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1. Introduction

In this paper, we consider the Cauchy problem for the following system of nonlinear
Schrodinger equations with cubic interaction

1 2
3" (1.1)
u

>

1
iOu+ Au—u :—<9|u|2+2|v| )

o+ Av — v = —(9v]* + 2Jul*)v —

\OI'—‘

with initial datum (u,v)|;—o = (u, vo). Here u,v: R x R? — C,ug, vy : R> — C, and the
parameters 7, i are strictly positive real numbers.

The system (1.1) is the dimensionless form of a system of nonlinear Schrodinger
equations as derived in [1] (see also [2]), where the interaction between an optical
beam at some fundamental frequency and its third harmonic is investigated. More pre-
cisely, from a physical point of view, (1.1) models the interplay of an optical
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monochromatic beam with its third harmonic in a Kerr-type medium (we refer to [3]
for the latter terminology, as well as for a sketch of the derivation of (1.1)).

Models such as in (1.1) arise in nonlinear optics in the context of the so-called cas-
cading nonlinear processes. These processes can indeed generate effective higher-order
nonlinearities, and they stimulated the study of spatial solitary waves in optical materials
with %* or y° susceptibilities (or nonlinear response, equivalently).

Let us mention, following [4], the difference between %> (quadratic) and > (cubic)
media. The contrast basically reflects the order of expansion (in terms of the electric field)
of the polarization vector, when decomposing the electrical induction field appearing in
the Maxwell equations as the sum of the electric field E and the polarization vector P.
Indeed, for “small” intensities of the electric field, the polarization response is linear,
while for “large” intensities of [E, the vector [P has a non-negligible nonlinear component,
denoted by Pyj. Thus, when considering the Taylor expansion for [Py, one gets the pres-
ence of (at least) quadratic and cubic terms whose coefficients i/, which depend on the
frequency of the electric field E, are called jth optical susceptibility. For j = 2,3, they are
usually denoted by y* and y’. Therefore quadratic media arise from approximation of the
type Py ~ 7*E?, and similarly one can define cubic media. The so-called non-centro-
symmetric crystals are typical examples of y* materials. Moreover, it can be shown, see
[5], that isotropic materials have y*" = 0 susceptibility, namely even orders of nonlinear
responses are zero. In the latter case, the leading-order in the expansion of Py is cubic,
and these kind of isotropic materials are called Kerr-materials. See the monographs [5-7]
for more discussions. In addition, we refer to [1, 2, 4, 8-13], and references therein, for
more insights on physical motivations and physical results (both theoretical and numer-
ical) about (1.1) and other NLS systems with cubic and quadratic interactions. Models as
in (1.1) are therefore physically relevant, and they deserve a rigorous mathematical inves-
tigation. In particular, we are interested in qualitative properties of solutions to (1.1).

Our main goal is to understand the asymptotic dynamics of solutions to (1.1), by
establishing conditions ensuring global existence and their long time behavior, or lead-
ing to formation of singularities in finite time.

Let us mention since now on, that once the Strichartz machinery has been established,
and this is nowadays classical, local well-posedness of (1.1) at the energy regularity level
(i.e. H'(R?), mathematically speaking) is relatively straightforward to get (see below for a
precise definition of the functional space to employ a fixed point argument).

The dynamics of solution of NLS-type equation is intimately related to the existence
of ground states (see below for a more precise definition). The analysis of solitons is a
very important physical problem, and the main difference between y* media and y’
media, is that, in the latter case, the cubic nonlinearity is L2 supercritical, while in the
former quadratic nonlinearities are L* subcritical. The last two regimes dramatically
reflect the possibility for the problem to be globally well-posed, and the stability/
instability properties of the solitons are different. See [4] for further discussions, and a
rigorous analysis for solitons in quadratic media.

Regarding system (1.1), existence of ground states and their instability properties
were established in a recent paper by Oliveira and Pastor, see [3]. Our aim is to push
forward their achievements to obtain a qualitative description of solutions to (1.1), by
giving sharp thresholds, defined by means of quantities linked to the ground state, are
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sufficient to guarantee a linear asymptotic dynamics for large time (i.e. scattering) or
finite time blow-up of the solutions.

Let us start our rigorous mathematical discussion about (1.1). The existence of solu-
tions is quite simple to obtain. As said above, it is well-known that (1.1) is locally well-
posed in H'(R?) x H'(R?), (see e.g., [14]). More precisely, for (ug,vo) € H'(R?) x
H'(R?), there exist T+ >0 and a unique solution (u,v)€ X((—T_,Ty)) x
X((—=T-,T)), where

X((=T-,T.)) = C((~T-, T.), H'(R)) N L

loc

(=T, T.), WH'(R?))

for any Strichartz L*>-admissible pair (g, r), i.e., %—i—% =2, for 2 <r <6. See Sec. 2. In
addition, the maximal times of existence obey the blow-up alternative, i.e., either T, =
oo, or Ty < oo and lim 7, [[(u(t), v(t))|[spre)xmm(rs) = 00> and similarly for T_.
When T+ = 0o, we call the solution global. Solutions to (1.1) satisfy conservation laws
of mass and energy, namely

M3, (u(t), v(t)) = Msy(uo, o), (Mass)
1
Ey (u(t), v(1)) = 5 (K(u(t), v(1)) + My (u(t), v(1))) — P(u(1), v(£)) = Eu(uo, o),
(Energy)
where
Mu(f.8) = I llzae) + 1181w, (1.2)
K(f,8) = IVf i) + IVl 2oy (1.3)
1 9 1 -
P.g) = | 6l + el + W Plef + gRe(Plolgt))ax. (10
It is worth introducing since now the Pohozaev functional
G(f.g) = K(f.g) = 3P(f.8), (15)

and, for later purposes, we rewrite the functionals P (see (1.4)) by means of its density:
namely

Pg) = | NG5
where

N (3.8(9) 1= 3 @1+ g1+ F@PR@E +gRe(Pg0). (10

The previous conservation laws can be formally proved by usual integration by part,
then a rigorous justification of them can be done by a classical regularization argument,
see [14].

In order to introduce other invariance of the equations, let us give the follow-
ing definition.

Definition 1.1. We say that the initial-value problem (1.1) satisfies the mass-resonance
condition provided that y = 3.
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For y =3, (1.1) has the Galilean invariance: namely, if (1, v) is a solution to (1.1),
then

us(t,x) == ei"'ée_t‘é‘ziu(t,x —2t8), wve(t,x) := & g 3T v(t,x — 2t8)), ¢€R?,
(1.7)
is also a solution to (1.1) with initial data (e*ug, e3*v;).

Remark 1.1. Notice that if y # 3, the system (1.1) is not invariant under the Galilean
transformations as in (1.7).

As, in this paper, we are interested in long time behavior of solutions to (1.1), let us
recall the notion of scattering.

Definition 1.2. We say that a global solution (u(t),v(t)) to (1 1) scatters in H'(R?) x
H'(R?) if there exists a scattering state (u+,v+) € H'(R*) x H®) such that

Jim ([ (u(6),v(2) = (S1(uz, Sa2(6)ve) o (o) () = 05 (1.8)
where
Si(f) = "D and  Sy(t) =AM (1.9)

are linear Schrodinger propagators.
Note that the set of initial data such that solutions to (1.1) satisfy (1.8) is non-empty,
as solutions corresponding to small H'(R*) x H!(R*)-data do scatter (see Sec. 2).

As already mention above, it is well-known that the dynamics of nonlinear
Schrodinger-type equations is strongly related to the notion of ground states. Hence, we
recall some basic facts about ground state standing waves related to (1.1). By standing
waves, we mean solutions to (1.1) of the form

(u(t,2), v(6,2)) = ('f(x), g ),
where o € R is a frequency and (f, ) is a real-valued solution to the system of elliptic
equations
1 1
Af — (0 +1)f + (—f2 +2g2>f+—f2g =0,
9 31 (1.10)
Ag — (n+3yw)g+ (9" +2f*)g +5f° =0

It was proved by Oliveira and Pastor, see [3], that solutions to (1.10) exist, provided
that

> —min{l, ﬁ}. (1.11)
3y

Moreover, a non-trivial solution (¢,1) to (1.10) is called ground state related to (1.10)
if it minimizes the action functional

(@)
Sonny(f>8) = Eu(f>g) + 5 Ms(f. £), (1.12)

over all non-trivial solutions to (1.10). Under the assumption (1.11), the set of ground
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states related to (1.10) denoted by
(o, y) = {((]5) ¥) € Aw,u,y : Sm,u,v((b» ) < Sw,#,v(f’g)’ V(f’g) € Aw,uﬂ/}

is not empty, where A, , is the set of all non-trivial solutions to (1.10). In particu-

lar, G(0,3y,7) # 0.
It was shown (see [3, Theorem 3.10]) that if (uo, vo) € H'(R?) x H'(R?) satisfies

E, (10, vo) M3, (1o, vo) < %Esy(@ )M, (), ), (1.13)

K(Mo, V())Mg,y(u(), V()) < K(¢, l//)Mg,y((f), lp), (1.14)

where (¢,¥) € G(0,37,7), then the corresponding solution to (1.1) exists globally in
time. The proof of this result is based on a continuity argument and the following sharp
Gagliardo-Nirenberg inequality

P(f.g) < Con (K(£.8))}(Ms,(f.9))  V(f.g) € H'(R?) x H'(R?). (1.15)

This type of Gagliardo-Nirenberg inequality was established in [3, Lemma 3.5]. Note
that in [3], this inequality was proved for real-valued H'-functions. However, we can
state it for complex-valued H'-functions as well since P(f,g) < P(|f],|g])
and [[V([fll@) < [IVAll2@)-

We are now in position to state our first main result. The following theorem provides
sufficient conditions to have scattering of solutions. More precisely, for data belonging
to the set given by conditions (1.13) and (1.14), solutions to (1.1) satisfy (1.8), for some
scattering state (u™,v™).

Theorem 1.1. Let p,y >0, and (¢,) € G(0,3y,7). Let (u(t),v(t)) the corresponding
solution of (1.1) with initial data (ug,vo) € H'(R?) x H'(R?). Assume that the initial
data satisfies (1.13) and (1.14). Provided that

e (non-radial case) either |y — 3| <n for some n = n(Es,((uo, Vo)), Ms,((t40,vo))) > 0
small enough,

e (radial case) or (ug,vo) is radial,then the solution of (1.1) is global and scatters
in H'(R?) x H'(R?).

Our proof of the scattering results is based on the recent works by Dodson and
Murphy [15] (for non-radial solutions) and [16] (for radial solutions), using suitable
scattering criteria and Morawetz-type estimates. In the non-radial case, we make use of
an interaction Morawetz estimate to derive a space-time estimate. In the radial case, we
make use of localized Morawetz estimates and radial Sobolev embeddings to show a
suitable space-time bound of the solution.

Let us highlight the main novelties of this paper, regarding the linear asymptotic
dynamics. For the classical focusing cubic equation in H'(R?), scattering (and blow-up)
below the mass-energy threshold, was proved by Holmer and Roudenko in [17] for
radial solutions, by exploiting the concentration/compactness and rigidity scheme in the
spirit of Kenig and Merle, see [18]. The latter scattering result has been then extended
to non-radial solution in Duyckaerts, Holmer, and Roudenko [19]. To remove the radi-
ality assumption, a crucial role is played by the invariance of the cubic NLS under the
Galilean boost, which enables to have a zero momentum for the soliton-like solution.
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As observed in Remark 1.1, Eq. (1.1) lacks the Galilean invariance unless y = 3. Hence
we cannot rely on a Kenig and Merle road map to achieve our scattering results, and
we instead build our analysis on the recent method developed by Dodson and Murphy,
see [15, 16]. In the latter two cited works, Dodson and Murphy give alternative proofs
of the scattering results contained in [17, 19], which avoid the use of the concentration/
compactness and rigidity method. They give a shorter proofs, though quite technical,
based on Morawetz-type estimates. In our work, by borrowing from [15, 16], we prove
interaction Morawetz and Morawetz estimates for (1.1), and we prove Theorem 1.1 for
non-radial solutions which do not fit the mass-resonance condition, as well as for radi-
ally symmetric solutions. In this latter case, instead, we only need (localized) Morawetz
estimates, which are less involved with respect to the interaction Morawetz ones, as we
can take advantage of the spatial decay of radial Sobolev functions.

Our second main result is about formation of singularities in finite time for solutions
to (1.1). We state it for two classes of initial data. Indeed, besides the fact that these ini-
tial data must satisfy the a-priori bounds given by (1.13) and (1.16)—the latter (see
below) replacing the condition (1.14) yielding to global well-posedness—they can belong
either to the space of radial function, or to the anisotropic space of cylindrical function
having finite variance in the last variable. The Theorem reads as follows.

Theorem 1.2. Let 1,y > 0, and (¢, ) € G(0,37,7). Let (up,vo) € H'(R?) x H'(R?) sat-
isfy either E,(uo, vo) < 0 or, if E,(ug,vo) > 0, we assume moreover that (1.13) holds and

K (ug, vo) My (uo> vo) > K(¢, ) M3, (). (1.16)

If the initial data satisfy
e cither (ug, vy) is radially symmetric,
e or (uy,vy) € X3 X X3, where

%5 = {f € H'(R®) : f(3.2) = f(lyl. 2). of € I*(R)}

with x = (y,2),y = (x1,x2) € R* and z € R, then the corresponding solution to (1.1)
blows-up in finite time.

Let us now comment previous known results about blow-up for (1.1) and the one
stated above, and highlight the main novelties of this paper regarding the blow-up
achievements with respect to the previous literature.

In the mass-resonance case, i.e., y=3, and provided u =3y =9, the existence of
finite time blow-up solutions to (1.1) with finite variance initial data was proved in [3,
Theorems 4.6 and 4.8]. More precisely, they proved that if (ug,v) € Z(R?) x Z(R?)
with Z(R®) = H'(R®) N L*(R?, |x[*dx) satisfying either Eo(ug,vo) < 0 or if Eo(ug,vo) >
0, they moreover assumed that

Eg(uo, vo) Mo(14o, vo) < %59(¢)'P)M9(¢, ¥),
K(uo, vo)Ms (1o, vo) > K (¢, )Mo (e, 1),

where (¢, ) € G(0,9,3), then the corresponding solution to (1.1) blows-up in finite
time. The proof of the blow-up result in [3] is based on the following virial identity
(see Remark 3.3)
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—5 V(1) = 4G(u(1), v(1)), (1.17)
where

V(e) = | f (a0 + St 0

Using (1.17), the finite time blow-up result follows from a convexity argument. For the
power-type NLS equation, this kind of convexity strategy goes back to the early work of
Glassey, see [20], for finite variance solutions with negative initial energy. See the works
by Ogawa and Tsutsumi [21] for the removal of the finiteness hypothesis of the vari-
ance, but with the addition of the radial assumption. See the already mentioned paper
[17] for an extension to the cubic NLS up to the mass-energy threshold, of the results
by Glassey, and Ogawa and Tsutsumi.

If we do not assume the mass-resonance condition, or we do not assume that u #
3y, the identity (1.17) ceases to be valid. Thus the convexity argument is no-more
applicable in our general setting. The proof of Theorem 1.2 above relies instead on an
ODE argument, in the same spirit of our previous work [22], using localized virial esti-
mates and the negativity property of the Pohozaev functional (see Lemma 5.1). We
point-out that our result not only extends the one in [3] to radial and cylindrical solu-
tions, but also extends it to the whole range of y,7 > 0. It worth mentioning that blow-
up in a full generality, i.e. for infinite-variance solutions with no symmetric assump-
tions, is still an open problem even for the classical cubic NLS.

We conclude this introduction by reporting some notation used along the paper, and
by disclosing how the paper is organized.

1.1. Notations

We use the notation X=<Y to denote X < CY for some constant C > 0. When X=<Y and
Y=X (possibly for two different universal constants), we write X ~ Y, or equivalently,
we use the ‘big O’ notation O, e.g., X = O(Y). For I C R an interval, we denote the
mixed norm

1

WAl or rmey = (L (lef(t,x)lrdx)%dt)a

with the usual modifications when either r or g are infinity. When g=r, we simply
write Hf”qu uxw?)- Letf,g € LIL" (I x R?), we denote

H(f’g>||LfL;><L‘ZL;(I><R3) = Hf”LfL;(Ixu@) + ||g||LfL;(1xJR3)
and if g =r, we simply write
||(f’g>”LZX><L?’X(I><R3) = ||f||LZX(I><R3) + ||g||L?’X(I><R3)'

The LP(R?) spaces, with 1 <,p < oo, are the usual Lebesgue spaces, as well as spaces
WkP(R?) spaces, and their homogeneous versions, are the classical Sobolev spaces. To
lighten the notation along the paper, we will avoid to write R* (unless necessary), as we
are dealing with a three-dimensional problem.
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1.2. Structure of the paper

This paper is organized as follows. In Sec. 2, we state preliminary results that will be
needed throughout the paper, and we will prove some coercivity conditions which play
a vital role to get the scattering results. In Sec. 3, we introduce localized quantities, and
we derive localized virial estimates, Morawetz and interaction Morawetz estimates which
will be the fundamental tools to establish the main results. The latter a-priori estimates
will be shown in both radial and non-radial settings. In Sec. 4, we give scattering crite-
ria for radial and non-radial solutions. We eventually prove, in Sec. 5, the scattering
results and the blow-up results, by employing the tools developed in the previous
Sections. We conclude with the Appendixes A and B, devoted to the proofs of some
results used along the paper.

2, Preliminary tools

In this section, we introduce some basic tools toward the proof of our main achieve-
ments. Specifically, we give a small data scattering result, as well as useful properties
related to the ground states. We postpone the proof of some of the following results to
Appendix A.

2.1. Small data theory

We have the following small data scattering result, which will be useful in the sequel.
Lemma 2.1. Let u,y > 0, and T > 0. Suppose that (u, v) is a global H'-solution to (1.1)
satisfying

sup [|(u(), V()1 < E
teR

for some constant E> 0. There exists €4 = €sq(E) > 0 such that if

1681 = D)D), Sa(t =TI g ey iy, @)
then the solution scatters forward in time.
Proof. See Appendix A. O

2.2. Variational analysis

We first recall some basic properties of ground states in G(0,37,7) and then show a
coercivity condition (see (2.8)), which play a vital role to get scattering results.

It was shown in [3, Lemma 3.5] that any ground state (¢,¥) € G(0,37,7) optimizes
the Gagliardo-Nirenberg inequality (1.15), that is

P(¢, 1) |
(K (b)) (M3, (b))

Using the Pohozaev identities (see [3, Lemma 3.4])

Copt =
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PO) = Susy () = Byl) = My, (p0) =3 K(D¥),  (22)
we have
Cop = 3 (K99I M, (00 . (3)

To employ some Morawetz estimates in the proof of the scattering theorem, we will
also use the following refined Gagliardo-Nirenberg inequality.
Lemma 2.2. Let (¢, ) € G(0,37,7). For any (f,g) € H' x H' and &,, &, € R®, we have

1 K(f.g)Ms,(f.g)
1gl) < 3 (K(¢,1/1)M3~,(¢>w

P(lf

)> K(e™if, e og). (2.4)

Proof. See Appendix A. O
We conclude this preliminary section by giving the following two coercivity results.

Lemma 2.3. Let w,y >0, and (), ) € G(0,37,7). Let (ug,vo) € H x H' satisfy (1.13)
and (1.14). Then the corresponding solution to (1.1) exists globally in time and satisfies

sup K(u(t), v(t)) < 6E, (1o, vo). (2.5)
teR

Moreover, there exists 6 = 0(ug, vo, ¢, ) > 0 such that
K(u(t), v(£))Ms, (u(£), v(t)) < (1 = 6)K(¢, ) M3y (¢, ) (2.6)
forallt € R.

Proof. See Appendix A. O

Lemma 2.4. Let w,y >0, and (¢, ) € G(0,37,7). Let (ug,vo) € H' x H' satisfy (1.13)
and (1.14). Let 0 be as in (2.6). Then there exists R = R(0, ug, vo, ¢, ) > 0 sufficiency
large such that for any z € R,

K(Ta(- ~ (0, Ta(- — 2)9(6) % M (Tl ~ 2u(0), T — 2)v(e)
< (1-2)x s 00

uniformly for t € R, where T'r(x) := I'(%) with I' a cutoff function satisfying 0 < I'(x) <
1 for all x € R’. Moreover, there exists v = v(d) > 0 independent of t so that for any
&, & €R, and any z € R,

K(Tr(- — 2)e*u(t), Tr(- — 2)e*<v(t)) — 3P(Tr(- — 2)u(t), Tr(- — 2)v(t))
> UK (Tr(- — z)e*u(t), Tr(- — z)e*Sv(t))
for any t € R.

(2.7)

(2.8)

Proof. See Appendix A. O
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3. Virial and Morawetz estimates

This section is devoted to the proof of virial-type, Morawetz-type, and interaction
Morawetz-type estimates, which will be crucial for the proof of the main Theorems 1.1
and 1.2.

3.1. Virial estimates

We start with the following identities. In what follows we use the Einstein convention,
so repeated indices are summed.

Lemma 3.1. Let i, f,7 > 0, and (u, v) be a H'-solution to (1.1). Then the following iden-
tities hold:

O ([ul* + yBIv[*) = —2V - Im(aVu) — 28V - Im(¥Vv) —l—% <1 — g) Im(u*),  (3.1)

1
OIm(udku + ywopv) = EakA(|u|2 + V) — 20Re(dudku + Ojvdkv) + 20N (1, v),  (3.2)
where N is as in (1.6). In particular, we have
2,202 - - 2 v 3=
O(Jul” +y°v[") = =2V - Im(aVu) — 29V - Im(vVv) +3 1— 3 Im(u’v),
Ay (|u]’ +3yv[*) = =2V - Im(aVu) — 6V - Im(¥Vv).

Proof. See Appendix B. O

A direct consequence of Lemma 3.1 is the following localized virial identity related
to (1.1).

Lemma 3.2. Let i1,y >0, and ¢ : R> — R be a sufficiently smooth and decaying func-
tion. Let (u, v) be a H'-solution to (1.1) defined on the maximal time interval
(=T_,Ty). Define

M(t) :=2Im J Vo(x) - (Vun + yVvv)(t, x)dx. (3.3)

Then we have for all t € (—T_,T,),

d
EMw(t) =— JAZ(p(x)(|u|2 + [v[)(t, x)dx + 4ReJ8ﬁ<qo(x)(8jﬁaku + 0vokv)(t, x)dx

—4 J Ap(x)N(u, v)(t, x)dx.

The following Corollary is easy to get.
Corollary 3.3. Recall the definition of G, N, P in (1.5), (1.6), and (1.4), respectively.
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LI o) = T,
d
= M (£) = 8G(u(t), v(1)). (3.4)

iil. If @ is radially symmetric, by denoting |x| = r, we have

%M“’“) - J A% () (Jul” + ) (6 x)dx + 4J@(|WIZ + V) (6 x)dx
+ 4J ((p’;gr) B QD;(ST)> (Ix - Vul + |x - Vo) (t,x)dx

-4 j Ap(x)N(u,v)(t, x)dx.
(3.5)

iii.  (If ¢ is radial and (u, v) is also radial, then

SiMolt) = = [ 8l + WP) (0 + 4 [ ()Wl + 9P 0, )
—4 J A@(x)N(u,v)(t, x)dx.
(3.6)

iv. Denote x = (y,z) with y = (x1,x,) € R* and z € R. Let y : R* = R be a suffi-
ciently smooth and decaying function. Set @(x) =y(y)+ 2% If (u(t),v(t)) €
Y3 X X3 forall t € (—=T_,Ty), then we have

d

GMalt) == [ Bt (P + ) 6.0+ [0 (0)(9, + (9,0 000

+8([10(6) 2 + 190(0)] ) — 8P(ult), (1)) (3.7)
4 J A ()N, v) (8 x)dx,
where p = |y|.

Proof. See Appendix B. O

We now aim to construct precise localization functions that we will use to get the
desired main results of the paper. Let { : [0,00) — [0,2] be a smooth function satisfying

2 if 0<r<i,
C(r)'{o if r>2.

We define the function ¥ : [0,00) — [0, 00) by

I(r) := Jr JT {(s)dsdr. (3.8)

0J0

For R > 0, we define the radial function ¢y : R*—>R by
Pr(x) = @g(r) = Rzﬁ(r/R), r=|x|. (3.9)
We readily check that, Vx € R* and Vr > 0,
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/
2 Z (P/;{(r) Z 0) 2 QDR(T’)
r

>0, 6—Agpg(x)>0.

We are ready to state the first virial estimate for radially symmetric solutions.

Lemma 3.4. Let 1,7 > 0. Let (u, v) be a radial H'-solution to (1.1) defined on the max-
imal time interval (—T_,T,). Let @y be as in (3.9) and denote M, (t) as in (3.3). Then
we have for all t € (=T_,T),

d
dt
for some constant C > 0 depending only on .y, and Ms,(uo, vo), where G is as in (1.5).

M, (t) < 4G(u(t),v(t)) + CR2K(u(t),v(t)) + CR™* (3.10)

Proof. By (3.6), we have for all t € (—T_,T,),

GMau(t) == [ R oulo(uf + ) ex)ds ]G5 ITuF + [T 000
—4 J A@gr(x)N(u, v)(t, x)dx.

We rewrite, using G — K + 3P = 0,
9 Moy (1) = 8G(u(t), (1)) — 8K (u(t), v(1) + 24P(u(t) (1)
= [ ou) 1 + P E0) + 4 [ )V + 99 00
— 4 | Ap(x)N (1, v)(t, x)dx

= 8G(u(t), v(t)) - JAZQDR(x)(Iul2 + [v[)(t,x)dx

— @ RNATHE + V) 1 x)ee 4 4 (6~ Agu(x) NG (1 )

As ||A’@gl|;~=R2, the conservation of mass implies that

|| A ontuf + 47 e 51
R

<R

The latter, together with ¢;(r) <2 for all r > 0, |
and Holder’s inequality, yield
4
dt

Agpll~=1, ¢p(x) = |x* on |x| <R,

Mo, (£) < 8G(u(t), v(t)) + CR™2 + cJ lu(t x)|* + [v(t, x)| dx,

[x|>R
where we have used the fact that (see (1.6))
IN(u,v) | [ul* + [v]".

To estimate the last term, we recall the following radial Sobolev embedding (see e.g.,
[23]): for a radial function f € H'(R?), we have
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sup x| lf ()| < CIVAIILL 1] (3.11)

Thanks to (3.11) and the conservation of mass, we estimate

J |u(t,x)["dxx < sup |u(t, x)*[Ju(t)][7,
[x[>R |x|>R

<R’ sup (| wa(t.20) ) [l (0) || 72
x|>R

=R(|Vu(t)|| 2l |u(®)] |72
=R7?[[Vu(t)]|2
=r>(||Vu(n)|z +1).
It follows that
d
dt
The proof is complete. O

M, (1) < 8G(u(t), v(t)) + CR™2 + CR-2(||W(¢)||§2 + ||vv(t)||§2).

Next we derive localized virial estimates for cylindrically symmetric solutions (we also
mention here [22, 24-28], for the qualitative analysis of dispersive-type equations in
anisotropic spaces). To this end, we introduce

V() = Yr(p) = RL(p/R), p =yl (3.12)
and set
Pr(x) == Yr(y) + 2°. (3.13)

Lemma 3.5. Let p,y > 0. Let (u, v) be a Zs-solution to (1.1) defined on the maximal
time interval (—T_,T,.). Let @y be as in (3.13) and denote M, (t) as in (3.3). Then we
have for all t € (—T_,T,),
d
dt
for some constant C> 0 depending only on u,y, and M(uo, vo).

M, () < 8G(u(t), v(t)) + CR™'K(u(t), v(t)) + CR™> (3.14)

Proof. By (3.7), we have for all t € (—T_,T,),

GMau(t) == [ B (uf + P) e+ 4] Walo)(V, P + 19,9 0 0

+8(J10.u(0)] [} + 107 (D] ) — 8P(u(t), v(1))
—4 J Ar ()N (u, v)(t, x)dx,

where p = |y|. It follows that

Moy (0) < 8G(u(0,(0) + CR = 4 [(2 = Wilp)) (VP + 19,11, )

+ 4Re J(4 — Ar(y))N(u,v)(t, x)dx.
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As Y'h(p) <2 and ||AYg]|;~=<1, the Holder’s inequality implies that

d

EM(pR(t) < 8G(u(t), v(t)) + CR 2 + CJ lu(t, x)[* + |v(t, x)|*dx. (3.15)

ly|>R

We estimate
4 2 2
Syl ) e < fi (e, )1} (e, )] < oy

< suplu(t. 2l | [ult2)lixyznd2)-
Y R b4

zeR

Set g(z) := ||u(t,z)||§§, we have
g0 = | og@ds=2| Re| altysutrsdys < 2Au(o)llgl0au(o),

which, by the conservation of mass, implies that

sup [[u(t, 2) |7, =|0:u(t)]|2- (3.16)
zeR
By the radial Sobolev embedding (3.11) with respect to the y-variable, we have

[0, 2B, =R 19,0202

. 1/2 ) 1/2
= ([Ivuealie) ([luealie) e

=R7Y|Vyu(®)[ 2 l[ut)]|2
=<RY[V,u(t)||..
Collecting (3.16) and (3.17), we get

J, a0 o
Y=

<R (|IV,u(t) |1}, + 19:u(0) ;)
<R[ Vu(t)|[},

The latter and (3.15) give (3.14). The proof is complete. O

3.2. Interaction Morawetz estimates. Non-radial setting

Following [29], let x be a decreasing radial smooth function such that y(x) =1 for
|x| <1—0,%(x) =0 for |x| > 1, and |Vy|<c~!, where 0 < ¢ < 1 is a small constant.
Let R>1 be a large parameter. We define the following radial functions

() = Jx§<x — 2 (),

B (D3R3
in(x— 27y — 2)dz,

where yp(x) := 7(%) and o is the volume of unit ball in R’. We also define the

Q) r(x,y) = T
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functions
1 (- I«
Yr(x) = ||J Op(r)dr, Og(x) = J rWr(r)dr.
Xl Jo 0
We collect below some properties of the above functions.

Remark 3.1 ([15]). Straightforward calculations give:

o the identities 0;0p(x) = x;¥r(x) and d;¥r(x) = 5 (Pr(x) — ¥r(x)), and in

Il

particular,
A®g(x) = 2¥r(x) + Or(x), I3 Or(x) = djPr(x) + Pix(x)(Fr(x) — Or(x)),
(3.18)
where Pj(x) = 0jx — % with 0 the Kronecker symbol;
e that the estimates below are satisfied:
Wi(x) — D) > 0, |‘PR(x)|Smin{1, |£|}
X
1 1 . 1 R
|V(I)R(x)|S&, |V‘PR(.X)|SEHHH E’W > (3.19)

|(DR(x) - (DI,R(x)|SO', |IPR(JC) — (DR(x)|Sém1n{M %}

Let (u, v) be a global H'-solution to (1.1) with initial data (ug, vo) satisfying (1.13) and
(1.14). We define the interaction Morawetz quantity adapted to system (1.1) by

MGE(t) =2 J JL.,,(u, v)(t,y)VOr(x — y) - Im(uVu + yvVv)(t, x)dxdy,
where
Ly (u,v)(t,%) == (Jul” + 72 v*) (£, ).

From the conservation of mass, (2.5), and (3.19), we have

sup | M2(t)|=<R.

teR
By Lemma 3.1, we have

2
ALy (w,v) = =2V - Im(aVu) — 2V - Im(7Vv) + 3 (1 - g) Im(u*7) (3.20)
and
1
OIm(adu + ywov) = —20Re(udu + vdv) + EakA(|u|2 + [v[*) 4 28N (4, v),

where we recall that

1 4 9 4 2 2 1 —
N(u,v):£|u| +ZM =+ |ul"|v| +§Re(u3v).



16 @ A. H. ARDILA ET AL.

Here repeated indices are summed. Moreover, by using integration by parts, we readily
see that

%M%Z(t) = 4JJLy(u, v)(t,y)VORr(x — y) - VN(u,v)(t, x)dxdy (3.21)

+ J JL},(u, V) (6,3)VOR(x — y) - VA(|uf* + [vP) (£, x)dxdy (322)
—4 J JLV(u, v)(t,y)OkOr(x — y)OiRe(0juOku + Ojvokv)(t, x)dxdy (3.23)

+2 J j OiLy (4, v)(t,y)VOR(x — y) - Im(uVu + yvVv)(t, x)dxdy. (3.24)

We are able to prove the following interaction Morawetz estimates, which will play a
fundamental role for the proof of the scattering theorem in the non-radial framework.

Proposition 3.6. Let w7 >0, and (¢, ) € G(0,3y,7). Let (ug,vo) € H' x H' satisfy
(1.13) and (1.14). Let (u, v) be the corresponding global solution to (1.1). Then for arbi-
trary small € > 0, there exist To = To(€),] = J(€), Ry = Ro(€, ug, vo, ) sufficiently large
and o = a(€), n =n(e) sufficiently small such that if |y — 3| < n, then for any a € R,

1 a+Ty [Ro¢ 1

o I PO RN .
XK (xr(- — 2)us(t), xr(- — Z)Vé(t))dzdedtsﬁ,

where (u(t,x),v*(t,x)) := (e*<u(t, x), "*°v(t,x)) for some & = £(t,z,R) € R* and

W,(r.g) = | L0

Proof. Since A®@g(x —y) = 3Dy r(x,y) + 3(Pr — P1,8)(x,y) + 2(Yr — Pr)(x — y), by
integration by parts, we have

(3.21) = —12 jJLy(u, v)(t, )@y, r(x — y)N(u, v)(t, x)dxdy (3.26)
12 J JL,(u, V)8, y)(@r — Dr_r) (x — y)N (1, v) (£, x)dxdy (327)
3 J JLy(u, ¥)(t, y)(Px — Og) (x — )N (1 v) (6, x)dxdy. (3.28)

Again, by integration by parts and Remark 3.1, we have

(3.22) = JJLy(u, V(6 9)V (3Dr(x — 3) + 2(Pr — D) (x — ) - V(| + [vP) (&, x)dxdy.

(3.29)



COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS (&) 17
We will treat (3.27), (3.28), and (3.29) as error terms. Moreover, by Remark 3.1, we get

(3.23) = 4JJLy(u, v)(,y)@r(x — y)(|Vul* + [Vv]*) (£, x)dxdy (3.30)

+4 J JLy(u, v)(t,y)(Wr — Or)(x — y)Pik(x — y)Re(OjuuOku + OjvOv)(t, x)dxdy.  (3.31)
Similarly, by (3.20) and Remark 3.1, we see that

(3.24) = —4 J J Or(x — y)Im(uVu +yvVv)(t,y) - Im(uVu + pvVv)(t,x)dxdy  (3.32)

—4 J J(‘PR — Op)(x — y)Pix(x — y)Im(u0ku + yvokv)(t, y)Im(udiu 4 yvov)(t, y)dxdy
(3.33)

+é (1 - g) JJV@R(X —y) - Im(aVu + y9Vv)(t, x)Im(u’V)(t, y)dxdy. (3.34)

Now, let ¥, denote the angular derivative centered at y, namely

= x—ix_y =) X
V) = Vi)~ =2 ()

and similarly for ¥,. We have

(3.31) + (3.33) = 4”(% — @) (x = ) (Tl + T2 (6 ) (e + 722 (1,)
—Im(u¥,yu+pv/V,v)(t,x) - Im(u¥,u + pw¥W.v)(t, y))dxdy.
(3.35)

Hence Yy — ¢y is radial and non-negative, by the Cauchy-Schwarz inequality, we infer
that

(3.31) + (3.33) = (3.35) > 0.

On the other hand, as yy is radial and non-negative, we have

o || [ = 0 = 9l + 19 0 (P + 20 )

— Im(aVu+yvVv)(t,y) - Im(uVu + ywVv)(t, x))dxdydz
- JB(u, V)(t,2)dz,

C!)3R3

(3.30) + (3.32) =

(3.36)

where

B(wv)(t,2) == foz(x )Vl + |Vv|2><t,x>dxjx§<y ) (uf £ 2P (6 y)dy

- “ 1a(x — 2)Im(aVu + pyVv) (¢ x)dx| .

Notice that B(u, v) is invariant under the gauge transformation
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(u(t, %), v(t, x) )= (4 (£, %), v (£, X)) := (e*u(t, x), €™ <v(t, x))
for any ¢ € R’. Indeed, we see that
L) = L), V() = L () + V().
H(us,v%) = [EPL, (u,v) + H(u,v) +2¢ - Vo (1, v),
where
Vo (,v)(t, x) := Im(aVu + y9Vv)(t,x), H(wv)(tx) := (|[Vul* + [Vv])(t x),
which implies that B(u¢,v*) = B(u,v). Next, we define

5 = 2) Vo v) (8 x)dx

7 (x = 2)L, (1, v) (1, x)dx
provided that the denominator is non-zero; otherwise we can define &(t,z,R) = 0. With
this choice of &, we have

&(tz,R) =

Jxﬁ(x — )V, (45, v%)(t, x)dx = 0.
Combining this with (3.36), we infer that
4 .
| (j A = ) H( ) (1) | 2 — 2L, v><r,y>dy) dz.
3

Therefore, by the above identity, (3.26), (3.27), (3.29), and (3.34), we get

(3.30) + (3.32) =

| ([0 onwnens) .
x ([ 73 (x — 2)H(us, v¥)(t, x) — 3yx(x — 2)N(u, v)(t, x)dx) dz
d 2
< a/\/lff (t) (3.38)

+ J JLA,(u, Vv)(t,y)(12(DPgr — Dy, r) + 8(WPr — Dr))(x — ¥)N(u, v)(t, x)dxdy (3.39)

- J JLV(u, V)(t,y) (3V D + 2V(Px — D)) (x — 1) - V(|uf + WP)(Ex)dxdy  (3.40)
4
"3

(— - 1) HVG)R(x —y) - Im(aVu + yvVv)(t, x)Im(u*v) (¢, y)dxdy. (3.41)
Now, we consider (3.37). Since
1w P = [ 2w [anipan
we get
| zhto = 2 ) e = [HO( = 20,2 = 297) 621

(3.42)
+ij<x — 2)A(za(x — 2)([uf? + ) (6 x)dx.
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Thus, substituting (3.42) in (3.37) and using Lemma 2.4 with yz instead of I'g, we see
that there exists v > 0 such that

1 J‘u+Tg JRoe’ (3'37)%& N 4 Ju+To JROH%J (WV(XR(' — 2u(t), 1x(- — 2)v(t))

JTo J, Ro w3JTy J, Ro R

X K(tr(- = 2)u (1), 1o (- — Z)Vé(t))dz> dedt

4y (¢t To Roe 1
N w3J Ty L JRO EL@ W, (xr(- — 2)u(t), xr (- — 2)v(t))

g (JR3XR(' — 2)A(tr(- = 2))(|uf + |V|2)(f,x)dx) dzdedt,

By the conservation of mass and the fact that ||A(yg)||,~=R?, the absolute value of
the second term in the right hand side can be bounded by

a (ke R 1
- J J CR?>—dt=—;.
ws3JTy Ro R JR;

a

This implies that

a+Ty (Roe .
L R L Wt = 2 = O - — 2 — 2 0) e

m a Ro F
1 a+Ty Rg€7 dR 1
< - N
~]T0 L JRO (3.37) R dt + ]R% .
(3.43)
Next, as [M3*(t)|<R, we have
1 a+Ty Roel dR 1 Roe] dR Roe]
— 3.38) —dt g—J sup | MEF(t ‘—5—. (3.44)
JTo L JRO (3.38) R JTo Jg, te[a,aE)-To] w () R Ty

By (3.19), the conservation of mass, (2.5), and Sobolev embedding, we have
1 a+Ty (Roe dR
J J JJL"(M’ v)(t,y)(Pr — Dy r)(x — y)N(u,v)(t, x)dxddet‘

m a Ry
1 J~a+To JRoe] dR
= oc—dt=o,

]TO a R[) R

where we have used the fact that

J|Ly<u, ) (6, ) [dy=Ms, (u(t), v(1)),

J IN (1, v) (8 )= | (2(8), v () oo = 1 (00 V()| -

Using (3.19), we see that
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‘]TO atTo JRoe] JLy(u, v)(t,y)(Pr — Pr)(x — y)N(u, v)(t,x)dxdydedt‘

Ry
1 a+Ty Roa ‘x _y| R dR
<_ - X i _ i
=T L N JJ|LV(u, v)(t,y)|m1n{ R |x—y|}|N(u’ v)(t, x)|dxdy R dt

1 a+Ty Roe! ' |x_y| R :
= j|Ly<u,v><t,y>|<Lo minf 2, B AR i) sty

where we have used the fact that

J {|x ¥yl R }dR
min —=I.
0 R |x—y| R

1 a+Ty rRoe dR
— 3.39)—dt
JTo L JRO (3.39) R

As [VOg(x)], [V(¥r — Op)(x)|< 2, we see that

1 a+T, Roe dR
— 3.40 —dt
JTo L JRO (340)

We thus get

1
<o+ (3.45)

1
= ?Ro . (3.46)

Finally, as |y — 3| < 5 and |VOg(x)|<R, we infer from the conservation of mass, (2.5),
and Sobolev embedding that

1 a+Ty (Roe dR
— 3.41 —dt
]TO Ja jRo ( )

Combining these estimates (3.43), (3.44), (3.45), (3.46), and (3.47), we obtain

a+Ty (Roe R J
]goj L detsnOTe. (3.47)

lrﬂo JROE/IJ W, (2x(- = 2)u(t), 7 (- — 2)v(£)K (xr(- — 2)us(t), xx(- — Z)Vé(t))dz%dt

JTo Ja R R g
_ 1 +R0e]+ +1+ 1 N Ryé
=—=+—+0+— ,
JR2 T, o] "ok, ]

which shows (3.25) by choosing 6 =¢,] =€ >, Ry=¢ ', T, = ¢, and n=e¢ . The
proof is complete. O

3.3. Morawetz estimates. Radial setting

We now turn our attention to the proof of the radial version of the Morawetz estimate
which will be essential in the proof of the scattering theorem in the radially symmetric
setting. In this context, we take advantage of the radial Sobolev embedding to get some
spatial decay.

Lemma 3.7. Let p,7 >0, and ($,¥) € G(0,3),7). Let (ug,vo) € H' x H' be radially
symmetric satisfying (1.13) and (1.14). Then for any T>0 and R = R(ug, vo,$, ) >0
sufficiently large, the corresponding global solution to (1.1) satisfies
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1

T 10 10 R 1
— ,X)|3 ,X)|3 =—+—=. 4
TJO JXS§<|u(t X)|7 + |v(t, x)| )dxdt T —|—R2 (3.48)

Proof. Let ¢ be as in (3.9) and define M, (t) as in (3.3). By the Cauchy-Schwarz
inequality, the conservation of mass, and (2.5), we have

sup | M, (t)|=R. (3.49)
teR

By (3.6), we have

d

o M) = - jA2¢R<x><|u|2 + V) (b x)dx + 4j<o';<r><|w|2 + V) (6,)

- 4JA(pR(x)N(u, V)¢, %)dx.

As @g(x) = |x|* for |x| <R, we see that

d

& M, (1) =8 (L<R(|w\2 +IVP) (6 x)dx — 3J N(u, v)(t,x)dx)

x|<R

_ JAZ(pR(x)(|u|2 + [v[?) (¢, x)dx + 4ReJ D5.0r(x) (811 0ku + OvOxv)(t, x)dx

|x|>R !

- 4J bRA(pR(x)N(u, v)(t, x)dx.

Since ||A290R|| oo <R~2, the conservation of mass implies
[ A% 0ueul + )t =

As (u, v) is radially symmetric, we use the fact

Xj 5] ijk

_ 2
=50 @'k—<7‘7)3f+

xjxk
0
to get

O pr(x) it (1, %) Opu(t, x) = @'y (r)|Bu(t, 1) > 0

which implies
ReJ ‘ Raﬁc%(x)(@»aaku + 0vov)(t, x) > 0.
X|>
On the other hand, by arguing as in the proof of Lemma 3.4, we have

<R *K(u(t), v(t))<R 2.

J A@r(x)N(u, v)(t, x)dx
|x|>R

Thus we get
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%M(,,R(t) >8 (J (IVul* + |Vv|]*)(t, x)dx — 3J N(u, v)(t,x)dx) +CR2 (3.50)
lx|<R

|x[<R
for all t € R. Now, let gx(x) = ¢(x/R) with ¢ as in (4.13). We have

j|v<@Ru<t>>|2dx= JQ;|w<t>|2dx_ jQRAQRw(t)de
- j Vut) — j (1 - @3)|Vu(t) Pdx — jQRAQR|u<t>|2dx
|x|<R R/2<|x|<R

and

JN(QRu, orv)(t, x)dx = J N(u,v)(t,x)dx + J (N(ogru> 0gv) — N(u,v))(t, x)dx.

[x[<R R/2<|x|<R

It follows that

JI |<R(|Vu|2 + | V) (£, x)dx — 3J N(u,v)(t,x)dx

|x|<R

= [V (erw)P + 1V (ea) Pt 0)dx — 3 JN(gRu, 0V) (6 ) dx

+ (1 = 0r())(IVul” + [Vv[) (¢, x)dx

JR/2<|x|<R

+ [en()Aan((u + P60 3] (et nr) ~ N )6 e

As 0 < pp <1 and ||Agg||;~=R7?, the conservation of mass, (2.5), and the radial
Sobolev embedding, we have

J ‘<R(|Vu|2 + | V) (8, x)dx — 3J N(u,v)(t, x)dx

x|<R
> K(ogu(t), 0xv(t)) — 3P(egu(t), 0gv(t)) + O(R™?).
Thanks to (2.8) with gy in place of I'y and z=¢ =& =0, there exist R=
R(ug, v, ¢, ) > 0 sufficiently large and v = v(u, vo, ¢, ) > 0 such that

J |<R(|vu|2 + [Vv[)(t, x)dx — 3J N(u, v) (£, x)dx > vK(0gu(t), 0gv(t)) + O(R?)

|x|<R

for all t € R. This together with (3.50) yields
d
vK (0ru(t), 0xv(t)) < EM(”R(O + CR 2

for all ¢ € R. Integrating on [0, T| and using (3.49), we get
1 (" R 1
7], Kewut) covpar=g + 5.

In particular, we have
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1 (T 5 R 1
7] v =T+ 2
which together with the Gagliardo-Nirenberg inequality

< 2 1yl
o=Vl [[ull7,

Il

implies
1 (T I 1 (T 5 R 1
= H||Pedt=— t JAts —+ —.
F| o= | 19 =T+

By the choice of g, we obtain

1 (T 10 R 1
— tLx)|Pdxdt=—+ —.
TJ() JX<§|u( x)[*dx T+R2

A similar estimate holds for v. The proof is complete. O

4, Scattering criteria

In this section, we give scattering criteria for solution to (1.1) in the spirit of Dodson
and Murphy [15, 16] (see also [29]). Let us start with the scattering criterion for non-
radial solutions.

Proposition 4.1. Let u,y > 0. Suppose that (u, v) is a global H'-solution to (1.1)
satisfying

sup 1), )l 0 =E (4.1)

for some constant E > 0. Then there exist € = €(E) > 0 small enough and Ty = Ty(¢, E) >
0 sufficiently large such that if for any a € R, there exists ty € (a,a + T,) such that

1Dy e (i) =6 (42)
then the solution scatters forward in the time.
Proof. By Lemma 2.1, it suffices to show that there exists T > 0 such that
[(S1(t = T)u(T), Sa(t — T)V(T))||L‘?L§><L;’Lfc([T,oc)><R3)S€3L2‘ (4.3)

To prove (4.3), we first write
T

(S1(t = T)u(T), S1(t — T)v(T)) = (S1(t)uo, S2(t)vo) + iJ (S1(t — s)Fi(s), Sa(t — s)F(s))ds.

0

By Sobolev embedding, Strichartz estimates, and the monotone convergence theorem,
there exists T; > 0 sufficiently large such that if T > T;, then

(St ()0, S2(£)vo)ll ps e pars(11, 00) ) SE- (4.4)

We take a = T; and T = t,, where a and t, are as in (4.2), we write
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[ 10 98106~ 9 = 1) + ()
where
H(1) = iJI (Su(t — $)F(5), Salt — )Er(s))ds, I = [0,T— ], b= [T—et 1],
To estimate H,, we observe that

[|(w, v)]

1 1 =I1. 4.5
W2 x2W2([T-c 4 T)xR?) (4.5)

Indeed, by Strichartz estimates, fractional chain rule, (4.1), and (4.2), we have

R e T Ry

2
SEFN s (et ) 10 b, bt o]

2
<E+el|(w, v)||L§w§’6xLﬁv’v§’6([pgi,T]xR3)'

By choosing € small enough, we get (4.5). By Sobolev embedding and Strichartz esti-
mates, we see that

||H2||L;‘L§><L‘}L§([T,oo)><R3)s||(u> V)HiixxLix([T%"l@ T]XR3)||(”> V)||LfW%’6><LfW§’6([T7{%,T]XR3)
which together with (4.2) and (4.5) imply
||H2||L;*Lng;*Lg([T,oo)xR3)5€2~ (4.6)
On the other hand, we claim that
||H1||L‘I‘L§XL;’L§C([T,00)><R3)S€§‘ (4.7)

In fact, we notice that

1

H,(t) = (& (t—T+eD)ulT—e9),8,t - T+ e ulrT - €)= (S1()ug S2(£)vo)
which, by Strichartz estimates, implies
g3 e 1137, 00y iy S | 0T = €8, 0T = )] [2,c12 + 1] 0y v0) || 21,2 SE-
Moreover, as

1EL (), E2(0)) e = @), V() 012 = | (0, V() 15 <E s

we have from the dispersive estimate (A.2) and Young’s inequality that
T*F% .
—3/2 L
||H1||L,4L,°c“><L?L§°([T,oo)><R3)SHJ |t —s|*/ds =e€w.
0 L{([T, 00))

By interpolation, we get

1/2 1/2 L
[1Hi | ‘L?L?CXLZ‘LQ([T,OO)XW) < |15 |L;‘Lng;‘L;([T,oo)xR3)||H1 | |L;‘L;@xL;‘L;C([T,oo)xR3)SESZ
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which proves (4.7). Collecting (4.4), (4.6), and (4.7), we obtain (4.3), and the proof is
complete. 0

Let us give now an analogous of the previous Criterion in the radial setting.

Proposition 4.2 (Scattering criterion for radial solutions). Let p,y > 0. Suppose that
(u, v) is a global H'-solution to (1.1) satisfying

sup || (u(6), v(t)| g1 < E (4.8)
teR
for some constant E> 0. Then there exist € = €(E) > 0 and R = R(E) > 0 such that if
litrnian (Ju(t, x))* 4 3y|v(t,x)|*)dx < €, (4.9)
—%° Jix|<Rr

then the solution scatters forward in time.

Proof. Let € > 0 be a small constant. By Lemma 2.1, it suffices to show the existence of
T = T(e) > 0 such that

(81 (t = T)u(T), Sa(t = T)(T)) || parswrsrs(ir, 00y xr?) < e, (4.10)

To show this, we follow the argument of [16, Lemma 2.2]. By the Strichartz estimates
and the monotone convergence theorem, there exists T = T(e) > 0 sufficiently large
such that

(St ()0, S2(E)vo) | arssersrs iz, soy sy < €- (4.11)
As in the proof of Proposition 4.1, we write
(Si(t = TYu(T),Sz2(t — T)V(T)) = (S1(t)uo, Sa(t)ve) + Hi(t) + Ha(t),
where

Hj(t) = iL(Sl(t —E(s),Salt —$)Ea(s))ds, L =[0,T—¢€3], L=[T—et 1]

J

By (4.9) and enlarging T if necessary, we have

| exto(ur. P + 3y Pas < 2, (4.12)
where gx(x) = 0(x/R) with ¢ : R* — [0, 1] a smooth cutoff function satisfying
1 ) <1)2
o(x) = {0 if  |x > 1. (4.13)

Using the fact (see Lemma 3.1) that
Ay (|ul* + 3y|v]*) = =2V - Im(aVu) — 6V - Im(¥Vv),

(4.8), and ||Vogl|«gsy=R ™", an integration by parts and the Holder inequality yield

6,JQR(x)(|u(t, x)|* 4 3y|v(t, x)[*)dx| <R

Taking R sufficient large such that R e % < €, we infer from (4.12) that
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| Jesw e + mivnfras]| — =e.
LX(h)
This inequality implies that
||QR“||L;>CL§(12xR3)56 and HQRV||L;>°L§(12xR3)5€- (4.14)

Thanks to the radial Sobolev embedding (3.11), we have from (4.8) and (4.14) that

||”||L;°L;(12xR3 < ||QR”||L°°L3 (LxR?) T (1 - QR)”HL?‘Li(IZXRZ‘)
1/2 1/2

<||QR||L>CL2 IZXR3 ||QRM||LOOL6 IZXR3)
1/3 2/3
110 = el o 10— 0l

<e+R™ i<e
provided that R > ¢72. A similar estimate holds for v. In particular, we get
[1(us V)l'Lf‘LifooLi(szR3)s€%' (4.15)
Moreover, we have from the local theory that

1_ 1
1) |z cizrz ey H @6 =(1+|L|)p=e.

L2W? LZW% (LxR?)
By Sobolev embedding and Strichartz estimates, we see that that
2| s 1 (11, o0) xR2)
=||(u,v)| ‘LchngfOLi(szM) [1(w,v)] |LfL;o X212 (I, xR?) [I(u )] |LfW%’6foW%’6(IZ><R3) =€
(4.16)
On the other hand, the same argument developed in the proof of (4.7) shows that
1
H ] 15 18T, o0) xR S €7 (4.17)

Collecting (4.11), (4.16), and (4.17), we prove (4.10), and the proof is complete. O

5. Proofs of the main theorems

By exploiting the tools obtained in the previous parts of the paper, we are now able to
prove the scattering for non-radial and radial solutions to (1.1) given in Theorem 1.1.
See [29-31] for analogous results for NLS systems of quadratic type.

5.1. Proof of the scattering results

Proof of Theorem 1.1 for non-radial solutions. It suffices to check the scattering criter-
ion given in Proposition 4.1. To this end, we are inspired to [32]. Fix a € R and let € >
0 be a sufficiently small constant. Let Ty, = Ty(e) > 0 sufficiently large to be chosen
later. We will show that there exists ty € (a,a + Ty) such that
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3
169l (e 5 2
By Proposition 3.6, there exist Ty = To(€),] = J(€), Ry = Ro(€, ug, vo, P, ¥), 0 = a(€),
and n = #5(e) such that if |y — 3| <y, then

a+Ty (Roe . .
Tl ] Wt = 2.l 20 < Kl = 20, 1~ (1) de R de=e.

It follows that there exists R € [Ry, €/Rg] such that

2 e L Wt = 200,24l = DO (-~ 20,10~ 2 1) e

To), R )p

In particular,

a+T,
Tloj ILJHXR(-_z)<)||Lz||v(/R<—z ()| Padedt=c

and similarly for v. By the change of variable z = £ (w + 0) with w € Z* and 0 € [0,1]’,
we deduce from the integral mean value theorem and Fubini’s theorem that there exists
0 € [0,1]° such that

S (o 0 a1 (e (v 0 ) =

a wez?

By splitting the interval [a + To/2,a + 3Ty/4] into Tyei subintervals of the same length
€73, we infer that there exists fy € [a + To/2,a + 3To/4] such that Iy := [ty — €75, f] C
(a,a + Tp) and

LO 2 e~ 040 a0 1Y (-~ § o0 )0 ) imé. 62

In particular, by the classical Gagliardo-Nirenberg inequality

=1 VA1

we obtain

R 3
L 3 ||AR< -2 w+0>>u(t)||§3sa. (5.3)

weZ?

On the other hand, by using the Holder inequality and the Sobolev embedding, we get
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D

weZ?

(=50 0))ato)|
=2

R
XR( _R w+9>)u<t>
3 4 L2
weZ

( (- ——<w+9) ()
(

=[[u(@] 2 [0 =

2

ARG
) (2

L weZ?

L6
2\ 1/2
L6>

(5.4)

(= 0040)Jatr)

For the last line above we used the following: by Sobolev,

>

weZ?

=2 ||

weZ?

=[|Vu(llz: +

2

(= 00-40)Jato)

L6

2 2

R2

( —Z(w+ 0)>Vu(t)

e = 00-40)Jatr)

12
1 RTIONTE
regz 1OlR=[[u(®)][in

as |[Vy|so' and R> Ry =¢' =g (see the end of the proof of Proposition 3.6). It
follows from (5.3), (5.4), and the almost orthogonality that

3
Il =] 2

b ez

3

At

L3

<, (Z (= v ) Jut) )(Z Ao )
< (jz =50+ 0))uto )(jz (=5 o0+0))uo )

=et.
(5.5)

On the other hand, by Strichartz estimates, Sobolev embedding and standard continuity
argument, we deduce that

1
ell o (1<) = (o)
This inequality, (5.5), and interpolation imply that
3
eellzs ryxm) ~Hu!| (lox®) Hul\Lm (1o R?) S -
Similarly, we have
3
Vllis gy xmry =€

Therefore, (5.1) holds, and the proof is complete. O
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Proof of Theorem 1.1 for radial solutions. We fix e > 0 and R as in Proposition 4.2.
From (3.48) and the mean value theorem, we infer that there exist sequences of times
t, — oo and radii R, — oo such that

n—oo

lim J (ju(e 0 + v(t,0)[F) dx = 0. (5.6)
[x|<R,

Choosing n sufficiently large so that R, > R, the Holder inequality yields

3 3

J (lu(t,x)]? + 39|v(t,x)?) de<R: (J |u(t,x)|l_30dx> +<J |v(t,x)|13_0dx>
|x|<R [x|<R, |x|<R,

which, by (5.6), shows (4.9). By Proposition 4.2, the solution scatters forward in time.

5.2. Proof of the blow-up results

It remains to prove the blow-up results as stated in Theorem 1.2. Let us start with the
following observation.

Lemma 5.1. Let i,y >0, and (¢, ) € G(0,3y,7). Let (up,vo) € H' x H' satisfy either
E,(u9,vo) < 0 or if E,(up,vo) > 0, we assume that (1.13) and (1.16) hold. Let (u, v) be
the corresponding solution to (1.1) with initial data (u,, vo) defined on the maximal time
interval (—T_, T ). Then for ¢ > 0 sufficiently small, there exists ¢ = c(¢) > 0 such that

G(u(t),v(t)) + eK(u(t),v(t)) < —c (5.7)
forall t € (-T_,T,).
Proof. If E,(uo,v9) < 0, then the conservation of energy implies that
Gu(t), (1)) + 5 K1), (1)) = 3B, (u(0), (1)) — 5 My(u(0), (1))
< 3E,(u(t), v(t)) = 3E,(uo, vo)-

This shows (5.7) with ¢ = J and ¢ = —3E,(uo, vo) > 0.

We next consider the case E,(u,v9) > 0. In this case, we assume (1.13) and (1.16).
By the same argument as in the proof of [3, Theorem 4.6] using (1.13) and (1.16), we
have

K(u(t), v(£)) M3y (u(t), v(t)) > K(¢, )M, (), ¥), Vi€ (=T_,T).
Moreover, by taking p = p(uo, vo, ¢, ) > 0 such that

E,i(uo, vo) M3y (1o, vo) < %(1 — 0)Es (), ) M3, (. ), (5.8)

we can prove (see again the proof of [3, Theorem 4.6]) the existence of 6=
0 (1o, vo, ¢, ) > 0 such that

K(u(t), v(t))Ms,(u(t), v(t)) > (1 + 0)K(¢, ) Ms, (b, ), Vte (=T_,T.). (5.9)
Now for ¢ > 0 small to be chosen later, we have from (5.8), (5.9), and (2.2) that
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(G(t), (0) + e (u(e), ¥()) s u), (1)
= (3B u0)70) = My (a0 70) ~ (5 & ) K. ()M a6, (0)

< 3B 00 o) My 0, 00) — (5 = & ) a0 ()M a6, (0)
=200 DB (M) — (5= )1+ KM ()
=~ (p+8) — (1 + O)K( )My, (4, )

forall t € (—T_,T,). By choosing 0 < ¢ < 2&—1‘55), the conservation of mass yields
1 M, (oY)
G(u(t),v(t)) + eK(u(t),v(t)) < —| = —|—5—81+5>K W) —
(W00 + K u0)o0) < (5 0) = o0+ 0) K ) 32 20

for all t € (—T_,T,). The proof is complete. m|

We are now able to provide a proof of Theorem 1.2. To the best of our knowledge,
the strategy of using an ODE argument—when classical virial estimates based on the
second derivative in time of (localized) variance break down—goes back to the work
[33], where fractional radial NLS is investigated. See instead [22, 34] for some blow-up
results for quadratic NLS systems.

Proof of Theorem 1.2. We only consider the case of radial data, the one for X;-data is
treated in a similar manner using (3.14). Let (u,vy) € H' x H' be radially symmetric
and satisfy either E,(uo,vo) < 0 or if E,(ug,vo) > 0, we assume that (1.13) and (1.16)
hold. Let (u, v) be the corresponding solution to (1.1) defined on the maximal time
interval (—T_,T,). We only show that T, < oo since the one for T_ < oo is similar.
Assume by contradiction that T, = co. By Lemma 5.1, we have for ¢ > 0 sufficiently
small, there exists ¢ = ¢(¢) > 0 such that

G(u(t),u(t)) + eK(u(t),v(t)) < —c (5.10)
for all t € [0,00). On the other hand, by Lemma 3.10, we have for all ¢ € [0, c0),
%MQR(t) < 8G(u(t), (1)) + CR2K(u(t), v(£)) + CR2, (5.11)

where ¢y is as in (3.9) and M, (t) is as in (3.3). It follows from (5.10) and (5.11) that
for all ¢ € [0, 0),

D Mgy (1) < —8¢ — 8K (u(0), (1)) + CR K (u(t),v(t)) + CR 2

dt
By choosing R > 1 sufficiently large, we get
d
ﬁM(/’R(t) < —4c — 4eK(u(t), v(t)) (5.12)

for all ¢ € [0,00). Integrating the above inequality, we see that M, (t) < 0 for all t > t,
with some t;, > 0 sufficiently large. We infer from (5.12) that
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t

M, (t) < —48J K(u(s),v(s))ds

to

(5.13)

for all ¢+ > t;. On the other hand, by the Holder’s inequality and the conservation of

mass, we have

M, (1)] < ClIV gl ([Vu(®)] 2l [u(®)] 2 + VY@l v(E)]],2)

< C(@g> M3, (10, vo)) /K (u(t), v(2))-
From (5.13) and (5.14), we get
M, ( —A |M(,,R | ds

for all t > t;, where A = A(e, g, M3, (uo,vo)) > 0. Set

z(t) == Jt |M,, (s)[*ds, t>t.
We see that z(t) is non-decreasing an(?l non-negative. Moreover,
Z(t) = M, ()] > A2 (1), V> 1.
For t; > ty, we integrate over [t;, ] to obtain

z(t)
) 2 A —n)’

This shows that z(t) — 400 as t /" t*, where

YVt > 1.

1
=t +——<>1.
T A(n) !

In particular, we have
M, (t) < —Az(t) — —o0

(5.14)

(5.15)

(5.16)

as t /' t*, hence K(u(t),v(t)) — +oo as t / t*. Thus the solution cannot exist for all

time t > 0. The proof is complete.
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Appendix A: proofs of Lemmas 2.1, 2.2, 2.3, and 2.4

Let I C R be an interval containing zero. We recall that a pair of functions (u,v) €
C(I,H'(R?)) x C(I, H'(R?)) is called a solution to the problem (1.1) if (u, v) satisfies the
Duhamel formula

(u(t), v(t)) = (S1(t)uo, S2(t)vo) + ir (S1(t — $)Fi(s), S2(t — s)Fy(s))ds

0

for all t € I, where

R = (P + 2P Jats) + 3266 "
B(s) = OOP + 2Au(9)P)n(s) +54°().

The linear operators S; and S, introduced in (1.9) satisfy the following dispersive estimates: for
j=1,2,and 2 <r < oo,

1851 ey =<1t~ C 1

for all ¢ # 0, which in turn yield the following Strichartz estimates: for any interval I C R and
any Strichartz L*-admissible pairs (g, r) and (m, n), i.e., pairs of real numbers satisfying

rey f€ L'(R?) (A2)
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+-==, 2<r<e6. (A3)

we have, for j=1, 2,

Si(Of oy gy Sl 2@y, f € L*(RY),

[ se-9rcas

where (m,m’) and (n,n’) are Holder conjugate pairs. We refer the readers to the boos [14, 35,
36] for a general treatment of the Strichartz estimates for NLS equations.
We are ready to prove Lemma 2.1.

FeL"L'(I xR%),

<||Fll,

. , 'L (IxR?)?
LILL(IXR?)

Proof of Lemma 2.1. From the Duhamel formula, we have
t
(u(t),v(t)) = (S1(t — T)u(T), Sz (t — T)v(T)) + iJ (S1(t — s)F1(s), Sa(t — s)Fa(s))ds.
T
By using Sobolev embedding, Strichartz estimates, and interpolation, we get
|1, V)||L;‘L§xL;*L§([T,oo)xR3) < [(Si(t = T)u(T), Sa(t — T)V(T))||L;*Lng§L§([T,oo)xR3)

C||(Fy, F 6 6
+Cli(F 2)||wai’ngfwi’g([T,oo)xR3)

< [(Si(t = T)u(T), Sa(t = T)V(T)|psgwrsrs(ir, oo)x?)
+ Cl|(u, V)'|i?L§><L?L§([T,oo)><]R3)||(u’ V) e axr 131 00)xRY)
< (S1(t = T)u(T), Sa(t = T)V(T))| perexrsrs(ir, oo)xr?)
+ Bl 9 s [0y,

Choosing €4 = €4(E) > 0 small enough, the standard continuity argument implies that if (2.1)
holds, then

1G5 ) gs o[, 00) <) e
Now, for 0 < 7 < t, we have
1S (698, S2(6)9(8)) — (S (i) S (V) s
~| [ -9m0. 52900

T
2
=|l(u, V)||L3Lng?Lg<[r,t]xR3)||(“» V)||L;°H;xL7CHg([z,z]xR3) —0

H!'xH!'

as 7, t — 00. Therefore, {(81(t)u(t),Sz(l‘)v(t))}HOO is a Cauchy sequence in H' x H'. In par-
ticular, the solution (u, v) scatters in the positive time. O
In the following, we provide the proofs for Lemmas 2.2, 2.3, and 2.4.

Proof of Lemma 2.2. By the sharp Gagliardo-Nirenberg inequality (1.15), K(|f|, |g]) < K(f.2),

and (2.3), we get

1 [ K(f.g)Ms(f.8) :
P(Ifllgl) =5 (K(duﬁ)May(qw)) K(f,8)-

Thus
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. K(ei"'élf’eix'izg)Mav(f’g)% il vt
Pl <3, ! ?f(< K910, (6.9) )K(e he g)>

1

1 K(e™f, e 2g) My, (f.g) |’
<= inf x inf K(e®4f, e
—35,,@@@( K@M (b)) "o X070

which implies (2.4). O

Proof of Lemma 2.3. By (1.15) and p > 0, we have

Ey((u(t), v(t)) M, (u(1), v(1)) =

,_.

5 Klu(o), v( (6)) My (14(£), ¥(£)) — Copu (K (u(t). v(£)) M (1), v(1)) )
t G(K (u(t), v(t)) My (u(t), v(1)))

for all t € (—T_, T), where G(4) :=312— COPJZ Using (2.3), we compute

G(K (¢, )My (¢, ) = 3 K(‘ﬁ) )Mz, (9, ¢) = EE3~;(¢, V) M3y (0, ).
By the conservation of mass and energy, and (1.13), we have

G (K (u(t), v(1)) M (u(t), v(1)) < Ep(u(t), v(£)) M (u(t), v(1))

= Ey(uo, v0) M3, (0, vo)
1
<5 B3y (00 )Ms; (9, 9) = G(K(, 1) Ms; (9, 1))
for all t € (—T_, T.). Using this and (1.16), the continuity argument yields

K (u(t), v(£)) Ms, (u(t), v(1)) < K(¢,¥) M3, (¢, 9) (A4)

for all + € (—T_,T). The blow-up alternative then implies that T_ = T = oco. Next, by (1.15),
(2.3), and (A.4), we have

K(u(t) v(£) My (u(t) v(1)) Lo
K(¢. ) Ms, (1) )KWW)) < 3K (u(®),v(1)

1
Pl (1) <5 (
for all t € R. It follows that

Ey(u(t), v(t)) = % (K(u(t), v(1)) + Myu(u(t), v(1))) — P(u(t), v(t)) =

which, by the conservation of energy, implies (2.5).
From (A.5) and (2.3), we see that

K (u(t), v(£)) M, (u(t), (1)) < 6B, (u(t), v(t)) M, (u(?), v(t))
t

(u(t),v
E,(u(t), v(t)) Ma, (u(t), v(t))
Es, (¢, ) M3, (¢, ) >E3y(¢’ l//)M3y(¢, 1)

_ [ Esy(u(t), v(1)) M, (u(t), v(1)) K (¢ ) Ms, (1)
5 Ea (0, 9) M5, (,9)

for all + € R. On the other hand, by (1.13), there exists 6 = d(up, vo, ¢, ) > 0 such that

E, (1o, vo) M3, (140, vo) < (1 — 5)%E3y(¢: )Mz, (¢, ).

Then from (A.6) and the conservation laws of mass and energy, we obtain

LK@t v()  (AS)

=6
(A.6)
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K(u(t), v(£)) M3y (u(2), v(t)) < (1 = 8)K(, ) M3 (o, )

for all t € R. The proof is complete. m|

Proof of Lemma 2.4. It follows from straightforward calculations that ||Tzf|[>. < ||f|[?. and
| rawroras = [19Tare) Pax + [TaaracolwPas £ e .

As ||ATg||;~=<R72, we infer from (2.6) and the conservation of mass that there exists a suffi-
ciently large R = R(J, ug, vo, $, /) so that

0
(TRl — 20 T — )M (Tl (). T~ 2t0) < (1) (.00, 0.
for all t € R. The refined Gagliardo-Nirenberg inequality (2.4) implies that

P(T'r(- — Z)‘u(f)‘,rR(~ - Z)‘V(t)‘) < % (1 — g) ZK(FR(~ — Z)eixflu(t)’l—*R(. _ Z)eixfzv(t))

which in turn implies (2.8) with v:=1— (1 — g)% > 0. m|

Appendix B: virial identities
This Appendix is devoted to the proof of the virial identities in Sec. 3.
Proof of Lemma 3.1. Notice that
O (|ul> + yBIv)*) = 2Re(wdyu + ypvdv). (B.1)
Moreover, multiplying Eq. (1.1) with (&, fv) and taking the imaginary part, we have
Re(udu + ypvov) = —Im(uAu + fvAv) — Im (% v+ §u317> o)

= —Im(uAu + fvAv) +§ (1 - g) Im(u’7).

Combining (B.1) and (B.2), we infer that
2
O (lul® +yBIv)?) = —2Im(aAu + BvAv) + 3 (1 — §> Im(u’v)

= =2V -Im(uVu) — 2V - Im(vVv) +§ <1 - g) Im(u’v),

which implies (3.1). On the other hand, we rewrite (1.1) as

iOu+Au = H,
ipyov+Av = G,
where H = H;, + H, + H; and G = G; + G, + G3 with
_ _ L 2 _ 1,
H =u H,=- §|u| + 2y |u, H3f—§u v,

1
Gy =, Gy=—(9W+2u)v, Gs f§u3.

It follows from straightforward computations that
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Olm 50kt + 790¢v) = ~ A (|ul? + [v]?) — 20/Re (Dt + O7,v)
2 ) ) ]

(B.3)
+ (2Re(HOku) — ORe(Hu)) + (2Re(Gv) — OkRe(Gv)).
A simple calculation leads to
(2Re(H,0ku) — OkRe(H,u)) + (2Re(G10kv) — OkRe(G,v)) = 0.
Moreover, since
O(|[ul*|v]*) = 2Re(@du)|v|]* + 2Re(vOyv)|ul*
(|ul*) = 4|u[*Re(udyu),
Ok(|v[*) = 4lv|*Re(7yv),
we obtain that
_ _ _ — 1 9
(2Re(H,0ku) — OkRe(Hau)) 4+ (2Re(G20kv) — OkRe(Gyv)) = s u|* + 5 [v|* 4 2[ul*|v]*.
Finally, as
OkRe(w*v) = 3Re(u?vOkit) + Re(#’Okv),
it follows that
—_ _ _ _ 2
(2Re(H30ku) — OkRe(Hsu)) + (2Re(G30kv) — OkRe(G3v)) = §6kRe(ﬁ3v).
Collecting the above identities, we obtain
(2Re(HOku) — OkRe(Hu)) + (2Re(Gv) — kRe(Gv)) = 20kN(u, v),
which, together with (B.3), shows (3.2). The proof is complete. O

Proof of Corollary 3.3. The proof of the identity (3.4) is straightforward. The relation (3.5)
comes from the fact that

o Xj o 51 x]‘.Xk

r

Xi X
Ak 2
o,

)
for radial function. Hence

ReJ(?jquo(x)@ﬂ(t, ) Ous(t, x)dx — J“"(’) IVu(t, %) Pdx + J <“’;§’) - “";(3’)) - Vu(t, %) 2dx,

r

where r = |x|, which in turn implies (3.6).
If ¢ is radial and (u, v) as well,

M) = [ 8 ul? + )0+ 4 [ ()Wl + 7)1, )
- 4JA(p(x)N(u, v)(t, x)dx.

From the choice of the function ¢@(x) = /(y) + 22, we have

d

& My(t) = - JA;W)(W T [vP) (4 x)dx + 4ReJ 2 (3) (Ojihtn + Dy 0v) (8 3)dx

+8(110:u(D)] 22 + 1072 ) — 8P(u(t), (1)) — 4jAyw<y)N<u, v)(t,x)dx

which in turn gives (3.7). O
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