
Citation for published version:

Link:
Link to publication record in Heriot-Watt Research Portal

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Proceedings of the International Colour Association (AIC) Conference 2021

Publisher Rights Statement:
© 2021 International Colour Association (AIC)

General rights
Copyright for the publications made accessible via Heriot-Watt Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
Heriot-Watt University has made every reasonable effort to ensure that the content in Heriot-Watt Research Portal complies with UK legislation. If you believe that the public display of this file breaches copyright please contact open.access@hw.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 28. Apr. 2024

Guobin Xia 1,2*, Philip Henry 1, Francisco Queiroz 1, Stephen Westland 1 and Luwen Yu 1

1 School of Design, University of Leeds, UK; sdgx@leeds.ac.uk, P.M.Henry@leeds.ac.uk, F.QUEIROZ@LEEDS.AC.UK, S.WESTLAND@LEEDS.AC.UK, ML1412Y@LEEDS.AC.UK
2 School of Textile and Design, Herriot-Watt University, UK; g.xia@hw.ac.uk
* Corresponding author: g.xia@hw.ac.uk

Abstract
The immersive qualities of Virtual Reality (VR) technologies offer an enhanced environment for design research. In this study the potential of colour to influence cognitive performance in VR is explored. A series of psychometric experiments were conducted where selected colours were presented to the participants whilst in a dark neutral VR room setting. Cognitive performance was evaluated via a series of single choice tests (i.e., tests assessing people’s logical and lateral thinking abilities) in a dark environment delivered via a HTC VIVE VR headset. A total of 18 male and 17 female Chinese students between the ages of 20–25 years participated in the experiments. The results indicate that colours delivered via a VR headset can have arousing and impulsive effects on people’s cognitive performance. Specifically, female participants made more errors with the yellow backgrounds but fewer errors with the orange backgrounds than male participants. This suggests that gender differences exist in the effects of colour stimuli on people’s cognitive performance in VR environments.

Keywords: gender difference, colour psychology, arousal, impulsiveness, virtual reality

INTRODUCTION
This paper presents new insights from comparative experiments investigating the impacts of hue stimuli on cognitive performance between reality and immersive VR environments but focus on the analysis of gender differences in the VR session. The immersive potential of VR technologies offers a powerful tool to build on a vast range of research and applications involving entertainments, education, architecture, and healthcare (Hock et al. 2017; Bracq et al. 2019; Hayes and Johnson 2019; Li and Xu 2020), and is likely to be a significant platform in the future digital landscape. In line with these observations, this study highlights that immersion and presence as key features of the VR experience. The objective aspect of sensory fidelity of the VR technology is known as the immersion. Presence refers to a user’s subjective responses of perception of the VR environment, even when he/she is physically located in another place. However, there are questions regarding how well the immersive experience is fully understood and whether there is potential to increase the immersion and engagement? Arousal and impulsiveness are two crucial factors that regulate someone’s presence, engagement, and performance and these factors are shown to be evoked by certain colours (Zhang 2019). Significant contributions have been made by Ilie et al. (2008), Duan et al. (2018), and Xia et al. (2021) in experiments that typically have used neuropsychological cognitive measure approaches as investigative techniques. Their results demonstrate the effects of colour on people’s arousal and impulsiveness. Participants were generally shown colours through less immersive technologies such as computer monitors in dark laboratory settings in these studies. Whilst these methods deliver valuable evidence and have produced some significant design potential of colour on arousal and impulsiveness, the question of whether the same effects occur in immersive VR environments is relatively unknown.

Experimental observations concerning colour psychology also indicate that factors including age (Dittmar 2001), gender (Funk and Ndubisi 2006), and geographical region (Shin et al. 2012) may affect colour preference. Males and females have been reported to have substantial differences in
their favourite colours (Helson and Lansford 1970; McManus et al. 1981; Senju et al. 2004; Ling et al. 2006). However, conflicting opinions exist given that no gender differences were observed in their experimental works (Ou et al. 2004a, 2004b; Duan et al. 2018; Chen et al. 2020), and this lead to questions as to whether there are gender differences in relation to the colour stimuli on arousal and impulsiveness?

EXPERIMENTAL

In this study, a series of psychometric experiments were conducted where selected colours were presented to the participants in an otherwise dark neutral VR room setting (Figure 1(a)(b)).

![Figure 1: (a) Individual participant using HTC VIVE VR headset to complete each question; (b) An example of question displayed in the VR environment.](image-url)
The six colour patches and an equally luminous white reference colour (used as a control) were used as the background colour for a series of questions and adjusted to have a similar lightness and chroma based on the CIELAB values presented through the lens of a VR headset measured by the X-rite i1 Pro in dark laboratory settings (Table 1). The six colour were selected from an Adobe HSB colour system based on former studies by Duan et al. (2018), Eysenck (1941), Yu et al. (2018) and Singh (2006). Cognitive performance was evaluated via series of single choice tests. A logic rule test and mathematics sequence test assessed logic, a spatial structure test and rotation test assessed lateral thinking abilities, and an odd one out and same detail test assessed detailed abilities. This was conducted in a dark environment via an HTC VIVE VR headset. A total of 18 male and 17 female Chinese students from the department of animation, between the ages of 20–25 years, participated in the experiments. All participants were asked to complete the Ishihara colour vision test before entering the room to confirm that they had normal colour recognition ability. After passing the test, the instructions for the experiment were given to each participant, followed by a series of sample tasks including each type of psychometric test to familiarise participants with the process before beginning the main experiment. After completing the task, participants were asked to focus on the white reference background through the VR headset for five minutes to adapt to the conditions. The main experiment began five minutes after they had adapted to the experimental conditions.

<table>
<thead>
<tr>
<th>Colours</th>
<th>L*</th>
<th>C*</th>
<th>h</th>
<th>a*</th>
<th>b*</th>
<th>R</th>
<th>G</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visual Reference White</td>
<td>72.12</td>
<td>0.49</td>
<td>29.67</td>
<td>0.22</td>
<td>0.19</td>
<td>171.27</td>
<td>170.01</td>
<td>169.86</td>
</tr>
<tr>
<td>Red</td>
<td>70.31</td>
<td>70.34</td>
<td>32.83</td>
<td>25.31</td>
<td>34.33</td>
<td>244.31</td>
<td>121.54</td>
<td>103.56</td>
</tr>
<tr>
<td>Yellow</td>
<td>70.36</td>
<td>68.05</td>
<td>97.79</td>
<td>-23.83</td>
<td>54.80</td>
<td>187.82</td>
<td>175.99</td>
<td>19.87</td>
</tr>
<tr>
<td>Blue</td>
<td>69.32</td>
<td>64.87</td>
<td>288.17</td>
<td>34.01</td>
<td>-35.66</td>
<td>110.09</td>
<td>158.86</td>
<td>255.00</td>
</tr>
<tr>
<td>Green</td>
<td>68.89</td>
<td>67.15</td>
<td>178.62</td>
<td>-54.11</td>
<td>-4.18</td>
<td>62.76</td>
<td>193.52</td>
<td>156.59</td>
</tr>
<tr>
<td>Orange</td>
<td>69.46</td>
<td>67.66</td>
<td>69.21</td>
<td>-1.63</td>
<td>55.99</td>
<td>242.31</td>
<td>154.31</td>
<td>55.88</td>
</tr>
<tr>
<td>Purple</td>
<td>70.57</td>
<td>67.63</td>
<td>321.05</td>
<td>47.39</td>
<td>-22.38</td>
<td>221.76</td>
<td>129.76</td>
<td>243.86</td>
</tr>
</tbody>
</table>

Table 1: The characteristics of the background colours within the VR headset.

RESULTS AND DISCUSSION

The results are evaluated in terms of participants’ error rate and response time when completing a series of single choice tests. Specifically, error rate and response time have shown to be effective indicators and evidenced in a series of psychology literature to study people’s arousing and impulsive state (Arnett and Newman 2000; Dickman 2000; Weafer et al. 2013; Duan et al. 2018). A multivariate analysis of variance (MANOVA) was used to analyse a total of 1470 responses (35 participants x 42 questions per participant) obtained from the experiment, and each coloured background was assessed by 35 participants 210 times (each coloured background was assessed six times by each participant). The colours of the backgrounds and the order of presentation of each question were randomised for each participant. The purpose of this was to ensure that if one of the questions were slightly harder, it would be equally likely to have any of the backgrounds and would remove bias.

The results indicate that colours delivered via a VR headset can have arousing and impulsive effects on people’s cognitive performance (see Figure 2). It is evident from Figure 2 (A) and (B) that there was a general impact of colour viewed in VR on response time and error rate during the tasks.

AIC 14th Congress Milano 2021 - August 30th–September 3rd 2021

911
Specifically, female participants made more errors with the yellow backgrounds ($p = 0.030$) but fewer errors with the orange backgrounds ($p = 0.002$) than male participants. As such, it is reasonable to suggest that gender differences do exist in the effects of colour stimuli on people’s cognitive performance in VR environments.

When it came to the response time, both male and female participants viewing the green background gave the fastest responses, while participants viewing the yellow background gave the slowest responses. When considering both the response time and error rate (Figure 2 (C) and (D)), it is clear that both male and female participants viewing the yellow backgrounds experienced the lowest arousal state, and the green and blue backgrounds caused a relatively higher arousal state. Orange, purple and red were located in the high impulsivity quadrant. Male participants experienced the highest impulsivity state with the orange backgrounds.

![Figure 2](image.png)

Figure 2: (A) General trend of error rate of male and female participants in completing single choice tests by background colours in virtual reality (VR); (B) General trend of response time of male and female participants in completing single choice tests by background colours in virtual reality (VR); (C) Colour impacts on male participants in VR visualized in the Error-speed space; (D) Colour impacts on female participants in VR visualized in the Error-speed space.

CONCLUSION

This study explores the design potential of colours to create positive immersion for VR applications but emphasis on the analysis of gender differences. Psychological experiments were carried out to validate the impacts of hue stimuli on people’s cognitive performance via immersive VR equipment. The results of this study are an important contribution to the knowledge of immersive VR design. Data obtained from the experiments showed that specific colours could significantly influence people’s arousal and impulsiveness, suggesting that colour has an indirect impact on a person’s
presence and cognitive performance, in line with previous findings (Ilie et al. 2008; Zhang 2019). Moreover, we found some evidence that differences in colour cognitive performance between the genders do exist. Specifically, the results showed that male participants made fewer errors with the yellow backgrounds but more errors with the orange backgrounds than female participants. The results of this study are somehow similar to a colour preference study by McManus et al. (1981) that found that males showed a greater preference for yellow and a lesser preference for red compared to females. This suggests that the gender differences in cognitive performance may be relevant to colour preference. However, this study has certain limitations. Firstly, all participants were aged from 20 to 25, and thus the findings might not be applicable to children and the elderly. All the participants were Chinese students; therefore, culture may be considered an influencing factor. Also, since all participants involved in this study were students from the animation department and so are good at lateral thinking, it suggests that colour might have a different impact on lateral and logical thinkers. Although designed to ensure consistency, the participant choice standards could be considered a study limitation. Generally, the findings may encourage VR developers and researchers to consider the effective use of colour to create positive immersion in the experience, and to improve people’s presence, engagement and performance when navigating immersive VR environments.

ACKNOWLEDGEMENTS
We appreciate all participants who took part in the experiment.

REFERENCES

