

Heriot-Watt University Research Gateway

Increased Sensitivity of Long Period Grating Hydrogen Sensors Through Coupling to Higher Order Cladding Modes

Citation for published version:

Carter, R, Maier, RRJ, Biswas, P, Bandyopadhyay, S, Basumallick, N, Jones, B, McCulloch, S & Barton, J 2012, 'Increased Sensitivity of Long Period Grating Hydrogen Sensors Through Coupling to Higher Order Cladding Modes', 22nd International Conference on Optical Fiber Sensors, Beijing, China, 15/10/12 - 19/10/12.

Link:

Link to publication record in Heriot-Watt Research Portal

Document Version:

Peer reviewed version

General rights

Copyright for the publications made accessible via Heriot-Watt Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy

Heriot-Watt University has made every reasonable effort to ensure that the content in Heriot-Watt Research Portal complies with UK legislation. If you believe that the public display of this file breaches copyright please contact open.access@hw.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 28. Nov. 2022

Richard M. Carter^a, Robert R.J. Maier^a, Palas Biswas^b, Somnath Bandyopadhyay^b, Nandini Basumallick^b, Benjamin J.S. Jones^c, Scott McCulloch^c and James S.Barton^a

^{a)}Heriot-Watt University, IPAQS, Edinburgh, UK; ^{b)}CGCRI, Kolkatta, India; ^{c)}AWE plc., Aldermaston, UK

1. Motivation

Reliable hydrogen detection technologies required for safety applications

- > Hydrogen often suggested as future fuel source
- > Hydrogen explosive at 4 97% in air
- > Most systems based on the absorption of
- Optical system preferable for safety reasons
- No heating
- ➤ No electrical currents

hydrogen in palladium

- LPG based hydrogen sensors demonstratedLow responsivity
- >High order modes are more sensitive
- Increase in responsivity leads to decreased equipment cost/requirements
- > AWE have a specific requirement:
- ➤ Long term monitoring (>10yrs)
- ➤ Hostile environment
- ➤ Low hydrogen concentrations (<1.5%)
- Long term fluctuationsRemote monitoring system
- ➤ Selective to hydrogen
- > Optical solution is preferred

2. Palladium (Pd) - Hydrogen

Palladium absorbs hydrogen readily

- > Molecular hydrogen is dissociated on Pd surface
- Atomic hydrogen then absorbed into the latticeHydrogen sits in interstitial lattice sites
- Fesentially a non-honding process
- Essentially a non bonding process
- Provides a strain on the lattice
- Strain alters the electron bonds
- > Gives a small change in refractive index

- At low concentrations (<4%) process is reversible
 At higher concentrations lattice phase shift proves destructive
- Most sensor systems based on the absorption of hydrogen in palladium

3. Long Period Gratings

Similar structure to FBGs: a periodic change to the core refractive index

- >Excites significantly different effects
- Modes are resonantly coupled via phase matching condition

- ➤ Core mode is coupled into cladding modes
- Cladding modes non lossless, giving attenuation bands in transmission spectrum

➤ Demonstrated sensitivity to strain, temperature, bend and <u>external refractive index</u>

➤ Standard Phase matching condition

$$\lambda_{v} = \Delta \left(n_{ec}(\lambda) - n_{ev}(\lambda) \right)$$

>Gives indication of responsivity by gradient

4. Modelling

Model developed at Heriot-Watt based on Erdogan*

- ➤ Model solves dispersion equations for available core and cladding modes
- Coupled mode theory then applied to determine the transmission spectrum
- Circularly symmetric 3 layer solution
- Model validated by comparing to independent CGCRI model based on matrix method

➤ Model accurately predicts resonant wavelengths ➤ (to within 10⁻⁶ RIU)

T. Erdogan, "Cladding-mode resonances in short- and long-period fiber grating filters," Journal of the Optical Society of America A, 14(8), 1760-1773 (1997).

T. Erdogan, "Fiber grating spectra," Journal of Lightwave Technology, 15(8), 1277-1294 (1997).

(1997).

T. Erdogan, "Cladding mode resonances in short- and long-period fibre grating filters: errata," Journal of the Optical Society of America A, 17(11), 2113 (2000).

Erdogan Model not applicable to metal jacketed case

- ➤ Total internal reflection index guiding replaced by reflective layer
- ➤ External refractive index larger than cladding➤ Necessary to re-evaluate Erdogan's assumptions

- Returned to the general case outlined by Tsao*
- ➤ No alteration of LPG structure
- > Retain circular symmetry
- ➤Pd refractive index determined through ellipsometry*
- Effective refractive index of cladding modes experimentally verified to remain lower than the cladding index despite metal layer

C. Tsao, [Optical fibre waveguide analysis] Oxford University Press, (1992). R. M. Carter, P. Morrall, R. R. J. Maier *et al.*, [Optical characterisation of RF sputter coated palladium thin films for hydrogen sensing] Spie-Int Soc Optical Engineering, Bellingham(2011).

Phase matching curves combined with couplings coefficients suggest sensitive modes

- ➤ Phase match plots indicate higher sensitivity (flatter curves) to the phase match turning point
- Higher order modes are not necessarily useful
 Necessary to determine the coupling coefficients
- in the presence of palladium

- Coupling coefficients remain high to the ~19th order
- ➤ Phase matching curves suggest highest sensitivity at 19th-21st order modes

Practical consideration of inscription must be taken into account

➤ Higher order modes give flat resonances➤ Easy to miss intended resonance conditions

- Difference between pre and post coated spectrum makes inscription to exact specifications challenging
- Slightly lower order modes are preferable for manufacture, sensitivity and coupling coefficient

5. Results

Early results show small response for low order modes

- ►Early experiments focused on lower order modes►Efforts made to characterise Pd thin films and
- LPGs separately ▶9th order shows 62pm shift to 1% H₂ (20nm feature)

➤ Small shift is very challenging to measure
 ➤ Requires expensive equipment
 ➤ Long scan times
 ➤ System highly temperature dependant

- ➤ Relatively slow response (~1hr-2hrs)
- Experiments moved on to modelling complete LPG-Pd system
 - ➤ Higher order modes identified as more attractive sensor elements

As expected higher order mode demonstrates improved response

➤17th order shows ~447pm to 1%

Temperature affects response

- Lower temperature gives larger but slower response
 Cycling time too short for equilibrium in this case
 Thermal noise scales with response
 - 1394.0 1393.9 1393.7 1393.4 1600 1800 2000 2200 2400 17th Order at 50°C

6. Conclusions

High mode order LPG-Pd sensors were investigated

- Analysis of the full dispersive solutions to the modelling of metal jacketed LPGs has been carried out
- ➤ High sensitivity and coupling coefficient designs have been calculated
- A range of high mode order LPG elements were manufactured by the CGCRI

High sensitivity sensors have been demonstrated

- ➤ 17th order LPG sensor has been demonstrated with 7 times responsivity of 9th order
- with 7 times responsivity of 9th order >Scale and speed of response dependant on
- temperature

 Thermal sensitivity (noise) scales with sensitivity
- to external environment

 No improvement in signal to noise ratio

 Improvement in absolute response
- Thermal insensitivity/compensation requires further research

