co}_{12}\text{Gd}_3(\text{H}_2\text{L})_3(\text{acac})_2]_2\cdot(\text{CH}_3\text{COO})_2(\text{H}_2\text{O})_2$ (10.7 at 1.5 K). For field changes as low as $\Delta B = 1$ T, I has the largest $\Delta T_{ad} = 4.0$ K at $T = 1.8$ K.

The MCE for low applied magnetic fields and temperatures deserves special consideration. With $\theta = -0.3$ K, I shows a record MCE at the cooling temperatures of the main ADR stage being investigated for future space missions. The $1.8 \rightarrow 0.3$ K cooling by full adiabatic demagnetization is represented by an arrow in Figure 4. This is attained precisely for $B = 1.5$ T, the corresponding entropy curve being calculated with the same model used to simulate the $\chi_v$ $M$ and $c_p$ data. Equivalently, Figure 5 shows that $\Delta B = 1.5$ T is needed to target $\Delta T_{ad} = 1.5$ K at $T = 0.3$ K. Such a weak applied magnetic field can be produced with permanent magnets, enormously facilitating the implementation of the ADR.

In conclusion, we have synthesized a new molecular magnetic refrigerant, characterized by lightweight ligands that promote extremely weak magnetic correlations between the Gd$^{III}$ centers. This material stands out for its unprecedentedly large magnetocaloric effect, as observed for temperatures near 0.3 K and low applied magnetic fields, therefore becoming an appealing candidate for refrigeration applications under these conditions.

■ ASSOCIATED CONTENT

▲ Supporting Information

The Supporting Information is available free of charge on the ACS Publications Web site.

Accession Codes

CCDC 2216494 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

■ AUTHOR INFORMATION

Corresponding Authors

Euan K. Brechin — EaSiCHEM School of Chemistry, The University of Edinburgh, Edinburgh EH9 3FJ Scotland, UK; orcid.org/0000-0002-9365-370X; Email: E.Brechin@ed.ac.uk

Jürgen Schnack — Fakultät für Physik, Universität Bielefeld, 33501 Bielefeld, Germany; Email: jschnack@uni-bielefeld.de

Marco Evangelisti — Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC & Universidad de Zaragoza, 50009 Zaragoza, Spain; orcid.org/0000-0002-8028-9064; Email: evange@unizar.es

Constantinos J. Milios — Department of Chemistry, University of Crete, 71003 Heraklion, Greece; Email: komil@uoc.gr

Authors

Thomas G. Tziotzi — Department of Chemistry, University of Crete, 71003 Heraklion, Greece

David Gracia — Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC & Universidad de Zaragoza, 50009 Zaragoza, Spain; orcid.org/0000-0002-3511-3510

Scott J. Dalgarino — Institute of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS Scotland, U.K.; orcid.org/0000-0001-7831-012X

Authors Contributions

T.G.T. synthesized and characterized the complex. S.J.D. solved the single-crystal XRD data. D.G. and M.E. measured the magnetic/heat capacity data and analyzed the MCE parameters. J.S. simulated the magnetic/heat capacity data. E.K.B. and C.J.M. conceived the idea. All authors contributed to writing the manuscript.

Notes

The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

This work was supported by The Leverhulme Trust (RPG-2021-176), MICINN (PID2021-124734OB-C21). T.G.T. and C.J.M. acknowledge the Hellenic Foundation for Research and Innovation (HFRI) under the "First Call for HFRI Research Projects to support Faculty members and Researchers and the procurement of high-cost research equipment grant" (project no. 400). D.G. acknowledges financial support from the Gobierno de Aragón through a doctoral fellowship.

■ REFERENCES


(5) Giauque, W. F.; MacDougall, D. P. Attainment of Temperatures Below 1° Absolute by Demagnetization of Gd$_2$(SO$_4$)$_3$·8H$_2$O. Phys. Rev. 1933, 33, 678.


Complete contact information is available at: https://pubs.acs.org/10.1021/jacs.3c01610
1185.
(7) Wielinga, R. F.; Lubbers, J.; Huiskamp, W. J. Heat capacity
singularities in two gadolinium salts below 1 K. Physica 1967, 37,
375–392.
(8) Evangelisti, M.; Roubéau, O.; Palacios, E.; Camón, A.; Hooper,
T. N.; Brechin, E. K.; Alonso, J. J. Cryogenic Magnetocaloric Effect in
a Ferromagnetic Molecular Dimer. Angew. Chem., Int. Ed. 2011, 50,
6606–6609.
(9) Martínez-Pérez, M.-J.; Montero, O.; Evangelisti, M.; Luis, F.;
Sesé, J.; Cardona-Serra, S.; Coronado, E. Fragmenting Gadolinium:
Mononuclear Polypyrrolotetlate-Based Magnetic Coolers for Ultra-
(10) Sharples, J. W.; Collison, D.; McInnes, E. J. L.; Schnack, J.;
Palacios, E.; Evangelisti, M. Quantum signatures of a molecular
magnet in direct magnetocaloric measurements. Nat. Commun. 2014,
5, 5321.
(11) Pineda, E. M.; Lorusso, G.; Zangana, K. H.; Palacios, E.;
Schnack, J.; Evangelisti, M.; Winpenny, R. E. P.; McInnes, E. J. L.
Observation of the influence of dipolar and spin frustration effects on
the magnetocaloric properties of a trinuclear prismanic {Gd3} molecular
(12) Koskelo, E. C.; Liu, C.; Mukherjee, P.; Kelly, N. D.; Dutton, S.
E. Free-Spin Dominated Magnetocaloric Effect in Dense Gd12 Double
(13) Daudin, B.; Lagnier, R.; Salce, B. Thermodynamic properties of
the gadolinium gallium garnet, Gd3Ga5O12, between 0.05 and 25 K. J.
(14) Chen, Y.-C.; Proklesa, J.; Xu, W.-J.; Liu, J.-L.; Liu, J.; Zhang,
W.-X.; Jia, J.-H.; Sechovsky, V.; Tong, M.-L. A brilliant cryogenic
magnetic coolant: Magnetic and magnetocaloric study of ferromag-
(15) Lorusso, G.; Sharples, J. W.; Palacios, E.; Roubéau, O.; Brechin,
E. K.; Sessoli, R.; Rossin, A.; Tuna, F.; McInnes, E. J. L.; Collison, D.;
Evangelisti, M. A Dense Metal-Organic Framework for Enhanced
(16) Palacios, E.; Rodríguez-Velamazán, J. A.; Evangelisti, M.;
Magnetic structure and magnetocalorics of GdPO4. Phys. Rev. B 2014,
90, 214423.
(17) Palacios, E.; Evangelisti, M.; Sáez-Puche, R.; Dos Santos-García,
A. J.; Fernández-Martínez, F.; Cascales, C.; Castro, M.; Burriel, R.;
Fabelo, O.; Rodríguez-Velamazán, J. A. Magnetic structures and
magnetocaloric effect in RVO4 (R = Gd, Nd). Phys. Rev. B 2018, 97,
214401.
(18) Numazawa, T.; Kamiya, K.; Shirron, P.; DiPirro, M.; Matsumoto,
1580.
Gd(OH)F2: A Promising Cryogenic Magnetic Refrigerant. J. Am.
Chem. Soc. 2022, 144, 13787–13793.
(20) Pobell, F. Matter and Methods at Low Temperatures; Springer-
Brandt, M. Large magnetocaloric effect and adiabatic demagnetiza-
tion refrigeration with YbPt3Sn. Nat. Commun. 2015, 6, 8680.
(22) Paixão Brasiliano, D. A.; Duval, J.-M.; Marín, C.; Bichaud, E.;
Brison, J.-P.; Zhitomirsky, M.; Luchier, N. YbGG material for
Adiabatic Demagnetization in the 100 mK–3 K range. Cryogenics 2020,
105, 103002.
Gegenwart, P. Frustrated magnet for adiabatic demagnetization
(24) Shimura, Y.; Watanabe, K.; Taniguchi, T.; Osato, K.; Yamanoto,
R.; Kusanose, Y.; Umeo, K.; Fujita, M.; Onimaru, T.; Takabatake,
T. Magnetic refrigeration down to 0.2 K by heavy fermion metal
(25) Mo, Z.; Gong, J.; Xie, H.; Zhang, L.; Fu, Q.; Gao, X.; Li, Z.;
Shen, J. Giant low-field cryogenic magnetocaloric effect in polycryst-
(26) Kleinmans, M.; Eibensteiner, K.; Leiner, J. C.; Resch, C.; Worch,
L.; Wilde, M. A.; Spallek, J.; Regnat, A.; Pfleiderer, C. Magnetocaloric
19, 014038.
(27) Jaklič, J.; Prelovšek, P. Lanczos method for the calculation of
finite-temperature quantities in correlated systems. Phys. Rev. B 1994,
49, 5065.
(28) Schnack, J.; Richter, J.; Steinigeweg, R. Accuracy of the finite-
temperature Lanczos method compared to simple typicality-based
Colacio, E. Close-Related Zn2L3 Complexes (Ln = Gd, Yb) with
Either Magnetic Refrigerant or Luminescent Single-Molecule
(30) Heras Ojea, M. J.; Lorusso, G.; Craig, G. A.; Wilson, C.;
Evangelisti, M.; Murrie, M. A topologically unique alternating

Recommended by ACS

Synthetic Factors Determining the Curvature and Nuclearity of the Giant Mn50 and Mn48 Clusters with a Torus Structure of ~4 nm Diameter
Ashlyn R. Hale, George Christou, et al.
APRIL 04, 2023
INORGANIC CHEMISTRY

“One-Pot” In Situ Tandem Reaction—Dy(III) Coordination-Catalyzed Multicomponent Condensation of Salicylaldehyde Derivatives to Obtain Ketals
Hai-Ling Wang, Hua-Hong Zou, et al.
MARCH 28, 2023
INORGANIC CHEMISTRY

Evaluating f Orbital Participation in the U5+–E Multiple Bonds of [U(E(NR)2)6] (E = O, NSiMe2, NaD; R = SiMe3)
Thien H. Nguyen, Trevor W. Hayton, et al.
APRIL 13, 2023
INORGANIC CHEMISTRY

Spin-Flop Transition in a Nickel–Octacyanidotungstate Chain Magnet
Shintaro Akagi, Hiroko Tokoro, et al.
FEBRUARY 16, 2023
CRYSTAL GROWTH & DESIGN

Get More Suggestions >