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1 Introduction and motivation

One of the fundamental problems in theoretical physics today is the construction of the-

ories that are formulated without reference to any specific space-time geometry. In such

background independent models, space-time is expected to emerge from the dynamics of

the theory, for example as vacuum configurations. A good example of such a theory is

the IKKT matrix model [1], which was conjectured to provide a non-perturbative and

background independent formulation of superstring theory. This model arises as a finite

regularization of the type IIB superstring in Schild gauge. It is a zero-dimensional theory,

in which fields take values in a (matrix) Lie algebra.

It has become more and more evident that many of the algebraic structures underlying

string and M-theory are not Lie algebras but rather extensions of Lie algebras which are

known as strong homotopy Lie algebras or L∞-algebras. In particular, regularizations

of the membrane action yield models with fields taking values in truncated, 2-term L∞-

algebras. It is therefore desirable to study generalized IKKT-like models, in which fields

can take values in strong homotopy Lie algebras. The purpose of this paper is to initiate

such a study.

To keep our models manageable, we will restrict ourselves to the 2-term strong homo-

topy Lie algebras, which are categorically equivalent to semistrict Lie 2-algebras.1 These

algebras feature prominently in higher gauge theories which seem to underlie M-brane

models, and a subclass of these form the gauge structure of the recently popular M2-

brane models [2–4]. This is to be seen in analogy to the conventional Lie algebras of the

IKKT model underlying the gauge theories arising in the effective description of D-brane

configurations in string theory.

This paper is structured as follows. In the remainder of this section, we will give a more

detailed motivation for studying Lie 2-algebra models. We then review relevant definitions

of Lie 2-algebras and discuss various notions of inner products on them in section 2. Sec-

tion 3 makes contact with the quantization of 2-plectic manifolds. Homogeneous and inho-

mogeneous Lie 2-algebra models are then discussed in section 4 and section 5, respectively.

We present our conclusions in section 6. Two appendices summarize useful definitions and

review the gauge symmetry of semistrict higher gauge theory for the reader’s convenience.

1.1 Background independence and the IKKT model

As stated above, it is an important goal to construct and study background independent

theories to replace our mostly background dependent formulations of string theory. A

straightforward method for eliminating the background geometry from any field theory is

to dimensionally reduce it to a point. If the fields in the original theory took values in a

Lie algebra and its adjoint representation, one is left with a matrix model.

Matrix models have indeed contributed greatly to the understanding of non-perturba-

tive phenomena in string theory. This started with the Hermitian matrix models describ-

1In this paper, we will use the terms “Lie 2-algebra” and “2-vector spaces” rather freely. Unless stated

otherwise, we will use them to refer to 2-term strong homotopy Lie algebras and 2-term chain complexes

of vector spaces, respectively.
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ing c < 1 string theory [5] and continued with the success of the IKKT matrix model [1],

see also [6].

The IKKT model is obtained by regularizing the Green-Schwarz action of the type IIB

superstring in Schild gauge,

S =

∫
d2σ

√
gα

(
1

4
{Xµ, Xν}2 −

i

2
ψ̄Γµ{Xµ, ψ}

)
+ β

√
g . (1.1)

In this regularization, the worldsheet fields Xµ and ψ are replaced by hermitian matrices

Aµ and ψ, while the integral becomes a trace and the Poisson bracket {−,−} is turned

into the commutator −i[−,−]. Note that this process is standard in noncommutative field

theory and the result is the following:

SIKKT = α tr

(
−1

4
[Aµ, Aν ]

2 − 1

2
ψ̄Γµ[Aµ, ψ] + β1

)
. (1.2)

Alternatively, one can obtain the IKKT model by dimensionally reducing maximally su-

persymmetric Yang-Mills theory in ten dimensions to a point. The fields Aµ and ψ here

take values in the gauge algebra of the ten-dimensional theory.

As equations of motion of the action (1.2), we have

[Aµ, [A
µ, Aν ]]− i

2
Γν
αβ{ψβ , ψ̄α} = 0 ,

Γµ
αβ [Aµ, ψ

β] = 0 .
(1.3)

Amongst the solutions to these equations are matrices Am,m = 1, . . . , 2d, that we can iden-

tify with the generators x̂m of the Heisenberg algebra [x̂m, x̂n] = iθmn
1. The generators

x̂m are the coordinate functions on the Moyal space R2d
θ , and this is the most prominent

example of a geometry emerging as the vacuum configuration of the IKKT model. Ex-

panding the action (1.2) around this background solution as Am = x̂m + Âm, we obtain

Yang-Mills theory on noncommutative R2d
θ [7]. The action (1.2) therefore simultaneously

provides the background and the dynamics of the theory.

More general noncommutative geometries are obtained as vacuum solutions of defor-

mations of the IKKT model. A particularly interesting class of deformations comprise

mass-terms as well as a cubic potential term,

Sdef = SIKKT + tr

(
−1

2

∑

µ

m2
1,µAµAµ +

i

2
m2ψ̄ψ + cµνκA

µAνAκ

)
, (1.4)

where cµνκ is some background tensor field, cf. [8]. This action has classical configurations

corresponding to fuzzy spheres and the space R3
λ, which is a discrete foliation of R3 by

fuzzy spheres, as well as noncommutative Hpp waves, see [9] and references therein.

Finally, note that in a very similar manner in which a background expansion of the

IKKT model yields Yang-Mills theories on noncommutative spaces, one can also obtain

models of gravity, see e.g. [10].

– 3 –
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1.2 Lie n-algebras in string theory

Lie 2-algebras arise in the categorification of the notion of a Lie algebra. In this process,

the vector space underlying the Lie algebra is replaced by a category. Furthermore, the

standard structural equations of a Lie algebra, which state that the Lie bracket is anti-

symmetric and satisfies a Jacobi identity, are lifted in a controlled way and hold only up

to an isomorphism in this category. Lie n-algebras arise analogously by n-fold, iterative

categorification of Lie algebras. In the semistrict case, which is the one we will consider ex-

clusively in this paper, Lie n-algebras are equivalent to truncated n-term strong homotopy

Lie or L∞-algebras, which are also known as Ln-algebras.

Strong homotopy Lie algebras and in particular their truncated versions appear in a

variety of contexts related to string theory, for example:

⊲ Strong homotopy Lie algebras arise in string field theory, cf. [11, 12], as well as in

Kontsevich’s deformation quantization.

⊲ Lie 2-algebras appear in topological open M2-brane actions in the form of Courant

Lie 2-algebroids [13].

⊲ Special Lie 2-algebras, which are known as differential crossed modules, form the

gauge structure of the recently popular M2-brane models [2–4] as shown in [14].

⊲ The full M2-brane action is coupled to the C-field of supergravity and is thus expected

to be related to parallel transport of two-dimensional objects, which has an underlying

Lie 3-algebra [15].

⊲ Interactions of M5-branes are mediated by M2-branes ending on them and their

boundaries are one-dimensional objects known as self-dual strings. It is natural to

assume that an effective description of M5-branes yields a higher gauge theory de-

scribing the parallel transport of these self-dual strings. The gauge structure of such

a higher gauge theory is described by a Lie 2-algebra, cf. [16].

⊲ Equations of motion of interacting non-abelian superconformal field theories in six di-

mensions have been derived using twistor spaces in [17, 18]. These constructions again

make use of the framework of higher gauge theory, employing Lie 2- and 3-algebras.

1.3 Our goals in this paper

We saw above that the Lie algebras describing gauge symmetries in effective descriptions

of D-branes within string theory are replaced by Lie 2-algebras in M-theory. It is therefore

natural to suspect that a potential non-perturbative description of M-theory along the lines

of the IKKT model may be based on Lie 2-algebras.

In this paper, we perform an initial study of zero-dimensional field theories in which

the fields take values in a Lie 2-algebra. We discuss the mathematical notions required

in the description of Lie 2-algebra models, put them into context and test how far the

analogies with the IKKT model reach.

– 4 –
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Throughout this paper, we will distinguish two types of models. First, there are

homogeneous Lie 2-algebra models, in which the fields {Xa} take values in the direct sum of

the two vector spaces V andW that underlie a Lie 2-algebra. In the inhomogeneous models,

we have two types of fields {Xa} and {Y i}, where the Xa take values in V while the Y i take

values in W . Note that homogeneous models form a subset of the inhomogeneous models.

Since semistrict Lie 2-algebras contain ordinary Lie algebras, homogeneous Lie 2-

algebra models will trivially contain the IKKT model as a special case. Moreover, Lie

2-algebras contain the 3-algebras appearing in M2-brane models, and we therefore also

expect our Lie 2-algebra models to contain the 3-algebra models discussed previously

in [19–23] and [9].

In [19], the author followed the logic of the IKKT model, starting from a Schild-type

action of the M2-brane [24],

S = TM2

∫
d3σ{XM , XN , XK}2 , M,N,K = 0, . . . , 10 . (1.5)

He then suggested to regularize this action by replacing the Nambu-bracket by that of a 3-

Lie algebra. Note that it has often been suggested that, at quantum level, Nambu-Poisson

structures should turn into 3-Lie algebras, see [25] and references therein. To a certain

extent, one can even make the resulting action supersymmetric,2 and the result is [21, 23]

S3LA = 〈[XM , XN , XK ], [XM , XN , XK ]〉+ 〈Ψ̄,ΓMN [XM , XN ,Ψ]〉 , (1.6)

where Ψ is a Majorana spinor of SO(1, 10). A very similar model has been studied in [26]

as a matrix model for the description of multiple M5-branes.

Alternatively, one can obtain a zero-dimensional action with fields living in a 3-Lie

algebra by dimensionally reducing the M2-brane models to a point. The case of the BLG-

model was discussed in [9], where various solutions have been interpreted as quantized

Nambu-Poisson manifolds. Compared to (1.6), there are additional scalar fields present,

living in the inner derivations of the underlying 3-Lie algebra that arise from the dimen-

sional reduction of the Chern-Simons part and the covariant couplings to the matter fields.

While there is now a dichotomy of fields compared to (1.6), the resulting action is invari-

ant under 16 supercharges. Moreover, applying a dimensionally reduced form of the Higgs

mechanism proposed in [27], this action reduces to (1.4) in the strong coupling limit as

shown in [9].

An important feature of the IKKT model is that familiar examples of quantized sym-

plectic manifolds arise as solutions of the classical equations of motion. Correspondingly,

we expect that “higher quantized” manifolds arise as solutions of our Lie 2-algebra models.

There are essentially two approaches in the literature of how to extend geometric quanti-

zation to a higher setting. First, we can focus on the Poisson structure and generalize this

structure to a Nambu-Poisson structure. The geometric quantization of Nambu-Poisson

manifolds, however, is problematic and the answers obtained in this context are not very

satisfying, see [25] and references therein. The second approach focuses on extending the

2Full supersymmetry, however, seems to be possible only for four scalar fields with a metric of split

signature [23].
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symplectic structure to a 2-plectic one, which yields a Lie 2-algebra of Hamiltonian 1-

forms on the manifold. This is by now a fairly standard construction in multisymplectic

geometry [28, 29]. Quantizing the 2-plectic manifold amounts here to quantizing the Lie

2-algebra of Hamiltonian 1-forms. While more appealing than the first one, this approach

has its own shortcomings, and a more detailed discussion is found in section 3.6. Here it is

important to note that this point of view is clearly very suitable for our purposes, and we

expect that quantized versions of Lie 2-algebras of Hamiltonian 1-forms yield solutions to

the classical equations of motion of our Lie 2-algebra models.

From this perspective, our Lie 2-algebra models are a good testing ground for the

extension of the notion of a space. In noncommutative geometry, the first step in such an

extension is made by replacing the commutative product in the algebra of functions by a

noncommutative one. The next step is to generalize this to a nonassociative product, which

requires the use of 2-term L∞- and A∞-algebras. Ultimately, the notion of a commutative

algebra of functions on a manifold should be generalized to that of a certain type of operad

or an even more general mathematical structure.

2 Lie 2-algebras

Lie 2-algebras are categorified versions of Lie algebras. While categorification is not a

unique or straightforward recipe, the procedure is roughly the following: most mathemati-

cal notions are based on spaces endowed with extra structure satisfying certain basic equa-

tions. To categorify such a notion, replace the spaces with categories and endow them with

extra structure given by functors that satisfy the basic equations up to an isomorphism. The

isomorphisms, in turn, have to satisfy reasonable coherence equations. In the case of Lie

algebras, one thus obtains the weak Lie 2-algebras [30]: the linear space underlying the Lie

algebra gets replaced by a linear category. We demand that we have a Lie bracket functor

on this category, but it is antisymmetric and satisfies the Jacobi identity only up to iso-

morphisms. These isomorphisms are called the alternator and the Jacobiator, respectively.

Demanding that the alternator is trivial, which implies that the categorified Lie bracket

is antisymmetric, one obtains the so-called semistrict Lie 2-algebras. It is these that we

will be considering in this paper. They are particularly nice to work with, as they are

categorically equivalent to 2-term L∞-algebras, cf. [31].

One can go one step further and demand that the Jacobi identity is satisfied, too. In

this case, one ends up with strict Lie 2-algebras, which can be identified with differential

crossed modules [32]. Although most of the structural generalizations of categories have

been lost at this point, strict Lie 2-algebras are still interesting. For example, they underlie

the definition of non-abelian gerbes, see e.g. [16]. Moreover, when endowed with a metric,

they contain all the 3-algebras that have appeared recently in M2-brane models [14].

2.1 Semistrict Lie 2-algebras

As stated above, semistrict Lie 2-algebras are categorically equivalent to 2-term L∞-

algebras, and we can relatively easily specify their structure in terms of vector spaces. The

general definition of an L∞-algebra is recalled for the reader’s convenience in appendix A.

– 6 –
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A 2-term L∞-algebra is given by a two-term complex of real3 vector spaces,

V
µ1−−−→ W

µ1−−−→ 0 , (2.1)

where gradings −1 and 0 are assigned to elements of V and W , respectively. This complex

is equipped with unary, binary and ternary totally graded antisymmetric and multilinear

“products” µ1, µ2 and µ3 satisfying the following higher homotopy relations:

µ1(w) = 0 , µ2(v1, v2) = 0 ,

µ1(µ2(w, v)) = µ2(w, µ1(v)) , µ2(µ1(v1), v2) = µ2(v1, µ1(v2)) ,

µ3(v1, v2, v3) = µ3(v1, v2, w) = µ3(v1, w1, w2) = 0 , (2.2a)

µ1(µ3(w1, w2, w3)) = −µ2(µ2(w1, w2), w3)− µ2(µ2(w3, w1), w2)− µ2(µ2(w2, w3), w1) ,

µ3(µ1(v), w1, w2) = −µ2(µ2(w1, w2), v)− µ2(µ2(v, w1), w2)− µ2(µ2(w2, v), w1)

and

µ2(µ3(w1, w2, w3), w4)− µ2(µ3(w4, w1, w2), w3) + µ2(µ3(w3, w4, w1), w2)

− µ2(µ3(w2, w3, w4), w1) =

µ3(µ2(w1, w2), w3, w4)− µ3(µ2(w2, w3), w4, w1) + µ3(µ2(w3, w4), w1, w2)

− µ3(µ2(w4, w1), w2, w3)− µ3(µ2(w1, w3), w2, w4)− µ3(µ2(w2, w4), w1, w3) ,

(2.2b)

where v, vi ∈ V and w,wi ∈W .

Besides the above product, we also introduce the product κ2 : V × V → V with

κ2(v1, v2) := µ2(µ1(v1), v2) = −µ2(µ1(v2), v1) = −κ2(v2, v1) . (2.3)

A simple example of a semistrict Lie 2-algebra is the following one [31], which we will

denote by (g, V, ρ, c): as two-term complex, we take V → g, where g is a finite-dimensional

real Lie algebra and V is a vector space carrying a representation ρ of g. The non-vanishing

products are given by

µ2(g1, g2) := [g1, g2] , µ2(g, v) = −µ2(v, g) := ρ(g)v , µ3(g1, g2, g3) = c(g1, g2, g3) , (2.4)

where g ∈ g, v ∈ V and c ∈ H3(g, V ). Since µ1 is trivial, isomorphic objects in the category

corresponding to this Lie 2-algebra are identical. Such Lie 2-algebras are called skeletal.

Any semistrict Lie 2-algebra is in fact categorically equivalent to a skeletal

one, and all skeletal semistrict Lie 2-algebras are equivalent to one of the form

(g, V, ρ, c) ([31], Thm. 55). This fact can be used to classify Lie 2-algebras.

If V = R then an interesting example of a Lie-algebra cocycle is given by c(g1, g2, g3) =

k〈g1, [g2, g3]〉, where 〈−,−〉 is the Killing form and k ∈ R. The resulting semistrict Lie

2-algebra is also called the string Lie 2-algebra of g.

Other examples are given by the Lie 2-algebra of Hamiltonian 1-forms on 2-plectic

manifolds, and we describe these in detail in section 3.2.

3To simplify the notation for inner products later on, we restrict ourselves to real vector spaces.
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If the Jacobiator µ3 in a semistrict Lie 2-algebra vanishes, we arrive at a strict Lie

2-algebra or, equivalently, a differential crossed module: both µ2 and κ2 now satisfy the

Jacobi identity, and we have a two-term complex of Lie algebras V
µ1−→ W with an action

⊲W × V → V : w ⊲ v := µ2(w, v) satisfying

µ1(w ⊲ v) = [w, µ1(v)] and µ1(v1) ⊲ v2 = [v1, v2] , (2.5)

for all v ∈ V and w ∈ W , where the commutators are identified with µ2 on W and κ2
on V .

The simplest examples of strict Lie 2-algebras are the gauge algebras of u(1)-bundles

and u(1)-gerbes: the Lie algebra u(1) can be regarded as a Lie 2-algebra4 (∗ µ1−→ u(1),⊲),

where µ1(∗) = 0 ∈ u(1) and ⊲ is trivial. The gauge algebra of a u(1)-gerbe is the Lie

2-algebra bu(1) = (u(1)
µ1−→ ∗,⊲), where µ1 and ⊲ are trivial. A non-abelian example is

the derivation Lie 2-algebra Der(g) of a Lie algebra g, (g
ad−→ der(g),⊲), where der(g) are

the derivations of the Lie algebra g, ad is the embedding of g as inner derivations via the

adjoint map, and ⊲ is the natural action of derivations of g onto g.

2.2 Lie 2-algebra homomorphisms

To analyze symmetries in our models, we will require the notion of a homomorphism

between Lie 2-algebras. Such a homomorphism should preserve both the vector space

structure as well as the higher products. However, as we are working in a categorified

setting, we will require the higher products to be preserved only up to an isomorphism. The

appropriate definition for Lie 2-algebras has been developed in ([31], Def. 23). Translated

to the equivalent 2-term L∞-algebras, we have the following definition ([31], Def. 34).

An L∞-homomorphisms Ψ : L → L′ between two 2-term L∞-algebras L = V → W

and L′ = V ′ →W ′ is defined as a set of maps

Ψ−1 : V → V ′ , Ψ0 : W →W ′ , Ψ2 : W ×W → V ′ , (2.6)

where Ψ−1 and Ψ0 form a linear chain map and Ψ2 is a skew-symmetric bilinear map

preserving the higher product structure. That is, for w, wi ∈ W and v, vi ∈ V , the

following hold:

Ψ0 (µ2(w1, w2)) = µ2 (Ψ0(w1),Ψ0(w2)) + µ1(Ψ2(w1, w2)) ,

Ψ−1 (µ2(w, v)) = µ2(Ψ0(w),Ψ−1(v)) + Ψ2(w, µ1(v)) ,

µ3(Ψ0(w1),Ψ0(w2),Ψ0(w3)) = Ψ−1 (µ3(w1, w2, w3))− [Ψ2(w1, µ2(w2, w3))

+µ2 (Ψ0(w1),Ψ2(w2, w3)) + cyclic (w1, w2, w3)] .

(2.7)

Two homomorphisms Ψ : L → L′ and Φ : L′ → L′′ can be combined via the composi-

tion rules

(Ψ ◦ Φ)0(w) = Ψ0Φ0(w) , (2.8a)

(Ψ ◦ Φ)−1(v) = Ψ−1Φ−1(v) , (2.8b)

(Ψ ◦ Φ)2(w1, w2) = Ψ−1Φ2(w1, w2) + Ψ2 (Φ0(w1),Φ0(w2)) . (2.8c)

4Here and in the following, ∗ denotes the trivial Lie algebra {0}.
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The identity automorphism IdL : L→ L is given by the maps

(idL)0(w) = w , (idL)−1 = v , (idL)2(w1, w2) = 0 . (2.9)

The inverse to an automorphism Φ : L → L under the composition ◦ given in (2.8) is

indicated by Φ−1◦ : L → L. It satisfies Φ−1◦ ◦ Φ = Φ ◦ Φ−1◦ = idL, and is made of three

maps given by

(Φ−1◦)0(w) = (Φ0)
−1(w) , (2.10a)

(Φ−1◦)−1(v) = (Φ−1)
−1(v) , (2.10b)

(Φ−1◦)2(w1, w2) = −(Φ−1)
−1
(
Φ2

(
(Φ0)

−1(w1), (Φ0)
−1(w2)

))
. (2.10c)

For more details on morphisms between semistrict Lie 2-algebras see for instance [31, 33].

2.3 Inner products on semistrict Lie 2-algebras

Let us now discuss the notion of an inner product on semistrict Lie 2-algebras, which we will

need to write down action functionals. Naturally, an inner product on a semistrict Lie 2-

algebra should originate from an inner product on its underlying Baez-Crans 2-vector space.

Moreover, it should be compatible with certain actions of Lie 2-algebra homomorphisms.

And finally, as we want to be able to reproduce dimensionally reduced M2-brane models,

we allow for indefinite scalar products, cf. appendix A.

Unfortunately, there are at least three different notions of inner product that satisfy

these properties. First, there is a scalar product on L∞-algebras5 that was used in [11]

and [34], see also [35] and [36]. Given an L∞-algebra L = ⊕iLi, a (cyclic) scalar product

〈−,−〉∞ on L is a non-degenerate, even, bilinear form that is compatible with all the

homotopy products µn, n ∈ N∗. Explicitly, we have

〈x1, x2〉∞ = (−1)x̃1+x̃2〈x2, x1〉∞ .

〈µn(x1, . . . , xn), x0〉∞ = (−1)n+x̃0(x̃1+···+x̃n)〈µn(x0, . . . , xn−1), xn〉∞ ,
(2.11)

xi ∈ L. Adapted to 2-term L∞-algebras, it follows that a cyclic scalar product on a

semistrict Lie 2-algebra V −→ W is a scalar product 〈−,−〉∞ on V ⊕W , which satisfies

the following conditions.

(i) It is even symmetric, that is:

〈v1, v2〉∞ = 〈v2, v1〉∞ , 〈w1, w2〉∞ = 〈w2, w1〉∞ , 〈v, w〉∞ = 〈w, v〉∞ = 0 . (2.12)

(ii) It is cyclically graded symmetric with respect to µ2 and cyclically graded antisym-

metric with respect to µ1 and µ3, which implies

〈µ1(v), w〉∞ = 〈µ2(v1, w), v2〉∞ = 〈µ3(w1, w2, w3), v〉∞ = 0 . (2.13)

We thus see that this kind of inner product is very restrictive.

5This definition of a scalar product extends to other ∞-algebras. Moreover, it corresponds to the notion

of a binary invariant polynomial of the L∞-algebra.
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Another metric 〈−,−〉red was introduced on reduced semistrict Lie 2-algebras, where

µ1 is injective [33]. In this case, V can be regarded as a subspace of W and the domain

and range of all products collapse to W . One can then impose the following invariance

conditions

〈µ2(w1, w2), w3〉red + 〈w2, µ2(w1, w3)〉red = 0 ,

〈µ1(µ3(w1, w2, w3)), w4〉red + 〈w3, µ1(µ3(w1, w2, w4))〉red = 0 .
(2.14)

While the latter equation is very reminiscent of the fundamental identity for 3-Lie algebras,

cf. appendix A, focusing on reduced semistrict Lie 2-algebras is a severe restriction. In

particular, it excludes the semistrict (and strict) Lie 2-algebra bu(1) = u(1) → ∗, which is

the gauge 2-algebra of an abelian gerbe. Moreover, it will collide with the semistrict Lie

2-algebra structures obtained on 2-plectic manifolds in section 3.2.

The final metric we want to consider arises from extending the definition on strict Lie

2-algebras to the semistrict case, cf. e.g. [14, 32, 37]. On a semistrict Lie 2-algebra V ⊕W ,

an inner product is an even and graded symmetric bilinear map 〈−,−〉0 such that

〈v1, v2〉0 = 〈v2, v1〉0 , 〈w1, w2〉0 = 〈w2, w1〉0 , 〈v, w〉0 = 〈w, v〉0 = 0 ,

〈µ2(w1, x1), x2〉0 + 〈x1, µ2(w1, x2)〉0 = 0
(2.15)

for all vi ∈ V , wi ∈ W and xi ∈ V ⊕W . We will call this inner product the minimally

invariant inner product. Note that demanding 〈µ2(x3, x1), x2〉0 + 〈x1, µ2(x3, x2)〉0 = 0 in

general is too restrictive, as this would imply that µ2(v1, w1) = 0 due to 〈µ2(v1, w1), v2〉0+
〈w1, µ2(v1, v2)〉0 = 0. Note furthermore that the above relations automatically imply that

〈κ2(x1, x2), x3〉0 + 〈x2, κ2(x1, x3)〉0 = 0 . (2.16)

Besides matching the natural definition of an inner product on differential crossed

modules, this definition includes also natural inner products on the semistrict Lie 2-algebras

(g, V, ρ, c) if g is the Lie algebra of metric preserving transformations on V . And finally,

it will turn out to match the natural metrics on semistrict Lie 2-algebras arising from

2-plectic manifolds.

2.4 Transposed products

To facilitate computations with metric semistrict Lie 2-algebras, it is useful to introduce

“transposed products” µ∗n for each µn. These products are defined by regarding the prod-

ucts as operators acting on the element in the last slot and taking the dual:

〈µ1(y1), y2〉 =: 〈y1, µ∗1(y2)〉 ,
〈µ2(x1, y1), y2〉 =: 〈y1, µ∗2(x1, y2)〉 ,
〈κ2(x1, y1), y2〉 =: 〈y1, κ∗2(x1, y2)〉 ,

〈µ3(x1, x2, y1), y2〉 =: 〈y1, µ∗3(x1, x2, y2)〉

(2.17)

for all xi, yi ∈ V ⊕ W . The product µ∗1 had already been introduced in [32] and used

extensively in [14]. Note that µ∗3 is not antisymmetric.
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Let us examine the transposed products for each of the inner products in more detail.

First, in the case of ∞-metrics 〈−,−〉∞, the only non-vanishing transposed product is

µ∗2(w1, w2) = −µ2(w1, w2) . (2.18)

In the case of metric 〈−,−〉red, we have

µ2(w1, w2) = −µ∗2(w1, w2) and κ∗2(w1, w2) = −κ2(w1, w2) (2.19)

for all w1, w2 ∈W . These are the only two transposed products that are needed, since here

one really only has to deal with the metric on W .

For the metric 〈−,−〉0, we have more generally

µ2(w, x) = −µ∗2(w, x) (2.20)

for all w ∈W and x ∈ V ⊕W , which, together with κ∗2(x, y) = µ∗2(µ1(x), y), implies that

κ∗2(v1, v2) = −κ2(v1, v2) . (2.21)

The transposed products that cannot be reduced to the products in the Lie 2-

algebra are

µ∗1 :W → V , µ∗2 : V × V →W and µ∗3 :W ×W × V →W , (2.22)

which have degrees −1, 2 and 1, respectively. They are defined implicitly via

〈µ1(v1), w1〉0 =: 〈v1, µ∗2(w1)〉0 , 〈µ2(v1, w), v2〉0 =: 〈w, µ∗2(v1, v2)〉0 ,
〈µ3(w1, w2, w3), v〉0 =: 〈w3, µ

∗

3(w1, w2, v)〉0 .
(2.23)

To simplify notation, we will only denote these three with a star from here on.

Combining our definitions with the homotopy algebra relations, we obtain the following

set of equalities:

µ2(µ1(v1), v2) = µ2(v1, µ1(v2)) = µ∗1(µ
∗

2(v2, v1)) ,

µ2(µ1(v), w) = µ1(µ2(v, w)) = µ∗2(µ
∗

1(w), v) ,

µ∗1(µ2(w1, w2)) = µ2(µ
∗

1(w1), w2) = µ2(µ
∗

1(w2), w1) ,

µ∗1(µ
∗

3(w1, w2, v)) = −µ3(µ1(v), w1, w2) ,

µ1(µ3(w1, w2, w3)) = −µ∗3(w1, w2, µ
∗

1(w3)) ,

µ∗3(µ1(v1), w, v2) = −µ∗3(µ1(v2), w, v1) ,
µ∗3(µ1(v1), w, v2) = µ∗2(v1, µ2(w, v2))− µ∗2(v2, µ2(w, v1))− µ2(w, µ

∗

2(v1, v2) ,

(2.24)

as well as

µ2(w1, µ
∗
3(w2, w3, v))+µ2(w3, µ

∗
3(w1, w2, v)) + µ2(w2, µ

∗
3(w3, w1, v)) =

µ∗3(µ2(w1, w2), w3, v) + µ∗3(µ2(w3, w1), w2, v) + µ∗3(µ2(w2, w3), w1, v)

+µ∗3(w1, w2, µ2(w3, v)) + µ∗3(w3, w1, µ2(w2, v)) + µ∗3(w2, w3, µ2(w1, v))

−µ∗2(µ3(w1, w2, w3), v) .

(2.25)

– 11 –



J
H
E
P
0
4
(
2
0
1
4
)
0
6
6

2.5 M2-brane model 3-algebras

The currently most successful M2-brane models [2–4] are given by Chern-Simons matter

theories, in which the gauge structure is described by a 3-algebra.6 Note that we will use

the term 3-algebra to collectively describe both the real 3-algebras of [38] and the hermitian

3-algebras of [39] in this paper. These 3-algebras have nothing to do with Lie 3-algebras or

other categorifications of the notion of a Lie algebra. Instead, these 3-algebras are readily

shown to be equivalent to certain classes of metric differential crossed modules [14]. As

we want to identify 3-algebra models in our Lie 2-algebra models later, let us briefly recall

this construction.

We start from a strict Lie 2-algebra L endowed with an inner product 〈−,−〉0 for

which W = g is a real Lie algebra and V is a vector space carrying a faithful orthogonal

representation of g. The only non-trivial products are µ2 :W ×W →W and µ2 :W ×V →
W , which are given by the Lie bracket and the representation of W as endomorphism on

V , respectively.

As shown in [40], isomorphism classes of such data are in one-to-one correspondence to

isomorphism classes of real 3-algebras. In particular, we can define implicitly an operator

D : V × V →W via

〈w,D(v1, v2)〉0 := 〈µ2(w, v1), v2〉0 . (2.26)

With our above definitions, it follows that D(v1, v2) = −µ∗2(v1, v2). Note that µ∗2(v1, v2) is

antisymmetric. We can then introduce a triple bracket [−,−,−] : V ∧2 × V → V by

[v1, v2, v3] := D(v1, v2) ⊲ v3 = −µ2(µ∗2(v1, v2), v3) . (2.27)

This bracket satisfies by definition the fundamental identity, cf. (A.5), and we therefore

arrive at a real 3-algebra. Note that a similar construction exists for hermitian 3-algebras.

As the triple bracket (2.27) can be defined for any Lie 2-algebra with inner product

〈−,−〉0, one can now ask under which condition the fundamental identity is satisfied and

the triple bracket yields a real 3-algebra. A short computation reveals that this is only the

case for arbitrary strict or skeletal metric Lie 2-algebras.

While there is no connection between the ternary bracket of a 3-Lie algebra and the

Jacobiator of a Lie 2-algebra in general, we can construct (at least) one example where

they can be essentially identified. Consider the vector space of n × n matrices Mat(n).

Together with the 3-bracket

[a, b, c] = tr (a)[b, c] + tr (b)[c, a] + tr (c)[a, b] , (2.28)

Mat(n) forms a 3-Lie algebra as shown in [41]. There, this 3-Lie algebra was suggested to

appear in the quantization of Nambu-Poisson brackets. Interestingly, we can also identify

this bracket with the Jacobiator of a reduced Lie 2-algebra V → W , where V = W =

6See appendix A for the relevant definitions.
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Mat(n) and the following higher products are non-vanishing:

µ1(v) = v ,

µ2(w1, w2) = tr (w1)w2 − tr (w2)w1 + [w1, w2] ,

µ2(v, w) = −( tr (v)w − tr (w)v + [v, w]) ,

µ3(w1, w2, w3) = tr (w1)[w2, w3] + tr (w2)[w3, w1] + tr (w3)[w1, w2]

(2.29)

for all v ∈ V and w ∈ W . The higher homotopy relations (2.2) are readily verified. We

will denote this Lie 2-algebra by 2Mat(n).

3 Quantized symplectic and 2-plectic manifolds

Before coming to physical models, we will briefly review the quantization7 of symplectic

spaces and discuss generalizations of this to 2-plectic manifolds. The quantized spaces we

introduce here will arise as solutions in our Lie 2-algebra models later on.

3.1 Quantization of symplectic manifolds

We start from a symplectic manifold (M,ω), which is regarded as the phase space of a

classical mechanical system. The observables of this system are given by the functions on

M , which form a commutative algebra under pointwise multiplication. In addition, the

symplectic form induces a Lie algebra structure on the vector space of smooth functions

on M , which turns M into a Poisson manifold. Explicitly, we have for each function

f ∈ C∞(M) a corresponding Hamiltonian vector field Xf defined according to ιXf
ω = df .

The Poisson bracket on C∞(M) induced by ω is then given by

{f, g} := ιXf
ιXgω , (3.1)

and we denote the resulting Poisson algebra by ΠM,ω. As examples, consider R2 and S2.

On these spaces the symplectic form is the volume form vol and the induced Poisson bracket

in some coordinates xa, a = 1, 2, reads as

{f1, f2} =
εab

|vol|
∂f1
∂xa

∂f2
∂xb

. (3.2)

The quantization of a symplectic manifold is given by a Hilbert space H together with

a linear map −̂ : C∞(M) → End (H) such that the Poisson algebra ΠM,ω is mapped to the

Lie algebra End (H) at least to lowest order in some deformation parameter ~:

[f̂ , ĝ] = f̂ ĝ − ĝf̂ = ̂−i~ {f, g}+O(~2) (3.3)

for all f, g ∈ C∞(M). Equation (3.3) is known as the correspondence principle.

7In this paper, we will use a very rough notion of quantization that is sufficient for our considerations.

For a more detailed discussion, see e.g. [25] and references therein.
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3.2 2-plectic manifolds

Consider a smooth manifoldM endowed with a 3-form ̟ that is closed and non-degenerate

in the sense that ιX̟ = 0 implies X = 0. We call such a 3-form a 2-plectic form and say

that M is a 2-plectic manifold. This can be regarded as a categorification of the notion of

a symplectic structure. In particular, three-dimensional manifolds with volume forms ̟

are 2-plectic manifolds.

While a symplectic structure on a manifold M always gives rise to a Poisson structure

on M by taking its inverse, a 2-plectic form ̟ gives rise to a Nambu-Poisson structure8

only under certain conditions [42]. Therefore, a different analogy should be considered here.

Having discussed categorifications of Lie algebras before, it is natural to expect that

there is a categorification of the Poisson algebra in terms of a semistrict Lie 2-algebra [29].

Define the set of Hamiltonian 1-forms H(M) as those forms α for which there is a vector

field Xα such that ιXα̟ = −dα. Note that for a three-dimensional manifold M , H(M) =

Ω1(M). We then define the semistrict Lie 2-algebra ΠM,̟ as the vector space V ⊕W :=

C∞(M)⊕ H(M) with non-vanishing products

π1(f) = df , π2(α, β) = −ιXαιXβ
̟ , π3(α, β, γ) = −ιXαιXβ

ιXγ̟ , (3.4)

where f ∈ C∞(M) and α, β, γ ∈ Ω1(M). Note that the bracket π2 is Hamiltonian. That is,

Xπ2(α,β) = [Xα, Xβ] , (3.5)

where the bracket on the right-hand side is the commutator of vector fields. Another useful

identity for computations with Hamiltonian vector fields is

ι[Xα,Xβ ] = LXαιXβ
− ιXβ

LXα . (3.6)

A long-standing open question in this context is how to define the analogue of the com-

mutative algebra of observables that on symplectic manifolds was given by the pointwise

product of functions on phase space. Ordinary Poisson algebras containing both Lie and

associative structure are encoded in a Poisson Lie algebroid. The higher analogue of this

structure has been shown to be a so-called Courant Lie 2-algebroid, see [43, 44] for more

details on this point. To our knowledge, however, an explicit product on H(M) has not

been constructed so far. A solution to this problem might be to switch from the semistrict

Lie 2-algebra ΠM,̟ to the categorically equivalent, skeletal Lie 2-algebra. Here, the 1-forms

form an ordinary Lie algebra, and, if we were able to identify this Lie algebra with a matrix

algebra, we could use the ordinary matrix product as a product between observables. An-

other solution might originate from a comparison with the loop space quantization, cf. [45].

For our purposes, this product is not relevant, and we merely assume that it makes sense

to identify observables on 2-plectic manifolds with the vector spaces underlying ΠM,̟.

From now on, let us restrict our considerations to three-dimensional Riemannian mani-

folds M for which ̟ is the volume form. We can endow the Lie 2-algebra ΠM,̟ with a

8See appendix A for a definition and more details.
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metric, following the rules and definitions used in section 2.3. For the two vector subspaces

C∞(M) and H(M), we use the usual integrals with respect to the volume form ̟:

〈f, g〉0 :=
∫

M

̟ f · g and 〈α, β〉0 :=
∫

M

α ∧ ⋆β , (3.7)

which can be easily checked to be invariant under the action of π2(α,−). Note that in

the non-compact case, finiteness of these integrals becomes an issue. In particular, one

should either restrict to classes of functions and 1-forms with finite norm or consider closed

subsets of M as integration domain. If possible, one might also consider a 2-plectic form

̟ with appropriate fall-off behavior towards infinity. To avoid boundary contributions, we

will always imply a restriction of ΠM,̟ to elements with finite norm.

Via the metric, we can now introduce the transposed product π∗1 and π∗3:

〈π1(f), α〉0 := 〈f, π∗1(α)〉0 and 〈π3(α, β, γ), f〉0 := 〈γ, π∗3(α, β, f)〉0 , (3.8)

which are therefore given by

π∗1(α) = − ⋆ d ⋆ α and π∗3(α, β, f) = ⋆ d ιXβ
ιXα ⋆ f . (3.9)

Note that, by the non-degeneracy of ̟, all combinations of products

π2(π1(f), α) , π3(π1(f), α, β) and π∗3(π1(f), α, g) (3.10)

are identically zero, as well as 2 and 3-products containing more than one π1(f), as easily

derived from (2.24).

3.3 Examples

Let us now review the manifolds R3 and S3 and their Lie 2-algebras ΠM,̟, which will

appear in the analysis of the solutions of our model later on.

Euclidean space R3. We endow three-dimensional Euclidean space R3 with its canonical

volume form ̟ = 1
3!εijkdx

i ∧ dxj ∧ dxk written in standard Cartesian coordinates xi. All

1-forms are Hamiltonian, and we compute their Hamiltonian vector fields to be

Xα = Xi
α∂i = −(εijk∂jαk)∂i for α = αidx

i , (3.11)

which leads to the following products:

π1(f) := df , π1(α)
!
:= 0 ,

π2(α, β) := εijk∂iαk(∂jβℓ − ∂ℓβj)dx
ℓ ,

π3(α, β, γ) := εijkεmnp∂mαn∂jβk(∂iγp − ∂pγi) .

(3.12)

The subset of Hamiltonian 1-forms that are constant or linear9 together with the set of

constant and linear functions and the above defined non-trivial products π1 and π3 form a

9I.e. linear with respect to translations on R3.
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Heisenberg Lie 2-algebra, the appropriate categorification of the Heisenberg algebra. Note

that higher brackets vanish on constant and exact 1-forms. The remaining linear 1-forms

are given by

ξi =
1

2
εijkx

jdxk , (3.13)

whose Hamiltonian vector fields are −∂i and for which we have

π2(ξi, ξj) = εijkdx
k and π3(ξi, ξj , ξk) = −εijk . (3.14)

Note that the 1-forms ξi have a special meaning once they are transgressed to loop

space. Here, the direction given by the dxk is interpreted as the tangent to the loop, and

one arrives at the following functions on loop space:

1

2
εijk

∮
dτ xj(τ)

dxk(τ)

dτ
, (3.15)

where τ ∈ S1 is the loop parameter. For more details about these functions on loop space,

see [45, 46].

Assuming finiteness of the norm of the involved functions and 1-forms, we have the

following formulas for the transpose product π∗3:

π∗3(α, β, f) = −1

4
εijℓεmnp∂mαn(∂pβℓ − ∂ℓβp)∂jfdxi ,

π∗3(ξi, ξj , f) = − (∂ifdxj − ∂jfdxi) .
(3.16)

The sphere S
3. The other example we are interested in is the 3-sphere S3. It will turn

out convenient to work in Hopf coordinates 0 ≤ η ≤ π
2 and 0 ≤ θi ≤ 2π, which parametrize

the embedding S3 →֒C2 via

z1 = eiθ1 sin η and z2 = eiθ2 cos η . (3.17)

Note that instead of using the standard range given above, we can also use 0 ≤ η ≤ π,

0 ≤ θ1 ≤ 2π and 0 ≤ θ2 ≤ π.

For simplicity, we combine them as (η1, η2, η3) = (η, θ1, θ2). The volume form and the

metric read as

̟ = sin η1 cos η1dη1 ∧ dη2 ∧ dη3 and ds2 = dη21 + sin2 η1 dη
2
2 + cos2 η1 dη

2
3 . (3.18)

For 1-forms α ∈ Ω1(S3), we compute the following Hamiltonian vector fields

Xα = Xi
α∂i = − 1

sin η1 cos η1
(εijk∂jαk)∂i for α = αidηi , (3.19)

where now ∂i :=
∂
∂ηi

. One readily derives the products:

π1(f) := df , π1(α)
!
:= 0 ,

π2(α, β) :=
1

sin η1 cos η1
εijk∂iαk(∂jβℓ − ∂ℓβj)dη

ℓ ,

π3(α, β, γ) :=
1

sin2 η1 cos2 η1
εijkεmnp∂mαn∂jβk(∂iγp − ∂pγi) .

(3.20)
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Here, it is not possible to derive 1-forms from the vector fields X∂i , as ιX∂1
̟ is not

closed, and therefore it cannot equal dξ1. Instead, we choose the same vector fields as for

R

3, corrected by a factor of 1
sin η1 cos η1

. This yields the 1-forms

ξi =
1

2
εijkη

jdηk , (3.21)

together with the following formulas for the products:

π2(ξi, ξj) =
εijkdη

k

sin η1 cos η1
and π3(ξi, ξj , ξk) = − εijkdη

k

sin2 η1 cos2 η1
. (3.22)

The formulas for the transposed product π∗3 read as

π∗3(α, β, f) = − εijℓεmnp

4 sin η1 cos η1
∂mαn(∂pβℓ − ∂ℓβp)∂jfdxi ,

π∗3(ξi, ξj , f) = − 1

sin η1 cos η1
(∂ifdηj − ∂jfdηi) .

(3.23)

3.4 Reduction of 2-plectic to symplectic manifolds

The 2-plectic manifolds we will discuss appear very naturally in the context of M-theory.

Roughly speaking, the 2-plectic structure on these spaces arises here as the “dual” of a tri-

vector field originating from a non-trivial C-field in M-theory, cf. e.g. [47]. This is the higher

analogue of a symplectic structure arising as a dual to the Seiberg-Witten bivector field [48].

Our 2-plectic manifolds can be seen as M-theory lifts of symplectic manifolds appearing in

string theory. In the following, we briefly comment on taking the inverse of this lift.

To reduce from M-theory to type IIA string theory, we have to identify an M-theory

direction along which the 2-plectic form is invariant. Instead of restricting to the usual

Kaluza-Klein procedure, we should also allow non-trivial fibrations of the 2-plectic manifold

over a symplectic manifold. Since we are mostly interested in three-dimensional spaces,

we can regard them as contact manifolds, and, upon reducing along the Reeb vector field

corresponding to the contact form, we necessarily obtain a symplectic manifold. In this

process, we contract the Hamiltonian 1-forms with the Reeb vector to obtain the Poisson

algebra of functions on the underlying symplectic manifold. We will discuss this reduction

explicitly for R3 and S3 in the following.

Another possibility of interpreting this reduction is a slight detour via loop spaces, see

e.g. [45, 49]: while the boundary of a string on a D-brane yields a point, that of an M2-

brane on an M5-brane forms a loop. It is therefore naturally to consider loop spaces of the

worldvolume of the M5-brane or submanifolds thereof. Switching to loop space allows us

to introduce the so-called transgression map, which reduces the form degree by one: each

loop comes with a natural tangent vector, which is given by the loop of the tangent vectors

to the loop. Contracting an n-form on a manifold with this vector yields an n− 1-form on

loop space. Since this transgression map is a chain map,10 a 2-plectic form ̟ on a manifold

M is mapped to a symplectic form on the corresponding loop space.

10I.e. it maps closed/exact forms to closed/exact forms.
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To reduce the M-theory loop space to an ordinary space of string theory amounts to

restricting to loops that are parallel to the Reeb vector field. Integrating over the loop

parameter reduces the dependence of functions on loop space to that of the zero mode of

the loop. Therefore, functions on loop space are reduced to functions on the symplectic

manifold. Further support of this point of view comes from the observation that the Lie

2-algebra ΠM,̟ transgresses to a Poisson algebra on the loop space ofM . The quantization

of ΠM,̟ should similarly correspond to a natural quantization of the Poisson algebra on

loop space, cf. [45].

Let us now think of the above three-dimensional spaces as contact manifolds. We want

to reduce them along the Reeb vectors corresponding to a chosen contact 1-form to obtain

two-dimensional manifolds. These manifolds will be endowed with a natural symplectic

structure, which is given by the total derivative of the contact 1-form, restricted to the

kernel of the same 1-form. Explicitly, after identifying a maximally non-integrable 1-form

γ, which amounts to γ ∧ dγ being nowhere vanishing, we need to find the corresponding

Reeb vector field XR satisfying

ιXR
γ = 1 and ιXR

dγ = 0 . (3.24)

Since we are working with three-dimensional manifolds, we can normalize the contact form

by imposing the additional condition

γ ∧ dγ = ̟ . (3.25)

Now, every 1-form γ in ΠM,̟ has its corresponding Hamiltonian vector field Xγ , and we

have also dγ = −ιXγ̟, so that ιXγdγ = 0. That is, Xγ satisfies the second requirement of

a Reeb vector. Moreover, ιXγγ = −1 since

0 6= dγ = −ιXγ̟ = −ιXγ (γ ∧ dγ) = −(ιXγγ)dγ . (3.26)

We can therefore take XR := −Xγ as the Reeb vector corresponding to the contact 1-form

γ. In the M-theory context, the Reeb vector field is a vector field along the ‘M-theory

direction’.

The reduction of the 2-plectic manifold together with its induced Lie 2-algebra ΠM,̟ to

a symplectic manifold with its corresponding Poisson algebra is rather straightforward: all

forms are contracted by the Reeb vector field. In particular, we obtain a two-dimensional

manifold11 MR := M/XR, where we divide M by the free abelian action of the Reeb

vector field. The symplectic form on MR is given by ̟R := ιXR
̟ = dγ. Moreover, the

Hamiltonian 1-forms α on M become functions fα := ιXR
α on MR and the Lie 2-algebra

ΠM,̟ reduces to a Poisson algebra ΠMR,̟R
. Hamiltonian 1-forms along (the M-theory

direction) XR are of the form α = fαγ. For two such relative forms α and β, we have

ιXR
π2(α, β) = −ιXR

ιXαιXβ
̟ = −ιXαιXβ

̟R = −ιXfα
ιXfβ

̟R = {fα, fβ} , (3.27)

11In the cases that we are interested in, the quotient space turns out to be a smooth manifold.
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where the Hamiltonian vector fields of the functions fα are defined with respect to ̟R.

Writing dR for the exterior derivative on MR, we have

dR(ιXR
α) = dRfα = ιXfα

̟R . (3.28)

Altogether, we recover a two-dimensional symplectic manifold, with all its structure given

in terms of our initial 2-plectic one.

Reduction of R3. To reduce the 2-plectic space R3 to the symplectic manifoldR2, we use

the contact form γ = dz − ydx. The corresponding Reeb vector XR, given by dγ = ιXR
̟,

is therefore XR = ∂z. Restricting to Hamiltonian 1-forms along the M-theory direction

γ, we recover the usual Poisson algebra for R2. Consider two such forms α = fαγ and

β = fβγ. We have

ι∂zπ2(α, β) = {ιXR
α, ιXR

β} = {fα, fβ} = −ιXfα
ιXfβ

̟R

=
∂

∂x
fα

∂

∂y
fβ − ∂

∂y
fα

∂

∂x
fβ .

(3.29)

We can also reduce the 2-plectic manifold R3\{0} to S2, recovering the symplectic

structure there. The contact form here is given in canonical spherical coordinates by

γ = r2dr − cos θdφ. This yields the Reeb vector field XR = 1
r2
∂r. The 2-plectic structure

̟ reduces to the usual symplectic structure of the 2-sphere: ̟R = sin θdθ ∧ dφ. The Lie

2-algebra of Hamiltonian 1-forms α = fαγ on R3\{0} reduces accordingly to the Poisson

algebra of functions on the 2-sphere.

Reduction of S
3. Here let us choose the contact form γ = 1

2dη3 + sin2 η1dη2, so as to

obtain on S2 the symplectic structure ̟R = dγ = 2 sin η1 cos η1dη1 ∧ dη2 = sin(2η1)dη1 ∧
dη2. The Reeb vector here is XR = 2∂η3 , and for Hamiltonian 1-forms α, β along the

M-theory direction we have

ιXR
π2(α, β) =

2

cos η1 sin η1
εij3∂ηifα∂ηjfβ = {fα, fβ} , (3.30)

which is the usual Poisson structure on S2.

3.5 Lie 2-algebras not originating from 2-plectic manifolds

Just as a Poisson manifold is not necessarily a symplectic manifold, we should not expect

that any interesting Lie 2-algebra of 1-forms comes from a 2-plectic structure. To illustrate

this point further, let us consider the categorification of Hpp-waves.

Recall that ten-dimensional homogeneous plane waves arise as the Penrose limit of the

near horizon geometry AdS5 × S5 in type IIB supergravity [50]. If we restrict the plane

wave to four dimensions, it can be regarded as the group manifold of a twisted Heisenberg

group. Its Lie algebra is the extension of the two-dimensional Heisenberg algebra by one

additional generator J :

[λa, λb] = εab1 , [J, λa] = εabλb , [1, λa] = [1, J ] = 0 . (3.31)
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This algebra is also known as Nappi-Witten algebra and it can be regarded as linear Poisson

structure on a four-dimensional Hpp-wave. Moreover, it can be obtained in various ways

as a solution of the IKKT model, where J and 1 are regarded as quantized light-cone

coordinates, while λa are the quantized two remaining spatial coordinates. For further

details, including an analogous twisted Nambu-Heisenberg algebra, see [25].

A categorification of this Poisson structure on a four-dimensional Hpp-wave would

clearly correspond to a twist of the Lie 2-algebra induced by the 2-plectic structure on

R

3. Although the integration theory of Lie 2-algebras is barely developed, one is led to an

interpretation of the twisted Lie 2-algebra as a categorified linear Poisson structure on a

five-dimensional Hpp-wave. We start from five coordinates x± and xi, i = 1, . . . , 3 together

with the 1-forms

ξi = εijkx
jdxk and ξi± = x±dx

i . (3.32)

The twisted version of the Lie 2-algebra Π
R

3,̟ is given by

π2(ξi, ξj) = −εijkdxk , π3(ξi, ξj , ξk) = −εijk , (3.33)

where we take the products involving the light-cone sector, parametrized by x±, to be:

π2(ξi, ξj−) = εijkξ
k , π2(ξ

i
−, ξ

j
−) = −εijkξk− , π2(ξ

i
+,−) = 0 ,

π3(ξi, ξ
j
−, ξ

k
−) = 0 , π3(ξ

i
−, ξj , ξk) = δikx

j − δijx
k , π3(ξ

i
−, ξ

j
−, ξ

k
−) = 0 ,

(3.34)

while all the π3(ξ
i
+,−,−) = 0. The two-products in the above reduce to the Nappi-

Witten algebra in 4 dimensions (3.31) after contraction along one of the R3 vectors, for

instance ∂
∂x3 :

ξi → ξa = εabx
bdx3 , so that λa ≡ ι∂3ξa = εabx

b , (3.35)

if we further identify J ≡ −x−. In analogy to the symplectic case, we will set all π2(ξ
i
−,−)

and π2(ξ
i,−) acting on exact 1-forms to zero, in line with the interpretation that they

should act as derivations along the direction they define. By combining 2-products we

obtain expressions for π1(π3(−,−,−)) and thus deduce 3-products π3 that are compatible

with the Lie 2-algebra structure, given in the second line in (3.34). Note that these are only

fixed up to constant terms by the Lie 2-algebra equations, so here we chose the simplest

possible form for them. We can further take all mixed 2-products π2(x
±, ξi) = π2(ξ

i
±, x

j) =

0, as well as set π2(ξ
i
±, x

±) = 0, since this does not affect the 2-algebra equations, nor do

we have any natural reason to expect them to be non-vanishing.

Another example of a Lie 2-algebra that does not arise from a 3-form in the manner

described in section 3.2 is that of a twisted Poisson algebra [51] arising e.g. in the context

of double geometry. This example points towards a more comprehensive mathematical

description of higher Poisson structures. A Poisson structure on a manifold is encoded

in a corresponding Poisson Lie algebroid. Analogously, one would expect that higher

(2-)Poisson structures are encoded in a Courant Lie 2-algebroid. This is in fact the case

for the twisted Poisson algebras discussed in [51].

A geometric quantization of twisted Poisson manifolds has been proposed in [52] and

deformation quantization of these manifolds has been considered in [53].
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3.6 Quantization

The quantization of 2-plectic manifolds remains an open problem. Partial answers have

been obtained by quantizing the Nambu-Poisson bracket that arises from a 2-plectic struc-

ture under certain conditions, cf. [25] and references therein. Other approaches use a

detour via loop spaces, see e.g. [45]. For a more recent discussions of the general mech-

anism, see e.g. [54]. Attacking the quantization of 2-plectic manifolds directly faces the

aforementioned problem that even the algebraic structure of classical observables is not

fully clarified. Fortunately, we can ignore this problem and regard classical quantization

only as a Lie algebra homomorphism to first order in ~ that maps the Poisson algebra to a

Lie algebra of quantum observables. The categorified analogue is then a Lie 2-algebra ho-

momorphism to first order in ~ that maps a Lie 2-algebra of classical observables — arising

e.g. from a 2-plectic structure — to a Lie 2-algebra of quantum observables. Roughly this

point of view has been adopted e.g. in [55], see also [44], where prequantization of 2-plectic

manifolds has been developed to a considerable amount. Usually, the symplectic form on

certain quantizable manifolds defines the first Chern class of the prequantum line bundle.

Fully analogously, a 2-plectic structure on certain manifolds defines the Dixmier-Douady

class of a prequantum abelian gerbe. Many other ingredients of conventional geometric

quantization have natural counterparts in this picture. In particular, the Atiyah algebroid,

a symplectic Lie algebroid capturing the Souriau approach to geometric quantization, is

replaced by a Courant Lie 2-algebroid, a symplectic Lie 2-algebroid.

Further evidence in favor of quantizing the Lie 2-algebra induced by the 2-plectic

structure over the quantization of the Nambu-bracket stems from the above mentioned

loop space approach. Both the 2-plectic structure as well as the prequantum abelian

gerbe can be consistently mapped to a symplectic form of the loop space of the original

manifold. Instead of quantizing the 2-plectic manifold, one can therefore quantize the

induced symplectic loop space, cf. [45, 49] and references therein. This quantization of

loop space is now naturally compatible with the quantization of the 2-plectic structure.

Having established that our notion of quantization will be necessarily incomplete, let

us now specify it to the extend we can. Our guiding principle here will be a straightforward

analogy with the correspondence principle (3.3) of ordinary quantization: a quantization

of a manifold M endowed with a Lie 2-algebra ΠM is a semistrict Lie 2-algebra Π̂M with

products µi together with a map

−̂ : ΠM → Π̂M , (3.36)

which is a Lie 2-algebra homomorphism to lowest order in a deformation parameter ~. For

simplicity, we will restrict our attention to Lie 2-algebra homomorphisms (Ψ0,Ψ−1,Ψ2)

that are purely given in terms of chain maps with Ψ2 = 0. This results in the following

“categorified correspondence principle:”

µ1(X̂) = ̂−i~ π1(X) +O(~) , µ2(X̂, Ŷ ) = ̂−i~ π2(X,Y ) +O(~2) ,

µ3(X̂, Ŷ , Ẑ) = ̂−i~ π3(X,Y, Z) +O(~2) .
(3.37)

For our goals in this paper, this categorified correspondence principle will prove to be

sufficient.
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3.7 Representation of the Heisenberg Lie 2-algebra

While we cannot solve the problem of quantization of 2-plectic manifolds here, we can

give some partial insight by regarding the analogue of the Heisenberg algebra, which arises

in the quantization of R2. More specifically, the Heisenberg algebra is spanned by quan-

tized constant and linear functions, x̂i and ĉ = c1, c ∈ R. These operators satisfy the

commutation relation

[x̂a, x̂b] = ̂−i~{xa, xb} = −i~εab1 , a, b = 1, 2 . (3.38)

Note that the corrections to order O(~2) in the correspondence principle vanish for coor-

dinate functions. A representation for the Heisenberg algebra is given by U3, the upper

triangular 3× 3-dimensional matrices:

ax̂1 + bx̂2 − i~c1 7→




0 a c

0 0 b

0 0 0


 , (3.39)

and the matrix commutator of these upper triangular matrices reproduces the algebra

relation (3.38).

The Heisenberg Lie 2-algebra is spanned by quantized constant and linear functions

as well as constant and linear 1-forms x̂i, ĉ = c1 and ξi, dxi, as defined in section 3.3. The

non-trivial Lie 2-algebra products for the quantized coordinate algebra are

µ1(x̂
i) = −̂i~dxi , µ2(ξ̂i, ξ̂j) = − ̂i~εijkdxk , µ3(ξ̂i, ξ̂j , ξ̂k) = î~εijk1 , (3.40)

where we again assumed that the corrections in the correspondence principle to order O(~2)

vanish here.

We represent this Lie 2-algebra on the 2-vector space R4 µ1−→ U5, where R
4 is spanned

by basis vectors e0, ei and U5 is the vector space of upper triangular 5 × 5-dimensional

matrices. The chain maps of the Lie 2-algebra homomorphism are given by

−i~c1+ bix̂
i 7→ ce0 + bie

i ,

aiξ̂i − i~bid̂xi 7→




0 a1 b3 0 0

0 0 a2 b1 0

0 0 0 a3 b2
0 0 0 0 a1

0 0 0 0 0




.
(3.41)

The non-trivial Lie 2-algebra products on this 2-vector space are given by obvious maps

µ1 : R
4 → U5 and µ3 : U

∧3
5 → R

4 together with the map

µ2(u1, u2) = [P (u1), P (u2)] , u1, u2 ∈ U5 , (3.42)

where

P




0 a1 b3 0 0

0 0 a2 b1 0

0 0 0 a3 b2
0 0 0 0 a1

0 0 0 0 0




:=




0 a1 0 0 0

0 0 a2 0 0

0 0 0 a3 0

0 0 0 0 a1

0 0 0 0 0




. (3.43)
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Such brackets containing projectors are quite common in the context of derived brackets and

strong homotopy Lie algebras, cf. [56]. Note that the reduction of the representation (3.41)

to (3.39) is very transparent.

4 Homogeneous Lie 2-algebra models

Let us now come to the homogeneous Lie 2-algebra models, which are built from the

various inner products. As stated before, these models are written in terms of a single type

of field Xa, a = 1, . . . , d, which takes values in a Lie 2-algebra. We start by discussing

the difference between the three kinds of metrics. We then consider the classical equations

of motion and demonstrate that their solutions contain quantized symplectic and 2-plectic

manifolds.

4.1 Homogeneous Lie 2-algebra models and the various inner products

The first ingredient are the various non-vanishing products on L, which we summarize here

for the reader’s convenience:

µ1 : V →W , µ∗1 :W → V ,

µ2 : V ∧W → V , µ2 :W ∧W →W , µ∗2 : V ∧ V →W ,

µ3 :W ∧W ∧W → V , µ∗3 :W ∧W ⊗ V →W .

(4.1)

Note that we can neglect the product κ2, as it is built from the ones above. Moreover,

note that µ∗2(w, ℓ) = −µ2(w, ℓ) for any w ∈ W and ℓ ∈ L. The large number of remaining

products makes it impossible to discuss a general action, and inspired by the M2-brane

models, we will restrict ourselves to actions that are at most sextic in the fields.

In the following, we briefly discuss general Lie 2-algebra models that make use of the

three inner products that we introduced in section 2.3. Recall that a key feature of all

inner products was the fact that

〈µ2(w, ℓ1), ℓ2〉+ 〈ℓ1, µ2(w, ℓ2)〉 = 0 (4.2)

for w ∈ W and ℓ1, ℓ2 ∈ L. This property is required to guarantee that the actions of Lie

2-algebra models exhibit a nice symmetry algebra.

The cyclic metric 〈−,−〉∞ defined in section 2.3 is very restrictive. Recall that this

metric corresponds to an invariant polynomial, which naturally induces actions for field the-

ories of “Chern-Simons type”, cf. [15]. A typical example is the action discussed in [11, 57],

whose stationary points are described by homotopy Maurer-Cartan equations. Here, how-

ever, we are more interested in actions of “Yang-Mills type”, of which the IKKT model is

an example.

Leaving out the product µ1, the only non-zero terms we can construct, up to fourth

order in X, are

S∞ =
1

2
mab〈Xa, Xb〉∞ +

1

3
cabc〈Xa, µ2(X

b, Xc)〉∞ +
1

4
〈µ2(Xa, Xb), µ2(X

a, Xb)〉∞ , (4.3)
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where mab is a ‘mass matrix’ and cabc ∈ R is some totally antisymmetric tensor encoding

a background yielding a cubic coupling. Higher order terms involving nested µ2 can be

constructed, too. Note, however, that terms involving µ3 necessarily vanish, cf. (2.13).

Splitting the fields Xa in the action (4.3) into the components Xa = va + wa with va ∈ V

and wa ∈W , we arrive at

S∞ =
1

2
mab〈va, vb〉∞ +

1

2
mab〈wa, wb〉∞ +

1

3
cabc〈wa, µ2(w

b, wc)〉∞+

+
1

4
〈µ2(wa, wb), µ2(w

a, wb)〉∞ .

(4.4)

In the case of the minimally invariant metric, we can write down more general terms.

For example, we could consider the following action:

S0 =
1

2
mab〈Xa, Xb〉0 +

1

3
cabc〈Xa, µ2(X

b, Xc))〉0 +
1

4
〈µ2(Xa, Xb), µ2(X

a, Xb)〉0

+ dabcd〈Xa, µ3(X
b, Xc, Xd)〉0 +

1

6
λ〈µ3(Xa, Xb, Xc), µ3(X

a, Xb, Xc)〉0

=
1

2
mab〈va, vb〉0 +

1

2
mab〈wa, wb〉0 +

2

3
cabc〈va, µ2(wb, vc))〉+ 1

3
cabc〈wa, µ2(w

b, wc))〉

+
1

2
〈µ2(wa, vb), µ2(w

a, vb)〉+ 1

2
〈µ2(wa, vb), µ2(v

a, wb)〉+ 1

4
〈µ2(wa, wb), µ2(w

a, wb)〉

+
1

4
dabcd〈va, µ3(wb, wc, wd)〉+ 1

6
λ〈µ3(wa, wb, wc), µ3(w

a, wb, wc)〉 , (4.5)

where cabc ∈ R and dabcd ∈ R encode totally antisymmetric12 background tensors and

λ ∈ R is a coupling constant.

In the case of the reduced metric, V is considered as a sub vector space of W . Thus,

we can replace Xa in the action directly by wa, and we get interaction terms like

dabcd〈Xa, µ3(X
b, Xc, Xd)〉red = dabcd〈wa, µ3(w

b, wc, wd)〉red , (4.6)

which, however, can be rewritten as 3dabcd〈wa, µ2(µ2(w
[b, wc), wd])〉.

While actions built from minimally invariant and reduced inner products can contain

considerably more interactions than those employing the cyclic inner product, it is not clear

to us whether these additional terms are useful. In particular, when considering actions that

have quantized symplectic and 2-plectic geometries as solutions, we can restrict ourselves

to the terms contained in S∞.

4.2 Symmetries of the models

The symmetries of a general Lie 2-algebra model have to be given by Lie 2-algebra au-

tomorphisms. Recall that the symmetry algebra relevant in the IKKT matrix model was

the algebra of inner automorphisms of the underlying matrix algebra. We will therefore

focus our attention here on inner Lie 2-algebra automorphisms, by which we mean auto-

morphisms Ψ : L→ L which read infinitesimally as

Ψ−1(v) = v + µ2(α, v) , Ψ0(w) = w + µ2(α,w) and Ψ2(w1, w2) = µ3(α,w1, w2) , (4.7)

12While only totally antisymmetric parts of cabc contribute to S0, this is not the case for dabcd.
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where v ∈ V , w ∈ W , and α ∈ W is the (infinitesimal) gauge parameter. Under these

symmetries, Lie 2-algebra actions remain invariant, independently of the inner product

used in their definition. This is due to the invariance described in equation (4.2). For

example, both the cyclic and minimally invariant inner products split into separate inner

products of terms in W and inner products of terms in V :

S =
∑

i

〈w1,i, w2,i〉+
∑

j

〈v1,j , v2,j〉 . (4.8)

Each of these terms is invariant under inner Lie 2-algebra automorphisms, e.g.

δ〈w1, w2〉 = 〈δw1, w2〉+ 〈w1, δw2〉 = 〈µ2(α,w1), w2〉+ 〈w1, µ2(α,w2)〉 = 0 . (4.9)

One should stress in this context an important difference to conventional field theories:

to propagate the action of the symmetry transformations from a higher product onto the

fields, one has to take into account that a Lie 2-algebra automorphism also transforms the

higher products themselves. For example, we have

δµ2(w1, w2) = µ2(δw1, w2) + µ2(w1, δw2) + (δµ2)(w1, w2) , (4.10)

and the explicit form of (δµ2)(w1, w2) is easily read off equation (2.7).

Recall that the IKKT model arose as a dimensional reduction of a ten-dimensional

supersymmetric gauge theory. Symmetries of this model are therefore given by residual

supersymmetry as well as dimensionally reduced gauge symmetry. We might expect that

something similar happens in the case of Lie 2-algebra models, assuming that they arise

from a dimensional reduction of semistrict higher gauge theory. While semistrict higher

gauge theory has only been developed partially, an attempt to capture its local gauge

structure has been made in [33].

In this framework, gauge symmetry is described by a Lie 2-algebra automorphism

(g0, g−1, g2) together with a flat connection doublet (σ,Σ) and a 1-form τ taking values

in Hom (W,V ). The connection doublet and the 1-form are solutions of the consistency

relations (B.7). For further reference, a concise overview over this gauge structure is

included in appendix B.

After the dimensional reduction to a point, the consistency relations are satisfied for

trivial (σ,Σ) and τ , and the whole gauge structure therefore reduces to a Lie 2-algebra

automorphism. We thus arrive at the symmetries of our Lie 2-algebra model, in analogy

with the case of the IKKT model. Note, however, that Lie 2-algebra models arising from

dimensionally reducing a semistrict higher gauge theory to a point are more likely to be

described by inhomogeneous Lie 2-algebra models, and we will return to this issue in

section 5.2.

4.3 Reduction to the IKKT model and quantized symplectic manifolds

The reduction to the bosonic part of the IKKT model is a rather trivial affair. Given a

(real) Lie algebra g, we can extend it trivially to a Lie 2-algebra Lg : V → W by putting

V = ∗ = {0} and W = g. The only non-trivial higher product is then µ2 : g × g → g,

– 25 –



J
H
E
P
0
4
(
2
0
1
4
)
0
6
6

which is given by the commutator. The higher Jacobi identities are trivially satisfied.

The Gram-Schmidt inner product yields an inner product on this Lie 2-algebra. This inner

product satisfies simultaneously the axioms of cyclic, reduced and minimally invariant inner

products, as one readily verifies. We can therefore work with any of the above discussed

homogeneous Lie 2-algebra models.

All these models contained the following terms in the action:

S0 =
1

2
mab〈Xa, Xb〉+ 1

3
cabc〈Xa, µ2(X

b, Xc)〉+ 1

4
〈µ2(Xa, Xb), µ2(X

a, Xb)〉 . (4.11)

Assuming that the underlying Lie 2-algebra is the Lie 2-algebra Lg, we recover the bosonic

part of the IKKT matrix model (1.2) together with the bosonic part of the deformation

terms (1.4). Note that using a T-duality, one can then obtain BFSS matrix quantum

mechanics [58] in the usual way.

We say that a solution to the IKKT model corresponds to a quantized symplectic

manifold, if the matricesXa describing this solution are given by a complete set of quantized

coordinate functions of a noncommutative space. Note that for compact spaces like the

fuzzy sphere, these coordinate functions are given by embedding coordinates of the compact

manifoldM in someRn. These coordinates should be seen as the pullback of the coordinate

functions on Rn along the embedding13 e :M →֒Rn.

Let us briefly recall three important solutions of the IKKT model for future reference.

For vanishing masses mab and cubic couplings cabc, we obtain the Moyal plane R2n
θ , as

already mentioned in the introduction. This space is described by quantized coordinate

functions x̂i, i = 1, . . . , 2n, satisfying the Heisenberg algebra, cf. (3.38).

The fuzzy sphere S2 is described as a quantized submanifold of R3 by the quantized

coordinate algebra

[x̂i, x̂j ] = −i~Rεijkx̂k , (4.12)

where i, j, k = 1, 2, 3, R is the radius of the fuzzy sphere and ~ = 2
k
, k ∈ N, cf. [25]. As

solutions to the IKKT model, it can be obtained in two ways. First of all, we can turn on

a mass term

mij = −2~2R2δij , (4.13)

as observed in [59]. Second, we can tune the cubic coupling proportional to the structure

constants of su(2),

cijk = −i~Rεijk , (4.14)

as discussed in [60]. Both mass terms and cubic couplings can certainly be combined in a

more general fashion.

The quantized Hpp-wave encoded in the Nappi-Witten algebra (3.31) is obtained as

the solution

x̂1 = λ1 , x̂2 = λ2 , x̂3 = J and x̂4 = 1 (4.15)

13According to the Whitney embedding theorem, any smooth manifold of dimension d can be smoothly

embedded in R2d. This restricts the dimension of the quantized symplectic manifolds that can arise as

solutions in the IKKT model. In fact, the Whitney embedding theorem can be improved to R2d−1 unless

d is a power of 2.
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of the action S0 with the following non-trivial mass-terms and couplings:

m11 = m22 = −1 and cijk = εijk , i, j, k = 1, 2, 3 , (4.16)

see also [9].

Before coming to the case of 2-plectic manifolds, let us briefly note a subtle point.

While the above quantized coordinate algebras do solve the equations of motion resulting

from the action S0, they may not correspond to quantized square integrable functions or

may yield problematic terms in the action. For example, in the case of the Moyal plane,

we have [Xa, Xb] = εab1. The term 〈µ2(Xa, Xb), µ2(X
a, Xb)〉 = tr ([Xa, Xb][Xa, Xb])

is problematic when evaluated at this solution, as all non-trivial representations of the

Heisenberg algebra are necessarily infinite-dimensional and the trace of 1 is therefore ill-

defined: the operator 1 is not trace class. We will encounter the same issue in the case

of Lie 2-algebra models. Recall, however, that we are not interested in the value of the

action functional. We will first derive the equations of motion assuming our fields have

finite norm and then continue the resulting equations to arbitrary Lie 2-algebra elements.

4.4 Solutions corresponding to quantized 2-plectic manifolds

As recalled above, we call a solution to the IKKT model a quantized symplectic manifold,

if it is given in terms of quantized coordinate functions on Rn, into which the symplectic

manifold is embedded. Similarly, solutions to the 3-Lie algebra model of [9] were given

by quantized coordinate functions that took values in a 3-Lie algebra. Again, for com-

pact spaces, quantized embedding coordinates of the manifold in some Euclidean space

were used.

In the case of Lie 2-algebra models, the coordinate functions should be replaced by

the quantization of certain elementary 1-forms. Let us characterize these 1-forms in the

following. For compact spaces, we should again consider their embedding in some Rn

and use the pull-back of the elementary 1-forms on Rn along the embedding. It therefore

suffices to characterize elementary one-forms on Rn. There is a number of properties we

would like these elementary 1-forms to have:

(i) They should be as simple as possible.

(ii) They cannot be exact, as exact forms are central in the Lie 2-algebras induced by

2-plectic structures.

(iii) Just as with Cartesian coordinate functions on Rn, the Hamiltonian vector field of

the 1-forms should equal the derivative with respect to the Cartesian coordinates

on Rn.

(iv) Under the reduction procedure outlined in section 3.4, they should reduce to coordi-

nate functions on Rn−1.

In Cartesian coordinates xi on Rn, the simplest 1-forms on Rn that are not exact are

given by

ξij = x[idxj] , (4.17)
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and we have encountered these already in section 3.3. One can easily verify that (iv) on its

own would also lead to (4.17). Moreover, on spaces R3n with canonical 2-plectic structure,

these elementary 1-forms satisfy (iii).

Another requirement one might impose is on the quantization of elementary 1-forms:

the correspondence principle (3.37) should hold exactly and should not receive any correc-

tions to order O(~2).

Note that the Lie 2-algebras we obtain from a 2-plectic structure are not reduced,

and we do not expect that the corresponding quantized Lie 2-algebra will be reduced. In

discussing solutions, we therefore have to restrict ourselves to the cyclic and minimally

invariant inner products. In both cases, we are interested in the same action,14

S1 =
1

2
mab〈Xa, Xb〉+ 1

3
cabc〈Xa, µ2(X

b, Xc)〉+ 1

4
〈µ2(Xa, Xb), µ2(X

a, Xb)〉 , (4.18)

which, however, leads to different equations of motion. In the cyclic case, we have

mabw
b + µ2(w

b, µ2(w
b, wa)) + cabcµ2(w

b, wc) = 0 and mabv
b = 0 , (4.19)

while in the minimally invariant case, we have

mabv
b +

4

3
cabcµ2(w

b, vc) +
1

2
µ2(w

b, µ2(w
b, va)) +

1

2
µ2(w

b, µ2(v
b, wa)) = 0 ,

mabw
b − 2

3
cabcµ

∗

2(v
c, vb)+ cabcµ2(w

b, wc)+
1

2
µ∗2(v

b, µ2(v
b, wa)) + µ2(w

b, µ2(w
b, wa)) = 0 .

(4.20)

We now restrict to Lie 2-algebras that arise from the quantization of a Lie 2-algebra ΠM,̟

and impose the above mentioned requirement that for elementary functions and 1-forms,

the correspondence principle (3.37) holds precisely without corrections to order O(~2).

This implies that in equations (4.20), the terms containing the products

µ2 :W × V → V and µ∗2 : V × V →W (4.21)

vanish on elementary 1-forms and equations (4.20) reduce to (4.19). We can therefore

restrict our attention to the latter equations of motion.

4.5 Examples of quantized categorified Poisson manifolds as solutions

As a first example, we consider the quantization of Π
R

3,̟, where ̟ is again the canonical

volume form on R3. Just as the Moyal plane was obtained from the undeformed IKKT

model, we expect the quantization Π̂
R

3,̟ of Π
R

3,̟ to arise from the action S1 with m =

c = 0. This is indeed the case: the quantization of the 1-forms ξi =
1
2εijkx

idxk satisfy the

following algebra

µ2(ξ̂i, ξ̂j) = −i~εijkd̂xk , (4.22)

where d̂xk is central in Π̂
R

3,̟. Putting

wi = ξ̂i and vi = 0 , i = 1, . . . , 3 , (4.23)

14We were not able to use the additional terms in the action (4.5) in any sensible way to accommodate

the desired solutions of quantized geometries; neither did they seem necessary.
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we obtain a solution to (4.19), which we interpret as a quantization R3
~
of R3 as 2-plectic

manifold.

Note that the solution of the IKKT model corresponding to the Moyal plane trivially

extends to Cartesian products R2n
θ = R2

θ × · · · ×R2
θ. The same holds here, and we obtain

quantized 2-plectic manifolds R3n
~

= R3
~
× · · · ×R3

~
.

Note also that as a special case to the above solution, we can use the subalgebra of

Π̂
R

3,̟, which corresponds to the reduction to the fuzzy sphere as discussed in section 3.4.

This yields a continuous foliation of quantized R3
~
by fuzzy spheres, which is different to

the discrete foliation given by the space R3
λ as introduced in [61].

As our second example, let us consider the quantization of the 2-plectic sphere S3.

First, note that analogously to the case of the fuzzy sphere solution to the IKKT model,

we should embed the 3-sphere into R4 and describe its quantization as a push-forward on

elementary 1-forms on R4. More specifically, we consider the 1-forms

ξµν :=
1

2
εµνκλx

κdxλ , (4.24)

where xµ, µ = 1, . . . , 4 , are the embedding coordinates of e : S3 →֒ R

4, where e(S3) =

{||x|| = 1 |x ∈ R4}. The higher product π2 on these elementary 1-forms is given by

π2(ξµν , ξκλ) = δνκξµλ − δµκξνλ − δνλξµκ + δµλξνκ + π1(Rµνκλ) , (4.25)

where

Rµνκλ =
1

4

(
ενκλρx

ρxµ − εµκλρx
ρxν − εκµνρx

ρxλ + ελµνρx
ρxκ
)
. (4.26)

Equation (4.25) shows that this Lie 2-algebra of elementary 1-forms is in fact a categori-

fication of the Lie algebra so(4), where the usual commutation relations hold up to the

isomorphism π1(Rµνκλ).

Comparing again with the case of the fuzzy sphere arising in the IKKT model, we

expect that the quantized 3-sphere arises in two different ways. First, a solution to S1 is

given in terms of the quantized 1-forms defined in (4.24) by

(wI) = (ξ̂12, ξ̂13, ξ̂14, ξ̂23, ξ̂24, ξ̂34) and vI = 0 , (4.27)

if we set the masses to

mIJ = −4~2δIJ , I, J = 1, . . . , 6 . (4.28)

Note that the index I should here be regarded as a multi-index I = ([mn]). Second, (4.27) is

also a solution, if we tune the cIJK to the structure constants of so(4) in the representation

categorified in (4.25). Explicitly, we have the following non-trivial entries:

c[124] = i~ , c[135] = i~ , c[236] = i~ , c[456] = i~ . (4.29)

It is quite striking that quantized S3 arises in the same manner in our Lie 2-algebra models

as the fuzzy sphere arose in the IKKT model.
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As our last example, let us consider the Lie 2-algebra corresponding to a categorifica-

tion of the Nappi-Witten algebra, which we interpreted as the Lie 2-algebra related to a

five-dimensional Hpp-wave. We have nine elementary 1-forms,

(wm) = (ξ̂1, ξ̂2, ξ̂3, ξ̂
1
+, ξ̂

2
+, ξ̂

3
+, ξ̂

1
−, ξ̂

2
−, ξ̂

3
−) , (4.30)

and their non-trivial products µ2 read as

µ2(ξ̂i, ξ̂j) = i~εijkdx
k , µ2(ξ̂i, ξ̂

−

j ) = −i~εijkξ̂
k and µ2(ξ̂

i
−, ξ̂

j
−) = i~εijkξ̂

k
− . (4.31)

The most general action S1 to which (4.30) is a solution has the following mass parameters

and cubic coupling terms:

mmn = diag(4~2, 4~2, 4~2, 0, 0, 0,−2i~ c789,−2i~ c789,−2i~ c789) ,

c[ijk−] = −i~εijk− , c[ijk+] = c[ijk] = c[ij−k−] = c[i+j−k−] = 0 ,
(4.32)

while the remaining cubic couplings can be chosen arbitrarily. Here, indices i+ run over

4, 5, 6 and indices i− run over 7, 8, 9. Note that these background fields are very similar to

those in (4.16) that gave rise to the Hpp-wave solution in the IKKT model.

5 Inhomogeneous Lie 2-algebra models

We now come to inhomogeneous Lie 2-algebra models, in which we have two kinds of fields

{Xa} and {Y i} taking values in V and W , respectively. This class of models includes

the homogeneous models as those actions that are written in terms of sums Xa + Y a.

Therefore the inhomogeneous models can exhibit all the solutions we found in the previous

section. We will start with an inhomogeneous Lie 2-algebra model that reduces for skeletal

and strict Lie 2-algebras to zero-dimensional M2-brane models. We then consider a specific

inhomogeneous Lie 2-algebra model that results from dimensionally reducing a higher gauge

theory and analyze fluctuations around a special solution.

Note that inhomogeneous Lie 2-algebra models are also invariant under the inner Lie

2-algebra automorphisms discussed in section 4.2.

5.1 Dimensionally reduced M2-brane models

We showed in section 2.5 that Lie 2-algebras that are either skeletal or strict come with a

real 3-algebra structure, where the ternary bracket is given by

[v1, v2, v3] = −µ2(µ∗2(v1, v2), v3) . (5.1)

For µ∗2 to be non-trivial, we will have to work with the minimally invariant metric 〈−,−〉0.
We can now write down inhomogeneous Lie 2-algebra models that make use of this

ternary bracket and reduce to previously studied zero-dimensional models related to M2-

brane models. The action we are interested in reads as

SM2 =
1

6
εijk〈Y i, µ2(Y

j , Y k)〉0 −
1

2
〈µ2(Y i, Xa), µ2(Y

i, Xa)〉0 +
i

2
〈Ψ̄, µ2(ΓiY i,Ψ)〉0 (5.2)

− i

4
〈Ψ̄, µ2(µ∗2(Xa, Xb),ΓabΨ)〉0 −

1

12
〈µ2(µ∗2(Xa, Xb), Xc), µ2(µ

∗

2(X
a, Xb), Xc)〉0 ,

– 30 –



J
H
E
P
0
4
(
2
0
1
4
)
0
6
6

where the scalars Xa, a = 1, . . . , 8, and the spinors Ψ take values in V , while the scalars Y i,

i = 0, . . . , 2, take values in W . Our spinor and Clifford algebra conventions are those of [2].

For skeletal or strict Lie 2-algebras, the action (5.2) equals that of a full dimensional

reduction of the N = 2 M2-brane models discussed in [38]. Our action then inherits N = 2

supersymmetry from the 3-dimensional model.

If the ternary bracket (5.1) happens to be antisymmetric,15 we recover the 3-Lie algebra

models that we discussed in the introduction. In particular, the models of [20, 21, 23] are

obtained by putting Yi = 0 and letting a = 0, . . . , 10, otherwise one arrives at the model

discussed in [9]. It is a trivial exercise to add deformation terms to (5.2) that are written

in terms of 3-brackets.

Note that inhomogeneous Lie 2-algebra models reproducing the dimensionally fully

reduced ABJM model can also be written down in a straightforward fashion.

To obtain interesting solutions to the model (5.2) one should either consider solutions

with Yi 6= 0 or solutions that do not arise from 2-plectic manifolds. Otherwise, the equations

of motion are trivially satisfied. It is not clear how to interpret solutions that contain both

nontrivial Yi and X
a. We therefore refrain from going into any more detail at this point.

5.2 Background expansion for higher gauge theory

Recall from section 1.1 that expanding the action of the IKKT model around a solution

corresponding to a noncommutative space yields essentially the action for Yang-Mills theory

on that noncommutative space [7]. In particular, consider the action (1.2). A solution to

this action is the Moyal space R2n
θ with coordinates satisfying [x̂µ, x̂ν ] = −iθµν , µ, ν =

1, . . . , 2n. If we now expand around this solution by writing Xµ = x̂µ + Âµ and observing

that θµν [x̂
ν , f̂ ] = ∂̂µf , we obtain noncommutative Yang-Mills theory on R2n

θ .

An attempt has been made to reproduce this observation in the context of quantized

Nambu-Poisson manifolds using 3-Lie algebras in [9], but the construction seemed far less

natural than in the IKKT case.

Let us now try to obtain field theories on quantized 2-plectic spaces by performing

a background expansion. For this, we have to choose the kind of action we expect to

reproduce. The most natural candidate here are higher BF-theories as discussed in [37].

For simplicity, we will consider higher BF theory on R3. The field content consists

of a 1-form A and a 2-form B. Usually, these take values in the vector spaces W and

V , respectively, that form a strict Lie 2-algebra. Here, however, we immediately allow

for a semistrict Lie 2-algebra, and neglect all the technical difficulties that come with a

complete discussion of semistrict higher gauge theory, see [33] and appendix B. If the

higher BF theory is supposed to describe a connective structure that captures the parallel

transport of an extended object, we have to impose the fake curvature condition

0 = F := F − µ1(B) := dA+ µ2(A,A)− µ1(B) . (5.3)

As usual in BF-theory, we also expect the 3-form curvature to vanish:

0 = H := dB + µ2(A,B) +
1

6
µ3(A,A,A) , (5.4)

15Which is the case e.g. if the underlying real 3-algebra is A4.
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where we extended the usual definition of the 3-form curvature H in higher gauge theory

by a term µ3(A,A,A), cf. [33]. Altogether, we arrive at the action

SBF =

∫

R

3

〈λ1,F〉0 + 〈λ0, H〉0 , (5.5)

where λ0 and λ1 are 0- and 1-forms taking values in V and W , respectively.

To obtain a Lie 2-algebra model, we dimensionally reduce the action SBF to a point.

We are left with fields Xij , i, j = 1, . . . , 3, taking values in V and fields Yi with values

in W together with additional Lagrange multiplier fields λi and λ. Note that we should

also twist the BF action by terms 2i~〈λi, d̂xi〉0 and i~〈λ, 1〉0. This can be easily seen by

imagining writing down a BF theory on the Moyal plane; even in the Yang-Mills case we

introduce such a twist, cf. (1.2). The total action reads as

S0d =εijk〈λi, µ2(Yj , Yk)−
1

2
µ1(Xjk)〉0 + 2i~〈λi, d̂xi〉0

+ εijk〈λ, 1
2
µ2(Yi, Xjk) +

1

6
µ3(Yi, Yj , Yk)〉0 − i~〈λ,1〉0 .

(5.6)

A solution to the corresponding equations of motion is given by elements of the semistrict

Lie 2-algebra Π̂
R

3,̟ arising from the quantization of the Lie 2-algebra Π
R

3,̟:

Yi = ξ̂i , Xij = 0 and λi = λ = 0 . (5.7)

We now observe that

dxi ∧ π2(ξi, α) = dα , (5.8)

and therefore µ2(ξ̂i,−) should be identified with a quantum derivation, at least on 1-forms.

Consider the background field expansion

Yi = ξ̂i + Âi , Xij = 0 + B̂ij , (5.9)

where Âi and B̂ij take values in the obvious vector spaces contained in Π̂
R

3,̟. The ac-

tion (5.6) becomes

S2LBF = εijk〈λi, F̂jk〉0 + εijk〈λ, Ĥijk〉0 , (5.10)

where we defined

F̂ij = µ2(ξ̂i, Âj)− µ2(ξ̂j , Âi) + µ2(Âi, Âj)− µ1(B̂ij) ,

Ĥijk =
1

2
µ2(ξ̂[i, B̂jk]) +

1

2
µ2(Â[i, B̂jk]) +

1

6
µ3(ξ̂i + Âi, ξ̂j + Âj , ξ̂k + Âk)− i~1̂ .

(5.11)

It is interesting to note how the Lie 2-algebra Π
R

3,̟ turned into a gauge Lie 2-algebra of

higher BF-theory on a quantized 2-plectic space.

Recall that in the Lie 2-algebra arising from 2-plectic R3, the higher product between

functions and 1-forms, π2 : Ω1(R3) × C∞(R3) → C∞(R3), is trivial. We therefore have in

the quantized case

Ĥijk =
1

6
µ3(ξ̂i + Âi, ξ̂j + Âj , ξ̂k + Âk) +O(~2) . (5.12)

This interpretation is very close to the one used in [26]. There, the 3-form curvature H

was identified in a 3-Lie algebra valued model with the product [Âi, Âj , Âk]. Considering

the 3-Lie algebra 2Mat(n) constructed in section 2.5, where the triple bracket of the 3-Lie

algebra can be identified with the higher product µ3, our Ĥ essentially matches that of [26].
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5.3 Background expansion using an isomorphic Lie 2-algebra structure

As we saw in the previous section, the Lie 2-algebra C∞(M) → H(M) that we obtained

from a 2-plectic manifold M in section 3.2 is very restrictive. In particular, elements of V

have no possibility of interacting via higher products with W . To remedy this, note that

we can add the non-trivial product

π2(f, α) := −ιXαdf , f ∈ C∞(M) , α ∈ H(M) . (5.13)

This additional product, however, violates the higher homotopy relation π1(π2(α, f)) =

π2(α, π1(f)). To fix this, we modify π2 : H(M)× H(M) → H(M) as follows:

π2(α, β) := −ιXαιXβ
̟ − d(ιXαβ) + d(ιXβ

α) , α, β ∈ H(M) , (5.14)

where we note that π2(α, β) is indeed in H(M). The products π1 and π3 remain unmodified:

π1(f) := df and π3(α, β, γ) := −ιXαιXβ
ιXγ̟ (5.15)

for f ∈ C∞(M) and α, β, γ ∈ Ω1(M). We will denote the resulting structure by Π̃M,̟.

Instead of verifying all the higher homotopy relations (2.2) for Π̃M,̟, we can prove a

stronger statement: Π̃M,̟ is isomorphic to the Lie 2-algebras ΠM,̟. This is easily seen by

giving the explicit Lie 2-algebra homomorphism, cf. section 2.2:

Ψ−1 = id , Ψ0 = id , Ψ2(α, β) = ιXαβ − ιXβ
α . (5.16)

Equations (2.7) then yield the higher products (5.13) and (5.14). The higher product

µ3 remains unmodified, as one readily verifies by direct computation using the identity

ι[Xα,Xβ ] = LXαιXβ
− ιXβ

LXα .

As an example, let us briefly study the Lie 2-algebra Π̃
R

3,̟ with 2-plectic form ̟ =

dx1∧dx2∧dx3. The Hamiltonian vector fields as well as π1 and π3 are listed in section 3.3.

The formulas for the new products read as

π2(f, α) = −εijk∂if∂jαk ,

π2(α, β) = εijk (∂iαk(∂jβℓ − ∂ℓβj) + ∂ℓ(αi∂jβk − βi∂jαk)) dx
ℓ .

(5.17)

For the constant and linear 1-forms dxi and ξi =
1
2εijkx

jdxk we have

π2(f, dx
i) = 0 , π2(f, ξi) = −∂if , π2(dx

i, α) = εijk∂ℓ∂jxkdx
ℓ , π2(ξi, ξj) = 0 . (5.18)

In particular, we see that the operator π2(ξi, f) can here be interpreted as a derivation on

functions, while it lost its nice derivation property property on 1-forms.

To define a BF-theory via a background expansion using the Lie 2-algebra Π̃
R

3,̟, we

should consider the action (5.6) without the twist term 2i~〈λi, d̂xi〉0. A classical configu-

ration of this action is again (5.7) and we can follow the discussion of the previous section.
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6 Conclusions

In this paper, we initiated a study of zero-dimensional field theories, in which the fields

take values in a semistrict Lie 2-algebra, or, equivalently, a 2-term L∞-algebra. These Lie

2-algebra models are a categorification of the IKKT matrix model, which is conjectured to

provide a background independent formulation of string theory. In particular, Lie 2-algebra

models contain the (bosonic part of the) IKKT model and all of its bosonic deformations.

We explored the various notions of inner products on Lie 2-algebras as well as the result-

ing structure of transposed products. Here, we made an observation concerning the connec-

tion between 3-algebras appearing in M2-brane models and categorified Lie algebras. Be-

sides the established link between Lie 2-algebras and the 3-algebras of M2-brane models via

differential crossed modules, we also showed that any skeletal Lie 2-algebra with inner prod-

uct comes with a 3-algebra structure. Moreover, there is a class of reduced Lie 2-algebras,

in which the higher product µ3 can be identified with the 3-bracket of a 3-Lie algebra.

We also pointed out the interaction of inner Lie 2-algebra homomorphisms with the

various inner products. This allowed us to examine the symmetries of Lie 2-algebra models,

which are compatible with those expected from a dimensional reduction of semistrict higher

gauge theory. This is to be compared with the IKKT model, where the symmetry algebra

arises from a dimensional reduction of the gauge theory.

We divided the Lie 2-algebra models into two classes: homogeneous Lie 2-algebra

models are defined in terms of a single class of fields that take values in the Lie 2-algebra.

Inhomogeneous Lie 2-algebra models feature two types of fields, each living within one of

the graded vector subspaces of the 2-term L∞-algebra underlying the model.

Just as in the case of the IKKT model, where solutions to the classical equations of

motion can be identified with quantized symplectic manifolds, the homogeneous Lie 2-

algebra models we studied have solutions that can be interpreted as quantized 2-plectic

manifolds. While the quantization of 2-plectic manifolds is still not fully understood,

it was straightforward to outline the expected features of such a quantization that are

required for our purposes. In particular, it is expected that under quantization the Lie

2-algebra induced by the 2-plectic structure on a manifold is mapped to a Lie 2-algebra of

quantum observables with this map being a Lie 2-algebra homomorphism to lowest order

in a deformation parameter ~. As an example, we examined the Heisenberg Lie 2-algebra,

which is contained in the Lie 2-algebra arising from the quantization of R3. We gave a

representation in terms of derived brackets on a 2-vector space.

The quantized symplectic manifolds most readily obtained as solutions in the IKKT

model are the Moyal plane and the fuzzy sphere, as well as their Cartesian products. In the

Lie 2-algebra models, we found solutions that correspond to the quantizations of R3 and

S3, where the 2-plectic form was given by the canonical volume form on these spaces. Re-

markably, these solutions appeared in complete analogy with the above mentioned solutions

of the IKKT model.

We also studied solutions given by Lie 2-algebras that do not arise from 2-plectic

manifolds. In particular, we considered the Nappi-Witten algebra, which can be regarded

as linear Poisson structure on a four-dimensional Hpp-wave. This algebra gives a solution
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of a particular deformation of the IKKT model. We constructed a categorified analogue

of the Nappi-Witten algebra corresponding to a five-dimensional Hpp-wave and again we

found that it appears as a solution of our Lie 2-algebra models.

We were able to show that certain inhomogeneous Lie 2-algebra models reproduce

previously considered zero-dimensional field theories that are related to M2-brane models.

Furthermore, we considered Lie 2-algebra models that arise from a dimensional reduction

of a semistrict higher BF-theory in three dimensions. These models contained again a

quantization ofR3 as a classical configuration, and expanding around this configuration, we

obtained an action that can be interpreted as semistrict higher BF-theory on the quantized

R

3. This is fully analogous to the case of the IKKTmodel, where it is known that expanding

around a solution corresponding to a quantized symplectic manifold yields the action of

Yang-Mills theory on this noncommutative space. Finally, we considered a Lie 2-algebra

that is isomorphic to that obtained from the quantization of R3, to demonstrate what is

to be expected for a more general categorified correspondence principle.

Altogether, we conclude that Lie 2-algebra models are generalizations of the IKKT

model that contain various other zero-dimensional models that were proposed in the context

of M2-brane models. Moreover, many of the nice features of the IKKT model carry over

to these Lie 2-algebra models.

One of our original motivations for studying Lie 2-algebra models was to explore the

possibility of supersymmetric such models. This is particularly interesting, as there is

more and more evidence that M2- and M5-brane models should be based on semistrict Lie

2-algebras, see e.g. [14, 62]. The reason for focusing on the zero-dimensional case instead

of the three- and six-dimensional cases is that here the gauge structure severely simplifies.

For a brief overview over the complications encountered in the higher dimensional case, see

appendix B. The construction of supersymmetric Lie 2-algebra models corresponding to

a dimensional reduction of six-dimensional superconformal models is clearly an issue that

we plan to attack in future work. Moreover, recall that the IKKT model was connected to

type IIB superstring theory via a Schwinger-Dyson equation for the Wilson loops [63]. It

would be very interesting to study the corresponding equations for Wilson surfaces in our

Lie 2-algebra models.

Further open questions arising from our work concern a potential use of Lie 2-algebras

in the regularization of Nambu-Poisson sigma-models as well as the development of our

näıve notion of quantization of 2-plectic manifolds to a full quantization. The latter

problem would imply to extend our Lie 2-algebras to Poisson 2-algebras or, equivalently,

Gerstenhaber algebras, in which also a categorified associative product between observ-

ables is realized.
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A Useful definitions

Strong homotopy Lie algebras. An L∞-algebra or strong homotopy Lie algebra is

a graded vector space L = ⊕iLi endowed with n-ary multilinear totally antisymmetric

products µn, n ∈ N∗, of degree 2−n, that satisfy homotopy Jacobi identities, cf. [36, 57, 64].

These identities read as

∑

i+j=n

∑

σ

χ(σ;x1, . . . , xn)(−1)i·jµj+1(µi(xσ(1), · · · , xσ(i)), xσ(i+1), · · · , xσ(i+j)) = 0 (A.1)

for all n ∈ N

∗, where the sum over σ is taken over all (i, j) unshuffles. Recall that a

permutation σ of i + j elements is called an (i, j)-unshuffle, if the first i and the last j

images of σ are ordered: σ(1) < · · · < σ(i) and σ(i + 1) < · · · < σ(i + j). Moreover, the

graded Koszul sign χ(σ;x1, · · · , xn), xi ∈ L is defined via the equation

x1 ∧ · · · ∧ xn = χ(σ;x1, · · · , xn)xσ(1) ∧ · · · ∧ xσ(n) (A.2)

in the free graded algebra ∧(x1, · · · , xn), where ∧ is considered graded antisymmetric.

Note that for elements of L which do not have a definite grading, the above relations

have to be resolved to elements of L with homogeneous grading, using linearity of the maps.

Note also that we shall denote the grading of an object x by x̃ ∈ Z. For example, we have

x̃ = i for x ∈ Li.

Strong homotopy Lie algebras that are concentrated in degrees −n + 1, . . . , 0, i.e.

Li = ∅ for i /∈ [−n+ 1, . . . , 0], are categorically equivalent to semistrict Lie n-algebras.

Nambu-Poisson structures. A Nambu-Poisson structure [65, 66] on a smooth manifold

M is an n-ary, totally antisymmetric multilinear map {−, . . . ,−} : C∞(M)∧n → C∞(M),

which satisfies the generalized Leibniz rule

{f1 f2, f3, . . . , fn+1} = f1 {f2, . . . , fn+1}+ {f1, . . . , fn+1} f2 (A.3)

as well as the fundamental identity

{f1, . . . , fn−1, {g1, . . . , gn}}={{f1, . . . , fn−1, g1}, . . . , gn}+ · · ·+{g1, . . . , {f1, . . . , fn−1, gn}}
(A.4)

for all fi, gi ∈ C∞(M). A manifold M endowed with such a Nambu n-bracket giving rise to

a Nambu-Poisson algebra is called a Nambu-Poisson manifold. Under certain conditions,

2-plectic structures give rise to ternary Nambu-Poisson structures [42].

n-Lie algebras. An n-Lie algebra16 [67] is a vector space A endowed with an n-ary,

totally antisymmetric and multilinear map [−, · · · ,−] : A∧n → A that satisfies the funda-

mental identity :

[a1, . . . , an−1, [b1, . . . , bn]]=[[a1, . . . , an−1, b1], . . . , bn]+ · · ·+[b1, . . . , [a1, . . . , an−1, bn]] (A.5)

16Which is not to be confused with a Lie n-algebra arising in the categorification of Lie algebras.
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for all ai, bi ∈ A. Note that Nambu-Poisson algebras are particular n-Lie algebras, and it

has been proposed that Nambu-Poisson structures should be quantized in terms of n-Lie

algebras, cf. [25] and references therein.

Note that n-Lie algebras come with a Lie algebra of inner derivations, which are given

by linear combinations of the maps

D(a1, . . . , an−1) ⊲ x := [a1, . . . , an−1, x] , (A.6)

where ai, x ∈ A. The commutator of inner derivations closes on inner derivations because

of the fundamental identity (A.5).

We can endow an n-Lie algebra with a metric, which has to be invariant under the

action of inner derivations. In the case of a 3-Lie algebra, this metric induces a metric on

the vector space of inner derivations, which is in general indefinite and different from the

Killing form.

The first of the recently studied M2-brane models, the Bagger-Lambert-Gustavsson

(BLG) model [2, 3], has a gauge structure that is based on a 3-Lie algebra. This 3-Lie

algebra comes with a positive definite metric on the vector space forming the 3-Lie algebra,

which induces a metric of split signature on the inner derivations.

Generalized 3-algebras. Because there is essentially only one finite-dimensional 3-Lie

algebras with positive definite invariant metric, various generalizations have been proposed.

First, there are the hermitian 3-algebras that are based on a complex vector space and that

underlie the ABJM M2-brane model [4, 39]. Second, there are the real 3-algebras, which

are relaxed versions of 3-Lie algebras in that their 3-bracket is antisymmetric only in the

first two slots [38]. Both types of 3-algebras can be encoded in terms of Lie algebras

and certain representations [40], and therefore they form differential crossed modules [14].

Also, as shown in the text, skeletal Lie 2-algebras with inner product come naturally with

a generalized 3-algebra structure.

B Gauge symmetry in semistrict higher gauge theory

While semistrict higher gauge theory has only been developed partially, an attempt to

capture its local gauge structure has been made in [33]. Below, we will give a rough,

quick review of this construction. This serves two purposes: first, we can easily show

that it reduces to the Lie 2-algebra homomorphisms describing the symmetries of our Lie

2-algebra models. Second, it demonstrates that it is considerably simpler to study Lie

2-algebra models than to study actual semistrict higher gauge theories.

Let us group the fields we are interested in working with into doublets (φ,Φ) ∈
Ωp(M,W ) × Ωp+1(M,V ), where M indicates the manifold they live on and small and

capital letters will always indicate V - or W -valued fields respectively. We will refer to the

degree of the doublet as the order of the W -valued form, in this case p. Let us indicate

a connection doublet by (a,A) ∈ Ω1(M,W ) × Ω2(M,V ). We can define the curvature of

– 37 –



J
H
E
P
0
4
(
2
0
1
4
)
0
6
6

these fields as the doublet (f, F ) ∈ Ω2(M,W )× Ω3(M,V ):

f =da+
1

2
µ2(a, a)− µ1(A) , (B.1)

F =dA+ µ2(a,A)−
1

6
µ3(a, a, a) . (B.2)

The (f, F ) doublet can be easily seen to satisfy the Bianchi identities

df + µ2(a, f) + µ1(F ) = 0 , (B.3)

dF + µ2(a, F )− µ2(f,A) +
1

2
µ3(a, a, f) = 0 . (B.4)

In analogy to ordinary gauge theory, one would like the Bianchi identities to be given by

the requirement that Df = 0 = DF , where D is the covariant derivative with respect to

the same connection (a,A). This requirement allows one to define the action of D on a

generic field doublet (φ,Φ) of order p as

Dφ = dφ+ µ2(a, φ) + (−1)pµ1(Φ) , (B.5)

DΦ = dΦ + µ2(a,Φ)− (−1)pµ2(φ,A) +
(−1)p

2
µ3(a, a, φ) , (B.6)

forming the (p+1)-degree doublet (Dφ,DΦ). The next step is to define gauge transforma-

tions in the semistrict Lie 2-algebra setting. These have to live in the set of automorphisms

of the Lie 2-algebra and are expected to satisfy a generalization of the Maurer-Cartan equa-

tion d(g−1dg)+(g−1dg)∧(g−1dg) = 0. It is argued in [33] that the easiest way to generalize

traditional gauge theory also makes use of a flat connection doublet (σ,Σ), which roughly

speaking keeps track of how gauge group elements vary with respect to the base mani-

fold coordinates. Overall, the semistrict Lie 2-algebra 1-gauge transformations are defined

in [33] as the following set of ingredients:

(i) a map g ∈ Map(M,Aut (L)), i.e. a set (g0, g−1, g2) satisfying the requirements eluci-

dated in section 2.2;

(ii) a flat connection doublet (σ,Σ):

dσ +
1

2
µ2(σ, σ)− µ1(Σ) =0 , (B.7a)

dΣ + µ2(σ,Σ)−
1

6
µ3(σ, σ, σ) = 0 ; (B.7b)

(iii) an element τ ∈ Ω1(M,Hom (W,V )) satisfying

dτ(w)+µ2(σ, τ(w))−µ2(w,Σ)+
1

2
µ3(σ, σ, w)+τ (µ2(σ,w) + µ1(τ(w))) = 0 . (B.7c)

Note that equation (B.7a) is just the vanishing fake curvature condition as we know it

from strict higher gauge theory, while equation (B.7c) is referred to as the 2-Maurer-

Cartan equation in [33]. Indeed, after introducing a τ -dependent term in the definition of

the action of the flat connection, for instance

g−1
0 dg0(w)− µ2(σ,w)− µ1(τ(w)) = 0 (B.8)
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for the W part of the automorphism g, one can satisfy the W sector of the Maurer-Cartan

equation (and analogously for the V -part). Because of the non-vanishing Jacobiator in

the semistrict set-up, without τ this is normally not possible unless one imposes a further

condition by hand.

Apart from equation (B.8) and its V -sector analogue, there is a further condition of

compatibility for τ , so that the set of homomorphism rules of section 2.2 are still satisfied

for g — the interested reader can find all the details for this construction in [33].

Now, to see how the above defined gauge transformations act on fields, one requires

that, for a given connection doublet (a,A), the covariant derivativesD from (B.5) and (B.6)

“pull through” all the elements that make up the transformation. That is, if we indicate the

full 1-gauge transformation by (g, σ,Σ, τ), one requires the derivatives D to act on gauge

transformed field doublets (g ⊲ φ, g ⊲ Φ) as defined in (B.5) and (B.6), but treating all the

components g, σ, Σ and τ as covariantly constant. In this way one obtains for connection

doublets (a,A) the following action of 1-gauge transformations:

g ⊲ a = g0(a− σ) , (B.9)

g ⊲ A = g−1(A− Σ+ τ(a− σ))− 1

2
g2(a− σ, a− σ) , (B.10)

so that its covariant derivative, or curvature doublet (f, F ) ≡ (Da,DA) transforms as

g ⊲ f = g0(f) , (B.11)

g ⊲ F = g−1(F − τ(f)) + g2(a− σ, f) . (B.12)

Similarly one can define canonical field doublets (φ,Φ), of degree p, as those that trans-

form as

g ⊲ φ = g0(φ) , (B.13)

g ⊲ Φ = g−1(Φ− (−1)pτ(φ)) + (−1)pg2(a− σ, φ) . (B.14)

Its covariant derivatives then transform as

g ⊲ Dφ = g0(Dφ) , (B.15)

g ⊲ DΦ = g−1(DΦ+ (−1)pτ(Dφ))− (−1)pg2(a− σ,Dφ) + (−1)pg2(Da, φ) . (B.16)

The obvious thing to notice here is that while in the W sector everything transforms in a

“nice” way, that is φ → g0(φ) and Dφ → g0(Dφ), the V sector looks a lot more involved.

When constructing actions, these will be based on some inner product that will be invariant

under automorphisms of the Lie 2-algebra and therefore under the transformation corre-

sponding to (g0, g−1). In this sense it would be very easy to identify and construct gauge

invariant actions if covariant derivatives and curvatures transformed as DΦ → g−1(DΦ)

also in the V sector of actions. Interestingly this can be achieved: the Lie 2-algebra can

be gauge rectified17 by a pair of fields (λ, ρ), where λ ∈ Ω0(M,Hom (W ∧ W,V )) and

17It has not been shown whether a pair (λ, ρ) of gauge rectifiers can always be found, for any Lie 2-algebra.
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ρ ∈ Ω1(M,Hom (W,V )), which have special gauge transformation properties. The prod-

ucts µ2 and µ3 can then be corrected by λ so that the rectified products µ
(λ)
i will transform

as g ⊲ µ
(λ)
i (. . .) = gα(µ

(λ)
i (. . .)), where α = 0,−1 according to where µi maps to. Sim-

ilarly field doublets can be rectified, as well as the definition of the covariant derivative,

resulting in all fields and covariant derivatives thereof transforming simply by g0 or g−1

actions on the objects themselves (e.g. D(λ,ρ)Φ(λ,ρ) → g−1(µ
(λ)
i (. . .))). This means that

for actions constructed via a g0, g−1 invariant inner product, any terms involving rectified

canonical field doublets, covariant derivatives thereof and Lie 2-algebra products µ
(λ)
i will

be automatically gauge invariant. Moreover, the rectified products µ
(λ)
i (. . .) still form a

Lie 2-algebra. To see the details of this procedure we again refer to [33].

Returning to the gauge transformation setup, upon reduction to zero dimensions all

the total derivatives disappear and therefore the auxiliary σ, Σ and τ can all be set to zero.

Also, we cannot talk about field doublets anymore, since all objects we will be considering

are of order 0, whether they are valued in W or in V . This simplifies matters considerably,

as we can now say that the gauge transformations of w ∈W and v ∈ V are given by

g ⊲ w = g0(w) and g ⊲ v = g−1(v) , (B.17)

while covariant derivation reduces to

Dw = µ2(a, w) and Dv = µ2(a, v) , (B.18)

for a 0-degree field a ∈W . We set (g0, g−1, g2) as in 4.2 to:

g0(w) := w + µ2(ǫ, w) , g−1(v) := v + µ2(ǫ, v) , g2(w1, w2) := µ3(ǫ, w1, w2) , (B.19)

to first order in the gauge parameter ǫ ∈W . It then follows from the homomorphism rules

that covariant derivatives transform in the desired way:

g ⊲ Dw = g0(Dw) = µ2(g ⊲ a, g ⊲ w) = µ2(g0(a), g0(w)) , (B.20)

g ⊲ Dv = g1(Dv) = µ2(g ⊲ a, g ⊲ v) = µ2(g0(a), g−1(v)) , (B.21)

as expected. Indeed, the homomorphism rules themselves guarantee that all the 2-algebra

products on w, v also transform simply by an overall gα, that is µi(. . .) → gαµi(. . .), for

α = 0,−1 according to the grading of µi. In other words, for zero-dimensional reduced

actions, if based on a µ2(w,−) invariant inner product, any terms involving the 2-algebra

structures are automatically gauge invariant, without the need to introduce any rectifiers.
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[45] C. Sämann and R.J. Szabo, Groupoids, loop spaces and quantization of 2-plectic manifolds,

Rev. Math. Phys. 25 (2013) 1330005 [arXiv:1211.0395] [INSPIRE].
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