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The concept of ensemble-average polarization and coherence has been applied to studying fluctuating Stokes
parameters in a polarization speckle observed when coherent light is passed through a birefringent polarization
scrambler. With the aid of the ensemble-average van Cittert–Zernike theorem for the propagation of ensemble-
average polar-coherence, we invesitgate the autocorrelation functions and power spectra of the Stokes parameters
to expose the dependence of the polarization-related scale-size distributions on the optical geometries in which the
polarization speckle arises. A generalized concept of the Stokes ensemble-average coherence areas is introduced to
deal with the polarization-related average areas associated with polarization speckle.
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1. INTRODUCTION

All optical fields may undergo random fluctuations, and polari-
zation and coherence have been widely regarded as important
manifestations of fluctuations [1–4]. It is common to model
light from a source as a stationary and ergodic random process
in time, and the usual polarization and/or coherence are then
defined by infinite time averages, although statistical averages
can be used whenever necessary and yield the same results as
time averages. Since there exists an important class of optical
phenomena called speckle phenomena, where time average and
ensemble average no longer yield the same results [3,5], we must
be careful to distinguish between time averages and ensemble
averages. One goal of this paper is to develop the concept of
ensemble-average coherence first, as explicitly introduced by
Goodman [5], and apply the concept of ensemble-average
polarization and coherence to the study of polarization speckle
for exploring the conceptual differences in polarization and
coherence associated with such random statistical processes.

Polarization speckle manifests itself as random spatial vari-
ations of the state of polarization with the Stokes parameters
varying in a random way across the pattern [6,7]. Just as the
intensity autocorrelation has been widely adopted to meas-
ure the coarseness of a scalar speckle pattern [8–10], so, too,
will the autocorrelation functions of the Stokes parameters
provide means for measuring the polarization-related spa-
tial structure for polarization speckle. As for the correlations

between the Stokes parameters, there is a great deal of previous
work in the literature that is pertinent to this subject, includ-
ing the covariance matrix of instantaneous Stokes parameters
[11], the polarization time and length [12,13], and experi-
mental investigation of the Stokes autocorrelations and their
applications [6,14–17]. More relevant recent work is that of
Kuebel and Visser [18], where the autocorrelations and cross-
correlations between all the Stokes parameters have been given
in terms of the cross-spectral density matrix for the study of
polarization-resolved Hanbury Brown–Twiss effect.

The purpose of this paper is to apply the concept of ensemble-
average polarization and coherence for investigation of the
spatial structure of polarization speckle. After pointing out the
physical distinctions between ensemble-averaged quantities
and time-averaged ones, we apply the ensemble-average van
Cittert–Zernike theorem to study the propagation of ensemble-
average polar-coherence. Under the application of the complex
Gaussian moment theorem, we derive the autocorrelation
functions of the Stokes parameters in terms of the (generalized)
Stokes parameters (rather than by a cross-spectral density matrix
as in [18]) for a polarization speckle pattern. The power spectral
densities of the Stokes parameters are also obtained to reveal the
dependences of polarization-related scale-size distributions on
two optical geometries, i.e., free-space propagation geometry
and imaging geometry, where polarization speckle arises. The
stressed distinctions between statistics with particular ergodicity
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assumptions and the presented spatial structures of polarization
speckle will inspire future work of interest.

2. ENSEMBLE-AVERAGE POLARIZATION AND
COHERENCE

Before giving our detailed analysis of the polarization-related
spatial structure of polarization speckle, we briefly introduce
the concept of ensemble-average polarization and coherence
and apply this concept to deal with polarization speckle for
clarification of their physical indications as compared with time
averages.

Let the light from an ideally stabilized monochromatic
continuous-wave (CW) laser illuminate a stationary bire-
fringent polarization scrambler [19,20] and consider the
polarization and coherence properties of light some distance
beyond the depolarizing diffuser, as shown in Fig. 1(a). The
optical field behind the diffuser is intricate and its intensity and
state-of-polarization give an unpredictable pattern, as shown
in Fig. 1(b), due to the complicated and unknown birefringent
microstructure of the diffuser itself. If the diffuser were moving,
the electric field, intensity, and state-of-polarization behind
the depolarizing diffuser would fluctuate with time, and the
usual definitions on polarization and coherence in terms of time
averages would be appropriate [1–4]. However, the diffuser is
not moving in the current situation of interest.

The column vector of the electric field scattered by the bire-
fringent polarization scrambler at location r and at time t is
given by

E(r, t)=
[

E x (r) exp(− j2πνt)
E y (r) exp(− j2πνt)

]
, (1)

where ν is the frequency of the monochromatic source, and
E x (r) and E y (r) are the complex polarization components.
Note that these two polarization components are independent
of time; therefore, the column vector [E x , E y ]

T with its super-
script T being the transpose operator represents the polarization
phasor of the electric field. Using the time-average definition of
the polarization matrix of such light gives the form

J (r)= 〈E(r, t)⊗ E†(r, t)〉

=

[
E x (r)E ∗x (r) E x (r)E ∗y (r)
E y (r)E ∗x (r) E y (r)E ∗y (r)

]
, (2)

where 〈· · · 〉 stands for the time average, ⊗ signifies the
Kronecker product, and † denotes a conjugate transpose

Fig. 1. (a) Generation of polarization speckle by an ideally stabi-
lized CW laser and a stationary birefringent polarization scrambler.
(b) Example of polarization speckle with the spatial variations of
polarization ellipses and the fluctuations of intensity.

operator. From the standard definition of the degree of polariza-
tion [1–4], i.e., P =

√
1− 4 det(J )/[tr(J )]2 with tr and det

being the trace and determinant operations, respectively, it is not
difficult to show that the light behind the diffuser is completely
polarized everywhere withP = 1 due to the fact of det(J )= 0.

Similarly, the mutual coherence matrix of such light in terms
of time average is given by

0(r1, r2)= 〈E(r1, t)⊗ E†(r2, t)〉

=

[
E x (r1)E ∗x (r2) E x (r1)E ∗y (r2)

E y (r1)E ∗x (r2) E y (r1)E ∗y (r2)

]
. (3)

With the aid of the normalized mutual coherence matrix by
setting γ (r1, r2)=0(r1, r2)/[‖0(r1, r1)‖

1/2
‖0(r2, r2)‖

1/2
]

with || · · · || being the Frobenius norm of a matrix [21], it is
also not difficult to show that ‖γ (r1, r2)‖ = 1. Therefore, by
our usual definitions, based on time averages, we find that the
scattered light behind the birefringent polarization scrambler is
completely polarized and fully coherent everywhere, given that
the diffuser is static and illuminated by entirely coherent and
completely polarized light.

Since a statistical treatment of such light is indeed appropriate
and useful, the questions then become over what statistical
ensemble is the light a random process and how might we mod-
ify our definitions of polarization and coherence for such light.
Suppose that, however, rather than averaging with respect to
time, instead, we average over an ensemble of different birefrin-
gent polarization scramblers, each depolarizing diffuser having
a different birefringent microstructure but all diffusers being
statistically similar in their principal indices of refraction, the
orientation angle of fast/slow axes, the mean and variance of
thickness, and the lateral surface correlation length of birefrin-
gent material over the ensemble. Statistical averages are then
carried out over the ensemble of these depolarizing diffusers,
allowing polarization- and coherence-related concepts to be
defined. Therefore, the ensemble-average polarization matrix
and the ensemble-average mutual coherence matrix so defined
take the forms

J̄ (r)= E(r, t)⊗ E†(r, t)

=

[
E x (r)E ∗x (r) E x (r)E ∗y (r)
E y (r)E ∗x (r) E y (r)E ∗y (r)

]
, (4)

and

0̄(r1, r2)= E(r1, t)⊗ E†(r2, t)

=

[
E x (r1)E ∗x (r2) E x (r1)E ∗y (r2)

E y (r1)E ∗x (r2) E y (r1)E ∗y (r2)

]
, (5)

where the overbar represents a statistical expectation. Here,
a stationary polarization speckle pattern is such a proc-
ess, for which the time averages of a stationary polarization
speckle do not equal the averages over an ensemble of possible
polarization speckle patterns. In general, J (r) 6= J̄ (r) and
0(r1, r2) 6= 0̄(r1, r2).
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Note the fact that the Stokes vector S(r) is a different
representation of J (r) for characterizing light polari-
zation, and the generalized Stokes vector S(r1, r2) is an
alternative representation of 0(r1, r2) for characterizing
coherence of optical waves [1,4]. Based on time aver-
ages, they are defined by S(r)= A〈E(r, t)⊗ E∗(r, t)〉 and
S(r1, r2)= A〈E(r1, t)⊗ E∗(r2, t)〉 with A being the unitary
transformation matrix

A=

 1 0 0 1
1 0 0 −1
0 1 1 0
0 − j j 0

 . (6)

In a similar way, we can place a bar over the symbols S(r)
and S(r1, r2) to remind us that the averages are over the
ensembles, and the definitions for the ensemble-average
Stokes vector and the ensemble-average generalized Stokes
vector take the forms S̄(r)= A[E(r, t)⊗ E∗(r, t)] and
S̄(r1, r2)= A[E(r1, t)⊗ E∗(r2, t)], respectively. More
explicitly, we have

S0(r1, r2)= E x (r1)E ∗x (r2)+ E y (r1)E ∗y (r2),

S1(r1, r2)= E x (r1)E ∗x (r2)− E y (r1)E ∗y (r2),

S2(r1, r2)= E x (r1)E ∗y (r2)+ E y (r1)E ∗x (r2),

S3(r1, r2)= j [E y (r1)E ∗x (r2)− E x (r1)E ∗y (r2)], (7)

and S̄(r) can be found by merging r1 and r2 to a single point
r. In the situations of interest here, generally, S̄(r) 6= S(r) and
S̄(r1, r2) 6= S(r1, r2).

Although the conventional schemes of polarization and
coherence based on time averages have achieved great success
when applied to light from a thermal source, these time-
averaged quantities of physical interests fail to characterize
the inherent statistics of polarization speckle because such a
stochastic field does not fluctuate with time (at least in the
classical sense). The applications of the concept of ensemble-
average polarization and coherence are found particularly useful
in the study of polarization speckle, whose spatial properties,
including intensity and state-of-polarization, are random, but
no time averaging is involved. Unlike the conventional degree
of polarization (which is defined on the basis of time averages
and indicates the ratio of the intensity in the completely polar-
ized wave component to the total intensity in the wave), the
degree of polarization newly defined on the basis of ensemble
averages may be called the degree of ensemble-average polarization
and is related to the degree of order or disorder of the spatial
distribution of polarization states for completely polarized light
[6,7,22]. On the other hand, unlike the conventional concept of
optical coherence providing a measure of capability for optical
fields to interfere between two points for fringe generation, the
concept of ensemble-average coherence indicates the statistical
dependence and cross-correlation between the realizations of
random processes (stochastic optical fields) at two points from
fully coherent light.

Since there is a conceptual difference between ensemble
averages and time averages for polarization speckle, we must be

careful to distinguish between time-averaged polarization and
coherence and ensemble-averaged polarization and coherence.
Following Goodman [3], we shall use the ordinary symbols for
polarization- and coherence-related quantities defined by time
averages and identical symbols with overbars to represent the
corresponding ensemble-averaged quantities. Thus, we distin-
guish between two degrees of polarization, P and P̄ , and two
normalized mutual coherence matrices, γ (r1, r2) and γ̄ (r1, r2),
and so on.

The concept of ensemble average has long been known
and utilized widely as a common mathematical tool in sta-
tistical optics [1–4]. Unlike the conventional time-average
polarization and coherence (which are practical quantities
observable by experiment), the ensemble-average quantities
are conceptual quantities defined only mathematically and
are not observable by experiment unless an infinite number
of realizations (events) are physically generated. Obviously,
polarization speckle is just a single realization (event) of a spatial
random process represented by spatial variations of polariza-
tion ellipses and spatial fluctuations of intensity. Nonetheless,
if the polarization speckle field has spatial ergodicity, we can
replace the ensemble averaging with the space averaging that is
experimentally observable, which gives a practical value to the
concept of ensemble-average polarization and coherence. In the
context of polarization speckle, which is a fully coherent and
completely polarized random optical wave, the ensemble-average
incoherence with ||γ̄ (r1, r2)|| = 0 indicates that intensities and
states of polarization at the two positions r1 and r2 fluctuate
independently without any spatial correlation. While the full
ensemble-average coherence with ||γ̄ (r1, r2)|| = 1 gives an oppo-
site situation where the intensities and the states of polarization
are perfectly correlated and fluctuate in a synchronized manner
if the two measurement points approach each other arbitrarily
closely. As far as ensemble-average polarization is concerned,
the polarization speckle with P̄ = 0 can be referred to as the
isotropic polarization speckle since the randomness for varying
polarization ellipses does not change when measured along any
spatial directions. On the other hand, the polarization speckle
with P̄ = 1 can be called the uniform polarization speckle since
the state-of-polarization is uniformly distributed with identical
polarization ellipses across the whole observation area, although
its intensity fluctuates in space. The conventional scalar speckle
can be understood as the uniform polarization speckle phe-
nomenon, whose statistical properties and applications are
comprehensively discussed in a monograph by Goodman [8].

3. AUTOCORRELATION FUNCTIONS AND
POWER SPECTRA OF THE STOKES
PARAMETERS

Due to the fact of random spatial variations of the state-of-
polarization in a polarization speckle pattern, our interest here
is in the coarseness of polarization-related spatial structures and
the distributions of scale sizes in their random spatial fluctua-
tions of the Stokes parameters. In this section, we will consider
some important aspects of the spatial structure of polariza-
tion speckle, namely, the autocorrelation functions and the
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power spectral densities of the Stokes parameters of polariza-
tion speckle in two optical geometries: free-space scattering
geometry and imaging geometry.

A. Propagation of Ensemble-Average
Polar-Coherence

In statistical optics, both the mutual coherence matrix and
the generalized Stokes vector are regarded as representing the
light coherence properties by taking the vector nature of the
stochastic electric fields into account; therefore, we can term the
polar-coherence for the polarization-related coherence properties
as contrasting with the conventional scalar coherence of light.
Note the fact that the wave equation governing the propagation
of light is the same, no matter if we are ultimately interested
in time- or ensemble-average properties of light. The laws gov-
erning the propagation of polar-coherence are identical for time-
and ensemble-averaged quantities [3]. Therefore, we are allowed
to apply all previously acquired knowledge on the propagation
of time-average polar-coherence [23–26] to problems involving
propagation of ensemble-average polar-coherence in the context
of polarization speckle.

We consider the case when a coherent source illuminates
a birefringent polarization scrambler, and the scattered light
is observed some distance z from that surface, as illustrated
in Fig. 2. The birefringent polarization scrambler is assumed
to be stationary in time without specifying its rough surface
or birefringent microstructure. Over an ensemble of ideally
rough surfaces with a very short lateral correlation width of
surface height fluctuations, there is little relationship between
the phase differences of two polarization components of the
light scattered from two closely spaced surface elements, at least
until the spacing becomes close to a wavelength of the illumi-
nating light. From an ensemble-averaging point of view, the
ensemble-average generalized Stokes vector of the light scat-
tered by a depolarizing diffuser, and observed very close to that
surface, is Dirac delta-correlated with essentially the same cor-
relation extent as the generalized Stokes vector of an incoherent
source. Mathematically, we can represent the ensemble-average
generalized Stokes vector of light just leaving the surface by

SSca(α1, β1; α2, β2)= κSSca(α1, β1)δ(α1 − α2, β1 − β2),

(8)
where κ is a constant with dimensions meters squared, SSca with
its superscript Sca indicates the ensemble-average Stokes vector
of the scattered light just leaving the rough surface of the depo-
larizing diffuser and δ is the 2D delta function.

In analogy to the theoretical analysis and experimental
demonstration of the propagation of time-averaged polar-
coherence [23–27], we can write the ensemble-average van
Cittert–Zernike theorem as

SObs(x1, y1; x2, y2)=
κe− jψ

(λz)2

∫ ∫
∞

−∞

SSca(α, β)

× exp

[
j2π

λz
(1xα +1yβ)

]
dαdβ,

(9)

Fig. 2. Polarization speckle arises in free-space propagation
geometry.

where the superscript Obs indicates the observation
plane, ψ = π [(x 2

2 + y 2
2)− (x

2
1 + y 2

1)]/(λz) and 1x =
x2 − x1, 1y = y2 − y1, and λ is the wavelength of the incident
radiation. Similarly, Eq. (9) can be rewritten in terms of J̄ and
0̄. That is

0Obs(x1, y1; x2, y2)=
κe− jψ

(λz)2

∫ ∫
∞

−∞

J Sca(α, β)

× exp

[
j2π

λz
(1xα +1yβ)

]
dαdβ.

(10)

As expected, up to scaling constants, the ensemble-average
generalized Stokes vector and the ensemble-average mutual
coherence matrix are given by Fourier transforms of the dis-
tributions of the ensemble-average Stokes vector and the
ensemble-average polarization matrix leaving the surface of
the birefringent polarization scrambler, respectively. When the
ensemble average is replaced with the spatial average, Eqs. (9)
and (10) can be regarded as a natural generalization of the
spatial-average version of the van Cittert–Zernike theorem for
vector fields [22,28–30].

B. Free-Space Propagation Geometry

Just as the autocorrelation function of intensity has been widely
adopted to characterize the average scale-size of a scalar speckle,
a suitable description for the fluctuating state-of-polarization in
polarization speckle will be the autocorrelation functions of the
Stokes parameters at two points, ensemble-average quantities,
which are defined by

0Sl (1x , 1y )= Sl (x1, y1)Sl (x2, y2), (11)

for l = 0∼ 3. When Eq. (11) is written, we have made use of
an assumption that the autocorrelation functions of the Stokes
parameters depend only on the difference of observation coor-
dinates. Note that two polarization components E x and E y of
a polarization speckle are complex Gaussian random processes.
From the complex Gaussian moment theorem [3], we have
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0S0(1x , 1y )= S0
2
+

1
2 [|S0(1x , 1y )|2 + |S1(1x , 1y )|2

+ |S2(1x , 1y )|2 + |S3(1x , 1y )|2]

0S1(1x , 1y )= S1
2
+

1
2 [|S0(1x , 1y )|2 + |S1(1x , 1y )|2

− |S2(1x , 1y )|2 − |S3(1x , 1y )|2]

0S2(1x , 1y )= S2
2
+

1
2 [|S0(1x , 1y )|2 − |S1(1x , 1y )|2

+ |S2(1x , 1y )|2 − |S3(1x , 1y )|2]

0S3(1x , 1y )= S3
2
+

1
2 [|S0(1x , 1y )|2 − |S1(1x , 1y )|2

− |S2(1x , 1y )|2 + |S3(1x , 1y )|2],
(12)

where Sl and Sl (1x , 1y ) for l = 0∼ 3 are the ensemble-
average Stokes parameters and the ensemble-average generalized
Stokes parameters of light in the observation plane, respec-
tively. Rather than by using a cross-spectral density matrix [18],
the above Stokes autocorrelations expressed in terms of the
(generalized) Stokes parameters have revealed the complicated
relationship between the local polarization (provided by the
Stokes parameters at a certain point) and all the possible polar-
coherence (provided by the generalized Stokes parameters at
two points). The first term in each expression stems from the
contribution of the corresponding ensemble-averaged Stokes
parameter. While the second term, consisting of a combina-
tion of the generalized Stokes parameters, indicates that each
Stokes autocorrelation depends not only on its corresponding
generalized Stokes parameter but also on other generalized
Stokes parameters. Detailed proof of Eq. (12) can be found in
Appendix A.

Note from Eq. (12) that there is a high redundency among
four terms with similar expressions. To simplify the expres-
sions and highlight the underlying physics of the Stokes
autocorrelations, we define four linear transforms as follows:

L0{g 0, g 1, g 2, g 3} = g 0 + g 1 + g 2 + g 3,

L1{g 0, g 1, g 2, g 3} = g 0 + g 1 − g 2 − g 3,

L2{g 0, g 1, g 2, g 3} = g 0 − g 1 + g 2 − g 3,

L3{g 0, g 1, g 2, g 3} = g 0 − g 1 − g 2 + g 3, (13)

with g l (for l = 0∼ 3) being an expression. Let us also introduce
formally the normalized ensemble-average generalized Stokes
vector by the Frobenius norm of the ensemble-average Stokes
vector

γ S(1x , 1y )= S̄(1x , 1y )/
∥∥S̄(0, 0)

∥∥
= S̄(1x , 1y )/(S0

√
1+ P̄2), (14)

where the denominator ||S̄(0, 0)|| = ||S̄|| is the Frobenius
norm of the ensemble-average Stokes vector. When Eq. (14)
is derived, we have made use of the definition for the degree of

ensemble-average polarization: P̄ =
√

S1
2
+ S2

2
+ S3

2
/S0.

With the aid of the normalized ensemble-average Stokes vector,
_

S= S̄/||S̄||, we are now ready to present the autocorrelation
functions of the Stokes parameters of the polarization speckle in
the observation plane:

0Sl (1x , 1y )

= (1+P2
)S0

2
[

_

Sl

2

+ 2−1Ll {|γS0(1x , 1y )|2,

|γS1(1x , 1y )|2, |γS2(1x , 1y )|2, |γS3(1x , 1y )|2}],
(15)

for l = 0∼ 3. With reference to Eq. (10), the constant

ensemble-average quantities: Sl ,
_

Sl , γSl and P̄ in the
observation plane are related to the distributions of the
ensemble-average Stokes parameters at the scattering spot
through

S0 =
κ

(λz)2

∫ ∫
∞

−∞

SSca
0 (α, β)dαdβ

_

Sl =

∫∫
∞

−∞
SSca

l (α, β)dαdβ√
3∑

m=0
[
∫ ∫

∞

−∞
SSca

m (α, β)dαdβ]
2

∣∣γSl (1x , 1y )
∣∣=

∣∣∣∫∫∞
−∞

SSca
l (α, β) exp

[ j2π
λz (1xα +1yβ)

]
dαdβ

∣∣∣√
3∑

m=0

[∫∫
∞

−∞
SSca

m (α, β)dαdβ
]2

P̄ =

√
3∑

k=1

[∫∫
∞

−∞
SSca

k (α, β)dαdβ
]2

∫∫
∞

−∞
SSca

0 (α, β)dαdβ
.

(16)

The power spectral densities of the Stokes parameters
GSl ( fx , f y ) for l = 0∼ 3 in a polarization speckle pattern
are also ensemble-average quantities, representing the spatial
power distributions of fluctuating Stokes parameters over the
2D frequency plane and are given by the Fourier transforms of
the corresponding autocorrelation functions:

GSl ( fx , f y )

=

∫∫
∞

−∞

0Sl (1x , 1y ) exp[ j2π(1x fx +1y f y )]d1xd1y .

(17)

With the help of the autocorrelation theorem [31], the power
spectral densities of the Stokes parameters GSl ( fx , f y ) can be
reduced to

GSl ( fx , f y )= IGSl ( fx , f y )+ IIGSl ( fx , f y )

= (1+P2
)S0

2
[

_

Sl

2

δ( fx , f y )+ (λz)2/(2Q)

×Ll {RSSca
0
( fx , f y ),RSSca

1
( fx , f y ),

RSSca
2
( fx , f y ),RSSca

3
( fx , f y )}], (18)
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where RS Sca
l
( fx , f y )=

∫ ∫
∞

−∞
SSca

l (α, β)SSca
l (α − λz fx , β −

λz f y )dαdβ and Q=
∑3

m=0 [
∫∫
∞

−∞
SSca

m (α, β)dαdβ]
2
. The

first terms in Eq. (18) (denoted by the symbols IGSl ) are the
Dirac delta functions corresponding to the zero-frequency
discrete powers contributed by the ensemble-averaged Stokes

parameters SSca
l of the scattering spot. The second terms

(denoted by the symbols IIGSl ), consisting of different combi-
nations of the normalized and scaled autocorrelation functions
of the Stokes parameters SSca

l (α, β) of the scattering spot,
represent the distributions of varying powers over spatial fre-
quency for the fluctuating parts of the Stokes parameters in the
polarization speckle pattern.

The second terms of the Stokes power spectra IIGSl yield the
continuous portions of the spectra and have values at fx = f y =

0 of

IIGSl (0, 0)=
(1+ P̄2)(λzS0)

2

2Q

∫∫
∞

−∞

Ll {SSca
0

2
(α, β),

SSca
1

2
(α, β), SSca

2

2
(α, β), SSca

3

2
(α, β)}dαdβ.

(19)

To illustrate the results above, we use an example of circular
uniform distributions of the Stokes parameters at the scattering
spot with its diameter D:

SSca
l (α, β)= 0Sl circ(2

√
α2 + β2/D), (20)

where 0Sl (for l = 0∼ 3) are constants and circ(r )= 1 for 0≤
r ≤ 1, and 0 otherwise. After substituting Eq. (20) into Eqs. (9)
and (14), we have the modulus for each component of the nor-
malized ensemble-average generalized Stokes vector∣∣γSl (1x , 1y )

∣∣
=

∣∣∣∣∣∣ 0Sl√∑3
m=0 (0Sm)

2

2J1

(
πD

√
1x 2 +1y 2/(λz)

)
πD

√
1x 2 +1y 2/(λz)

∣∣∣∣∣∣ , (21)

where J1(· · · ) is a Bessel function of the first kind, order one.
With proper normalization, the autocorrelation functions of the
Stokes parameters of the polarization speckle in the free-space
scattering geometry become

0Sl (1x , 1y )

= (1+P2
)S0

2

{
_

Sl

2

+ 2−1Ll

{
_

S0

2

,
_

S1

2

,
_

S2

2

,
_

S3

2
}

×

∣∣∣2J1

(
πD

√
1x 2 +1y 2/(λz)

) /
[
πD

√
1x 2 +1y 2/(λz)

]∣∣∣2} , (22)

where S0 = κπD2
0S0/(2λz)2,

_

Sl = 0Sl/

√∑3
m=0 (0Sm)

2, and

P̄ =
√
(0S1)

2
+ (0S2)

2
+ (0S3)

2/0S0. It is interesting to note

that the polarization speckle maintains the degree of ensemble-
average polarization during its free-space propagation. The
corresponding power spectral densities of the Stokes parameters
of polarization speckle can then be shown to be

GSl ( fx , f y )

= (1+P2
)S0

2

{
_

Sl

2

δ( fx , f y )+ Ll {

_

S0

2

,
_

S1

2

,
_

S2

2

,
_

S3

2

}

4(λz)2

π 2 D2

[
arccos(λz| Ef |/D)− (λz| Ef |/D)

√
1− (λz| Ef |/D)

2
]}
(23)

with | Ef | =
√

f 2
x + f 2

y .

As a special case for P̄ = 0 with 0S1 = 0S2 = 0S3 = 0, the
Stokes autocorrelations0Sl (1x , 1y ) are reduced to

0S0(1x , 1y )= S0
2

1+ 2

∣∣∣∣∣∣
J1

(
πD

√
1x 2 +1y 2/(λz)

)
πD

√
1x 2 +1y 2/(λz)

∣∣∣∣∣∣
2


0S1(1x , 1y )= 0S2(1x , 1y )= 0S3(1x , 1y )

= 2S0
2

∣∣∣∣∣∣
J1

(
πD

√
1x 2 +1y 2/(λz)

)
πD

√
1x 2 +1y 2/(λz)

∣∣∣∣∣∣
2

.

(24)

Similarly, the power spectral densities of the Stokes parameters
when P̄ = 0 can be reduced to

GS0( fx , f y )= S0
2
{
δ( fx , f y )+

4(λz)2

π2 D2

[
arccos(λz| Ef |/D)

− (λz| Ef |/D)
√

1− (λz| Ef |/D)
2
]}
,

GS1( fx , f y )= GS2( fx , f y )= GS3( fx , f y )

=
4(λz)2S0

2

π2 D2

[
arccos(λz| Ef |/D)− (λz| Ef |/D)

×

√
1− (λz| Ef |/D)

2
]

.

(25)

Figure 3 shows cross-sections of the autocorrelations and
power spectral densities of the Stokes parameters for uniform

polarization speckle with P̄ = 1. In this example, a set of
_

Sl

(i.e.,
_

S0 =
√

0.5,
_

S1 =−
√

0.25,
_

S2 =
√

0.15,
_

S3 =−
√

0.1)
has been chosen. The autocorrelation functions and the power
spectral densities of the Stokes parameters for isotropic polari-
zation speckle with P̄ = 0 are illustrated in Fig. 4. We conclude
that, in any polarization speckle, large-scale (low frequency)
sizes are the most populous, and no scale sizes greater than a
certain cutoff frequency are present. Due to the different means
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Fig. 3. Cross sections of (a) autocorrelation functions and (b) power
spectral densities of the Stokes parameters of uniform polarization
speckle with P̄ = 1 for free-space propagation and a uniform circular
scattering spot.

of the Stokes parameters in a polarization speckle, the areas
under the Dirac delta functions at zero spatial frequency are
different. Meanwhile, the exact power spectral densities of the
Stokes parameters in a polarization speckle pattern also depend
on the geometric shape of the scattering spot.

Similar to the case of conventional scalar speckle, where
the normalized correlation function of speckle intensity has
been adopted as the averaged speckle size, here we would
like to develop a similar concept for measures of the average
“sizes” for the Stokes parameters in a polarization speckle
from the above example of calculation of the autocorrelation
functions and power spectral densities. Since the normalized
covariance function of the Stokes parameter S0 (intensity
of polarization speckle) is related to the autocorrelation
function of the Stokes parameter S0 by c S0(1x , 1y )=

[0S0(1x , 1y )− S0
2
]/[0S0(0, 0)− S0

2
], the equivalent

area of S0 detection in a polarization speckle is given by

AC
S0
=

∫∫
∞

−∞

c S0(1x , 1x )d1xd1y

=

∫∫
∞

−∞

[|γS0(1x , 1x )|2 + |γS1(1x , 1x )|2

+ |γS2(1x , 1x )|2 + |γS3(1x , 1x )|2]d1xd1y .
(26)

Here, we call AC
S0

the Stokes S0 correlation area or the ensemble-
average coherence area of the Stokes parameter S0 for a polarization
speckle. Similarly, we can also introduce ensemble-average
coherence areas for other Stokes parameters in a polarization

Fig. 4. Cross sections of (a) autocorrelation functions and (b) power
spectral densities of the Stokes parameters of isotropic polarization
speckle with P̄ = 0 for free-space propagation and a uniform circular
scattering spot.

speckle. Therefore, all the Stokes correlation areas AC
Sl

for
l = 0∼ 3 can be defined in a unified manner. They are

AC
Sl
=

∫∫
∞

−∞

Ll { |γS0(1x , 1y )|2, |γS1(1x , 1y )|2,

|γS2(1x , 1y )|2, |γS3(1x , 1y )|2 } d1xd1y . (27)

As expected, we may have different correlation areas for detec-
tion of fluctuating Stokes parameters in a polarization speckle.
More generally, for a scattering spot with nonuniformly dis-
tributed Stokes parameters, these correlation areas AC

Sl
for

(l = 0∼ 3) can be defined by

AC
Sl
= (λz)2

{
3∑

m=0

[∫∫
∞

−∞

SSca
m (α, β)dαdβ

]2
}−1∫∫

∞

−∞

Ll {

SSca
0

2
(α, β), SSca

1

2
(α, β), SSca

2

2
(α, β), SSca

3

2
(α, β) } dαdβ.

(28)

When the above expression is derived, we have substituted
Eqs. (16)–(27) and made use of Parseval’s theorem [31].

C. Imaging Geometry

In the previous section, we considered fundamental proper-
ties related to the spatial structure of polarization speckle in a
free-space propagation geometry. We now turn our attention
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Fig. 5. Imaging geometry for polarization speckle formation.

to an imaging geometry, as shown in Fig. 5, to derive the auto-
correlation functions and power spectral densities of the Stokes
parameters for the Stokes images with polarization speckle.
A birefringent polarization scrambler with rough surface is
illuminated with coherent light. A portion of the scattered light
is collected by the simple positive lens and is then brought to a
focus in the image plane. The distance between the depolarizing
diffuser and the lens is zo and the image distance from the lens
is zi .

To simplify our analysis, we use an approximation first pro-
posed by Zernike [32] and explained in detail by Goodman [3]
for scalar coherence theory. Here, two assumptions have been
used, i.e., the illumination area on the depolarizing diffuser
is large as compared with the correlation area of the scattered
light, and the illumination region is broad as compared with
the extend of the resolution cell given by the lens. Under the
condition that the scattering grains generated by the depolariz-
ing diffuser in the object plane are not resolved by the imaging
system, it is possible to treat the lens pupil itself as a δ-correlated
effective secondary source with uniform distributions of the
Stokes parameters. Therefore, we can apply the ensemble-
average van Cittert–Zernike theorem to this effective source to
obtain the ensemble-average generalized Stokes vector in the
image plane:

SImg(x1, y1; x2, y2)=
κe− jψSPup

(λzi )
2

∫∫
∞

−∞

|P (α, β)|2

× exp

[
j2π

λzi
(1xα +1yβ)

]
dαdβ,

(29)

where SPup, assumed to be constant, is the ensemble-average
Stokes vector across the exit pupil, and P (α, β), defining
the shape of the pupil, is the exit pupil function, and zi is the
distance from the exit pupil to the image plane.

Similar to the free-space propagation geometry, the
ensemble-average generalized Stokes vector in the image plane
can also be found by means of scalar multiplication of a suitably
scaled Fourier transform of squared modulus of the pupil func-
tion with the constant ensemble-average Stokes vector at the
exit pupil. Therefore, the desired autocorrelation functions of
the Stokes parameters in imaged polarization speckle can also be
found with the aid of the ensemble-average van Cittert–Zernike
theorem, where |γSl (1x , 1y )| is given by

∣∣γSl (1x , 1y )
∣∣= ∣∣∣∣SPup

l

∣∣∣∣/
√∑3

m=0
SPup

m

2
∣∣∣∣∫∫ ∞
−∞

|
_

P (α, β)|
2

× exp

[
j

2π

λzi
(1xα +1yβ)

]
dαdβ

∣∣∣∣ ,
(30)

with
_

P representing a normalized pupil function defined
through [3]∣∣∣_P (α, β)∣∣∣2 = |P (α, β)|2/ ∫∫ ∞

−∞

|P (α, β)|2dαdβ. (31)

After substituting into Eqs. (15) and (18), we have the autocor-
relation functions and the power spectral densities of the Stokes
parameters of polarization speckle in the image plane:

0Sl (1x , 1y )

= (1+P2
)S0

2

{
_

Sl

2

+ 2−1Ll

{
_

S0

2

,
_

S1

2

,
_

S2

2

,
_

S3

2
}

×

∣∣∣∣∫∫ ∞
−∞

|
_

P (α, β)|
2

exp [ j2π(1xα +1yβ)/(λzi )] dαdβ

∣∣∣∣2
}

(32)

and

GSl ( fx , f y )= (1+P2
)S0

2

[
_

Sl

2

δ( fx , f y )

+
(λzi )

2

2
Ll

{
_

S0

2

,
_

S1

2

,
_

S2

2

,
_

S3

2
}
R
|
_
P |

2( fx , f y )

]
,

(33)

where S0 = κSPup
0 A/(λz)2 with A being the area

of the exit pupil,
_

Sl = SPup
l /

√∑3
m=0 (S

Pup
m )

2
, P̄ =√

(SPup
1 )

2
+ (SPup

2 )
2
+ (SPup

3 )
2
/SPup

0 , and R
|
_
P |

2( fx , f y )=∫∫
∞

−∞
|
_

P (α, β)|
2
|
_

P (α − λzi fx , β − λzi f y )|
2dαdβ.

Aside from scaling factors, the polarization speckle in an
imaging geometry has similar expressions for the autocorrela-
tion functions and the power spectral densities of the Stokes
parameters as those for free-space propagation geometry.
When the lens is not apodized (i.e., when P = 0 or 1), then

|
_

P |2 = |
_

P |, and the autocorrelation function of |
_

P |2 is (within
a normalizing constant) equivalent to the autocorrelation func-
tion of the P itself. Thus, these parts of the Stokes power spectral
densities have the same shape as a normalized optical transfer
function of the unaberrated system, up to normalizing factors.
For the usual case of a circular lens pupil, the corresponding
autocorrelation functions and the power spectral densities of the
Stokes parameters of imaged polarization speckle have the same
results, as shown in Figs. 3 and 4.

Two additional comments should be made here. First,
since light just behind lens pupil behaves essentially as a delta-
correlated source, any lens aberrations usually represented as
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phase errors across the lens pupil have no effect on the corre-
lation properties of the polarization speckle observed in the
image plane. Second, although we have considered only a
simple thin lens in the analysis above, identical results will be
obtained for any imaging system, and the distance zi now will
be interpretated as the distance from the exit pupil to the image
plane.

Before closing the discussion about the autocorrelation
functions and the power spectral densities of the Stokes param-
eters, the point should be made that we have already applied
the concepts of ensemble-average polarization and coherence
in the study of polarization speckle. Note the fact that the
main mathematical relationship and/or function composition
between the polarization and coherence-related quantities is
independent of which kind of averaging is used [3]. The main
equations have the same mathematical forms for ensemble aver-
age and time average because these averaging operations have
the common mathematical nature of being a linear operation
based on integration (with the only difference in the integra-
tion being performed with respect to time or the ensemble).
Therefore, all our previously acquired knowledge on the Stokes
autocorrelations and power spectral densities derived on the
basis of ensemble average can be applied directly to problems
involving time average, including but not limited to the study
of the polarization-resolved Hanbury Brown–Twiss effect and
polarization-sensitive ghost imaging.

4. CONCLUSION

The concept of ensemble-average polarization and coherence
has been applied to the study of spatially fluctuating Stokes
parameters in a stationary polarization speckle, which is a non-
ergodic statistical process since time and ensemble averages do
not yield the same results. With the aid of the ensemble-average
van Cittert–Zernike theorem for propagation of the ensemble-
average polar-coherence, the polarization-related coarseness of
polarization speckle has been investigated through the autocor-
relation functions and the power spectral densities of the Stokes
parameters with four average sizes introduced for the Stokes
measures. In terms of the (generalized) Stokes parameters, both
free-space geometry and imaging geometry are considered to
explore the dependence of these second-order polar-coherence
effects on the optical geometries where the polarization speckle
arises. Further, the formalisms of the Stokes autocorrelations
and the Stokes power spectral densities obtained in the context
of polarization speckle will be beneficial to understanding the
fourth-order statistical properties of the stochastic optical field
and therefore open up new opportunities with wide applications
involving other higher-order statistics of random electromag-
netic wave no matter the statistical averages are carried out with
respect to time or the ensemble.

APPENDIX A

Here, we present details of the derivation that leads to the expres-
sions in Eq. (12).

Let us use the autocorrelation of the Stokes parameter S0 at

two positions r1 and r2 defined by0S0(r1, r2)
1
= S0(r1)S0(r2) as

an example for illustration. After expressing the instantaneous

Stokes parameters in terms of the fluctuating electric fields,
i.e., S0(r)= E x (r)E ∗x (r)+ E y (r)E ∗y (r), we find that

0S0(r1, r2)= E x (r1)E ∗x (r1)E x (r2)E ∗x (r2)

+ E x (r1)E ∗x (r1)E y (r2)E ∗y (r2)

+ E y (r1)E ∗y (r1)E x (r2)E ∗x (r2)

+ E y (r1)E ∗y (r1)E y (r2)E ∗y (r2). (A1)

It is reasonable to assume that each polarization component
of the electric field Ek (for k = x , y ) reaching the observa-
tion plane arises from the superposition of many independent
contributors from the scattering spot and, consequently, can
be considered as a realization of a complex Gaussian random
process. With the aid of the complex Gaussian moment theo-
rem, i.e., E ∗1 E ∗2 E3 E4 = E ∗1 E3 E ∗2 E4 + E ∗1 E4 E ∗2 E3 and
the definitions of J̄ and 0 in Eqs. (4) and (5), we can rewrite
Eq. (A1) as

0S0 = E x (r1)E ∗x (r1) E x (r2)E ∗x (r2)+ E ∗x (r1)E x (r2) E x (r1)E ∗x (r2)

+ E x (r1)E ∗x (r1) E y (r2)E ∗y (r2)+ E ∗x (r1)E y (r2) E x (r1)E ∗y (r2)

+ E y (r1)E ∗y (r1) E x (r2)E ∗x (r2)+ E ∗y (r1)E x (r2) E y (r1)E ∗x (r2)

+ E y (r1)E ∗y (r1) E y (r2)E ∗y (r2)+ E ∗y (r1)E y (r2) E y (r1)E ∗y (r2)

= [Jxx(r1)+Jyy(r1)][Jxx(r2)+Jyy(r2)] + |0xx(r1, r2)|
2

+ |0xy(r1, r2)|
2
+ |0yx(r1, r2)|

2
+ |0yy(r1, r2)|

2.
(A2)

It follows from Eqs. (4), (5), and (7) that the generalized
Stokes parameters and the elements of the mutual coherence
matrix are related by the formulas

0xx(r1, r2)= [S0(r1, r2)+ S1(r1, r2)]/2,

0yy(r1, r2)= [S0(r1, r2)− S1(r1, r2)]/2,

0xy(r1, r2)= [S2(r1, r2)+ j S3(r1, r2)]/2,

0yx(r1, r2)= [S2(r1, r2)− j S3(r1, r2)]/2, (A3)

and the similar relationships also hold between the Stokes
parameters and the elements of the polarization matrix. After
substitution of Eq. (A3), we arrive at

0S0(1x , 1y )= S0
2
+

1
2 [|S0(1x , 1y )|2 + |S1(1x , 1y )|2

+ |S2(1x , 1y )|2 + |S3(1x , 1y )|2].
(A4)

When the above expression is derived, we have made use of a
condition of spatial stationarity for polarization speckle so that
the corresponding ensemble-average Stokes parameters are spa-
tially independent. As asserted in Eq. (12), the autocorrelation
functions of the remaining Stokes parameters0S1 , 0S2 , and0S3

can be derived in a similar way.
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