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Moments of the first descending epoch
for a random walk with negative drift
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b Novosibirsk State University, Novosibirsk, 630090, Russia

Abstract

We consider the first descending ladder epoch 7 = min{n > 1: S,, < 0} of a random walk S,, = > &,n > 1
with i.d.d. summands having a negative drift E£¢ = —a < 0. Let €T = max(0, &;). It is well-known that, for any
a > 1, the finiteness of E(£T)® implies the finiteness of ET and, for any A > 0, the finiteness of Eexp(A™)
implies that of E exp(c7) where ¢ > 0 is, in general, another constant that depends on the distribution of ;. We
consider the intermediate case, assuming that Eexp(g(¢)) < oo for a positive increasing function g such that
liminf, o g(z)/logz = oo and limsup,_, ., g(z)/z = 0, and that Eexp(AéT) = oo, for all A > 0. Assuming
a few further technical assumptions, we show that then E exp((1 — €)g((1 — §)ar)) < oo, forany €,6 € (0, 1).
Keywords: random walk, negative drift, descending ladder epoch, existence of moments, heavy tail.
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1. Introduction and the main result

Let £,&1,&,...,&,, ... be independent and identically distributed (i.i.d.) random variables (r.v.’s) with a
common distribution function F" having a finite negative mean B = —a < 0. Let So =0, S, = Y p_; &,n > 1

be a random walk, and 7 = min{n > 1: S,, <0} < oo a.s. its first descending ladder epoch.

The descending ladder epoch 7 plays an important role in theoretical and applied probability. In particular,
7 represents the length of a busy cycle in a GI/GI/1 queueing system. Namely, consider a FIFO single-server
queue with i.i.d. interarrival times {t,,} with a finite mean E¢; = a and independent of them i.i.d. service times
{on} with a finite mean Eoy = b < a. Let W,, be the waiting time of customer n. Assume W, = 0, i.e. customer

1 arrives at an empty queue. The sequence {W),, } satisfies the Lindley recursion
W1 = max(0,W,, + 0, — t,,) n > 1. 1)

We may let &,, = 0, — t,, and conclude that 7 is the number of customers served in the queue during the first busy

cycle, i.e. customer 7 + 1 is the next customer after customer 1 that finds the queue empty.
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We are interested in the existence (finiteness) of moments of 7 in terms of moments of the common distribution
I of the summands. In particular, the existence of a power (or an exponential) moment of 7 implies corresponding
convergence rates in stability and continuity theorems for various single- and multi-server queueing systems, see

e.g. Theorems 2 and 11 in Chapter 4 of [1].
The following results are known (see, e.g., Theorems II1.3.1 and 3.2 in [6], and also [7]). Let & > 1 and A > 0.

If E(61)* < oo, then ET® < oco. )
If Eexp(AE) < oo, then there exists ¢ > 0 (that depends on F') such that Eexp(cr) < co. 3)

One can view (2) and (3) as two particular cases of the following implication:
If EG(¢1) < o0, then EG(C7T) < oo, foracertain C > 0. )

Indeed, (2) is a particular case of (4) with G(z) = z®, and (3) a particular case of (4) with G(z) = exp(\x)

(clearly, for A > 0, exponential moments E exp(\€) and E exp(AET) are either finite or infinite simultaneously).

In this article, we consider the intermediate case where GG is a monotone function that increases faster than any
power function and slower than any exponential function. It is convenient to us to use representation G/(x) = ¢9(*)

and work with function g instead. Here is our main result.

Theorem 1. Assume that Eexp(cf) = oo, for any ¢ > 0. If a function g satisfies conditions (C1) — (C3),

introduced below, and if
Eexp(g(¢)) < oo, &)
then

Eexp((1 —¢€)g((a —9)7)) < 00, forany €€ (0,1) and § € (0,a). ©6)
The conditions (C'1) — (C3) are as follows:

e (C1) function g is positive, increasing and differentiable;
e (C2)limy— 00 ¢'(x) =0
e (C3) there exist a constant v € (0, 1) such that
/100 exp(—(1 —7)g(x))dz < o @

and positive constants o and A such that, for any zo < y < z/2,
g(z) —g(z —y) <vg(y) + A ®)

It follows from condition (C'2) that sup,~, ¢'(x) | 0 as g — oc. Therefore, we may choose x in condition

(C3) and constant B > 0 such that

g (z) < B, forz > x. 9)



Remark 1. Conditions (C1) — (C3) are given in the form that are convenient to us, they may be weakened. For
example, it is not necessary to assume differentiability, and condition (C2) can be adjusted to ‘dying’ growth
rate that also gives us inequality (9). However, inequalities (7) and (8) are more substantial since they target

heavy-tailed “Weibull-type” and “lognormal-type” distributions.

Example 1. Here are examples of functions g that satisfy conditions (C'1) — (C3):
g1(z) = (logmax(z,1))%, go(x) = (z+)? and g3(z) = (z*)? log(maz(z,1)), where o > 1 and 3 € (0, 1).
More generally, the functions g and g3 continue to satisfy condition (C1) — (C3) if the logarithmic function

therein is replaced by a “sufficiently smooth” increasing and slowly varying function.

Remark 2. Note that one can represent (6) in an equivalent form as:
Eexp((1 —¢)g((1 —€)ar)) < oo, forany e € (0,1).

On the other hand, given condition (6), the inequality in (6) also holds for function g; from Example 1 with § = 0
and any ¢ € (0, 1), and for functions g and g3 with ¢ = 0 and any 0 € (0, a). Let us show this for gs. Indeed, for

any 1 € (0, a) there exist 5 € (0,1) and 02 € (0, a) such that

im gs(la—éd)x)  (a—61)°
T en)gal(a—627) ~ (A—en)(a— 608 ~

Then there exists a constant ¢ > 0 such that

Eexp(gs((a — d1)7)) < cEexp((1 — e2)g3((a — d2)7)) < o0.

Our proof of the theorem includes two steps. First, we show the existence of a r.v. E >4t € that has a strong
subexponential distribution, negative mean and certain finite moments. Second, we prove that the stopping time

for the random walk with new increments {En} satisfies the conditions of the theorem.

We use the following notation and conventions. For a distribution function F on the real line, F(z) = 1— F(x)
is its tail distribution function. For two strictly positive functions h; and hs, equivalence hq(z) ~ ho(z) means
that lim, o h1(x)/h2(x) = 1. For two r.v.s 11 and 7, stochastic inequality n; <. 72 means that P(n; >

1 is defined as

x) < P(ne > x), for all . For an increasing function g, its (generalised) inverse function g~
g 1(t) = inf{x : g(x) > t}. Then the sets {g(x) > t} and {x > g~ '(¢)} do coincide. A function f is slowly

varying if f(Ax)/xz — 1, as x — oo, for A > 0, and regularly varying with exponent o if f(Ax)/z — A“.

2. Proof of the theorem

Recall the following definitions. Let F be a distribution on the real line with right-unbounded support. We say
that F' is long-tailed if lim,_,o, F'(x — 1)/F(z) = 1. Since the tail function F is monotone non-increasing, its

long-tailedness implies that lim, ., F(x —y)/F(x) = 1, for any y > 0.

Further, let a distribution F' have right-unbounded support and finite mean m = fooo F(y)dy on the positive

half line. We say that F is strong subexponential and write ' € 8* if [ F(x — y)F(y)dy ~ 2mF(z), as x — oco.
0



The strong subexponentiality is a tail property: if a distribution function F' is strong subexponential and if G is
another distribution function such that F(z) ~ G(z), then G is also strong subexponential (see, e.g., [4], Theorem

3.11).

2.1. Step one: an upper-bound random variable having a strong subexponential distribution

Let ¢ = exp(g(€)). Since B¢ < oo, P{¢ > x} = o(z™!), as z — oo. Then, in particular, one can choose
K > exp(g(wo)) (where constant x is from condition (C3)) such that P{¢ > z} < Kx~!, for all z > 0, and

introduce a new non-negative r.v. Zwith the tail distribution
P{¢ >z} = min(1,Kz""), z > 0. (10)
Clearly, P{¢ > z} < P{{ > x},forall 2, and EC' ¢ < o0, for e € (0,1).

Lemma 1. Under the assumptions (C'1) — (C3), the rv. £= g_l(ln(g)) has a strong subexponential distribution

~

F.

Proof. We use the following result.

Proposition 1. (This is a part of Theorem 3.30 from [4]). Let F be a long-tailed distribution on the real line. Let

R(z) = —In F(x). Suppose that there exist v < 1 and A’ < oo such that
R(z) — R(x —y) <vR(y) + A', (1)
forallz > 0andy € [0,2/2]. If, in addition,
the function exp(—(1 —y)R(x)) is integrable over [0, 00), (12)

then F € 8*.

To apply Proposition 1, we need to verify the long-tailedness of F and conditions (11) and (12). First, we show

the long-tailedness of F. Fora fixed y > 0 and large x, we have IP{&A >z 4yt = Kexp(—g(z+y)).

From the first-order Taylor expansion g(z + y) = g(z) + yg'(2), for some z € (x, z + y), and from condition
(C2) we get

1> P{gi r +y} > exp(—g(x) — yg'(2))
P{¢ > x} exp(—g(z))

= exp(—yg'(2)) = exp(o(1)) = (1 +o(1)),

as x — 0o. Thus, the distribution of E is long-tailed.

Second, we verify condition (11). It is equivalent to

H(z —y) _ exp(4)
H(x) ~— H'(y)'

13)

where H(7) = ]P’{Z > exp(g(z))}. We take y from condition (C'3). Next we show the existence of an appropriate

constant A’.



Let 71 = inf{z : H(z) < 1}. Since we have chosen K > exp(g(zo)), we get 1 > z¢. We consider four

cases depending on whether H (z) = 1 or H(z) = K exp(—g(z)).
Assume x < x1. Then inequality (13) holds if we take A’ > 0.

Assume z —y < x7 < x. Then (13) is equivalent to K ! exp(g(z)) < exp(A’). Since z/2 < z —y < z,

inequality A’ > g(2z1) — In K is a sufficient condition on A’ to satisfy (13).

Assume y < 27 < x — y. Then (13) is equivalent to exp(g(z) — g(z — y)) < exp(A’). Since g(x —y) =
g(x) —yg'(2), for z € (z — y, x), we have g(x) — g(x — y) = yg'(2) < Bzx;. Therefore, it is sufficient to assume
A/ 2 BIl.

Next, assume y > x7. Then (13) is equivalent to exp(g(z) — g(z — y)) < K7 exp(yg(y) + A’). From

condition (C3) it is sufficient to assume A’ > A + «In K for the Proposition 2 to hold.
Finally, condition (12) follows directly from (C3). [ ]

By construction, E exp((1 — ¢) g(g ) = EC'~¢ < co. However, we need our upper-bound to have sufficiently

close mean to the original. Thus, we need the following lemma.

Lemma 2. Assume that conditions (C1) — (C3) hold. For any 6 € (0,a), we can introduce a rv. C such that

E = g’l(ln(g )) has a strong subexponential distribution, £~ > € and, in addition, EE <E{+0=-a+6<0.

Proof. Since the distributions of £ and fA have right-unbounded support, for all V' > 0 we can find V' > V such

that there exists r.v. E with right tail

P{E>t}, t<V,
P{E>t)=AP{e>V), V<t<V,

P{E>t}, t>V.

Clearly, £ <g fN <st §A Since §~ and fA have the same right tail, £~ has a strong subexponential distribution. By
choosing sufficiently large V we can make E€ = E (E, < V) +[CP{ESt}dt =E (& € <V) + [P P{E >
tydt < —a + 4. n

2.2. Step two: existence of moments of the first descending epoch for strong subexponential distributions

We have introduced a r.v. 5 with negative drift Eg = —a < —a + J < 0 and a finite moment
Eexp((1 —¢) g(g )) < o0, such that & < €. Now we want to show that the stopping time 7 satisfies
Eexp((1—¢)g((a—8)T)) < 0.

Without loss of generality, we may assume that the distribution Fofther.v’s §~ & 1s bounded below, i.e. §~ k> —L
a.s., for some L € (0,00). Indeed, let us choose an arbitrary L > 0 and take &, = max(&;, —L), i > 1. Then the
random walk S) = 0, S}, = >°,_, &, satisfies S}, > §n a.s., for all n and, therefore, 7/ = inf{n > 1: S <

0} >Tas.



By taking L large enough, we can make E&' = ng E(ng L; E < —1L) as close to Eg as one wishes and,

in particular, smaller than zero. Since sup, < g(z) < oo, condition (5) implies the finiteness of E exp(g({’)) too.

/
n’

If we prove the statement of Theorem 1 for the random walk with increments &, then we prove it for the initial

random walk, too.

We write h(-) = (1 —¢)g(-) for short. We prove now that E exp(h((a —§)7)) < oo. Let x = Sz, x € [-L,0].
We have

7

(a—8)F=(a—0)F+x—x<((a—0F+x)+L=) (&+a—0d)+L.

i=1
Let ¢; = & + a — 6. Thus, B¢y < 0 and, since P{y > z} ~ ]P’{gl > x}, r.v. ¢ has a strong subexponential
distribution. From inequality (9) and the first-order Taylor expansion for i we get h(z + y) < h(z) + (1 — €) By,

for x > xq, and thus,

Eexp(h((a—0)T)) <Eexp h Zz/}i + L)) <exp(h(zo+ L))+exp((1—e)BL)Eexp h Z Z)) .
i=1 i=1

Further,

Eexp h il i)):/OOOP{eXp h il ,)) >t}dt§/oocﬂ”{i i>h1(lnt)}dt. (14)

=1
Next, we need the following result:

Proposition 2. (Theorem 1 in [5]). Let E < 0 and let T be a stopping time for {i,}. Denote M, =
maxg<;<r Zgzl ; and let Fy(x) be the distribution function of 1. Under condition F, € 8* we have

lim P{M; > z} _

— Er.

Clearly, we can apply Proposition 2: we have Ey) < 0, and 1 has a strong subexponential distribution. Also,
the r.v. 7 is a stopping time w.r.t. {&,} and, therefore, w.r.t. {t,,}. Thus, the conditions of Proposition 2 hold.

Now, combining this with (14), we get that, for every A > 0, there exists a constant N such that

Eexp h Z Z)) §N+/OOP{M;>h_l(lnt)}dtﬁN+(E7~'+A)/OOP{5+CL7(5>h—l(lnt)}dt,
i=1 N N

and the integral on the right-hand side of the latter inequality is finite. This concludes the proof of the theorem.

3. Further comments

In our theorem, the coefficients (1 — ¢) and (1 — J) appear because the first moment of the upper-bound
distribution in (10) is infinite. The following nice result may help to eliminate the coefficients under certain

assumptions discussed below.

Proposition 3. (Corollary 1 in [2]) Let ¢ be a nonnegative r.v. and EC* < oo for some o > 0. Then there exists a

. E such that EE ¢ < oo, IP’{E > t} is a function of regular variation with exponent —a, and ¢ <g E



We can apply Proposition 3 with a = 1, ¢ = exp(g(&)), and then the upper bound Ehas the tail distribution
P{C > z} ~ I(z)/x, which is integrable. Here I(x) is a slowly varying function. If in addition I(z) is sufficiently
smooth (to be justified), there is a chance to show that 2 =g 1(In Z ) has a strong subexponential distribution and

~

Eexp(g(§)) < oo. Then the statement of the theorem holds withe = § = 0.

Another way to apply Proposition 3 is to provide an alternative proof of Theorem IIL.3.1 in [6]. Indeed, in
this case the distribution of (£1)® possesses an integrable majorant having a regularly varying distribution. Since
any power of a regularly varying function is also a regularly varying function, the distribution of £* possesses a
majorant having a regularly varying distribution with finite moment of order a.. And it is known that any regularly

varying distribution with finite mean is strong subexponential.
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