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ABSTRACT
We study the asymptotic dynamics for solutions to a system of non-
linear Schr€odinger equations with cubic interactions, arising in non-
linear optics. We provide sharp threshold criteria leading to global
well-posedness and scattering of solutions, as well as formation of
singularities in finite time for (anisotropic) symmetric initial data. The
free asymptotic results are proved by means of Morawetz and inter-
action Morawetz estimates. The blow-up results are shown by com-
bining variational analysis and an ODE argument, which overcomes
the unavailability of the convexity argument based on virial-
type identities.
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1. Introduction

In this paper, we consider the Cauchy problem for the following system of nonlinear
Schr€odinger equations with cubic interaction

i@tuþ Du� u ¼ � 1
9
juj2 þ 2jvj2

� �
u� 1

3
�u2v,

ic@tvþ Dv� lv ¼ � 9jvj2 þ 2juj2
� �

v� 1
9
u3,

8>><
>>: (1.1)

with initial datum ðu, vÞ t¼0 ¼ ðu0, v0Þ:j Here u, v : R� R
3 ! C, u0, v0 : R

3 ! C, and the
parameters c, l are strictly positive real numbers.
The system (1.1) is the dimensionless form of a system of nonlinear Schr€odinger

equations as derived in [1] (see also [2]), where the interaction between an optical
beam at some fundamental frequency and its third harmonic is investigated. More pre-
cisely, from a physical point of view, (1.1) models the interplay of an optical
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monochromatic beam with its third harmonic in a Kerr-type medium (we refer to [3]
for the latter terminology, as well as for a sketch of the derivation of (1.1)).
Models such as in (1.1) arise in nonlinear optics in the context of the so-called cas-

cading nonlinear processes. These processes can indeed generate effective higher-order
nonlinearities, and they stimulated the study of spatial solitary waves in optical materials
with v2 or v3 susceptibilities (or nonlinear response, equivalently).
Let us mention, following [4], the difference between v2 (quadratic) and v3 (cubic)

media. The contrast basically reflects the order of expansion (in terms of the electric field)
of the polarization vector, when decomposing the electrical induction field appearing in
the Maxwell equations as the sum of the electric field E and the polarization vector P:

Indeed, for “small” intensities of the electric field, the polarization response is linear,
while for “large” intensities of E, the vector P has a non-negligible nonlinear component,
denoted by Pnl: Thus, when considering the Taylor expansion for Pnl, one gets the pres-
ence of (at least) quadratic and cubic terms whose coefficients vj, which depend on the
frequency of the electric field E, are called jth optical susceptibility. For j ¼ 2, 3, they are
usually denoted by v2 and v3. Therefore quadratic media arise from approximation of the
type Pnl � v2E2, and similarly one can define cubic media. The so-called non-centro-
symmetric crystals are typical examples of v2 materials. Moreover, it can be shown, see
[5], that isotropic materials have v2n ¼ 0 susceptibility, namely even orders of nonlinear
responses are zero. In the latter case, the leading-order in the expansion of Pnl is cubic,
and these kind of isotropic materials are called Kerr-materials. See the monographs [5–7]
for more discussions. In addition, we refer to [1, 2, 4, 8–13], and references therein, for
more insights on physical motivations and physical results (both theoretical and numer-
ical) about (1.1) and other NLS systems with cubic and quadratic interactions. Models as
in (1.1) are therefore physically relevant, and they deserve a rigorous mathematical inves-
tigation. In particular, we are interested in qualitative properties of solutions to (1.1).
Our main goal is to understand the asymptotic dynamics of solutions to (1.1), by

establishing conditions ensuring global existence and their long time behavior, or lead-
ing to formation of singularities in finite time.
Let us mention since now on, that once the Strichartz machinery has been established,

and this is nowadays classical, local well-posedness of (1.1) at the energy regularity level
(i.e. H1ðR3Þ, mathematically speaking) is relatively straightforward to get (see below for a
precise definition of the functional space to employ a fixed point argument).
The dynamics of solution of NLS-type equation is intimately related to the existence

of ground states (see below for a more precise definition). The analysis of solitons is a
very important physical problem, and the main difference between v2 media and v3

media, is that, in the latter case, the cubic nonlinearity is L2 supercritical, while in the
former quadratic nonlinearities are L2 subcritical. The last two regimes dramatically
reflect the possibility for the problem to be globally well-posed, and the stability/
instability properties of the solitons are different. See [4] for further discussions, and a
rigorous analysis for solitons in quadratic media.
Regarding system (1.1), existence of ground states and their instability properties

were established in a recent paper by Oliveira and Pastor, see [3]. Our aim is to push
forward their achievements to obtain a qualitative description of solutions to (1.1), by
giving sharp thresholds, defined by means of quantities linked to the ground state, are
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sufficient to guarantee a linear asymptotic dynamics for large time (i.e. scattering) or
finite time blow-up of the solutions.
Let us start our rigorous mathematical discussion about (1.1). The existence of solu-

tions is quite simple to obtain. As said above, it is well-known that (1.1) is locally well-
posed in H1ðR3Þ � H1ðR3Þ, (see e.g., [14]). More precisely, for ðu0, v0Þ 2 H1ðR3Þ �
H1ðR3Þ, there exist T6 > 0 and a unique solution ðu, vÞ 2 Xðð�T�,TþÞÞ �
Xðð�T�,TþÞÞ, where

Xðð�T�,TþÞÞ :¼ Cðð�T�,TþÞ,H1ðR3ÞÞ \ Lqlocðð�T�,TþÞ,W1, rðR3ÞÞ
for any Strichartz L2-admissible pair (q, r), i.e., 2

q þ 3
r ¼ 3

2 , for 2 � r � 6: See Sec. 2. In
addition, the maximal times of existence obey the blow-up alternative, i.e., either Tþ ¼
1, or Tþ < 1 and limt%Tþ jjðuðtÞ, vðtÞÞjjH1ðR3Þ�H1ðR3Þ ¼ 1, and similarly for T�:
When T6 ¼ 1, we call the solution global. Solutions to (1.1) satisfy conservation laws
of mass and energy, namely

M3cðuðtÞ, vðtÞÞ ¼ M3cðu0, v0Þ, (Mass)

ElðuðtÞ, vðtÞÞ ¼ 1
2

KðuðtÞ, vðtÞÞ þMlðuðtÞ, vðtÞÞ
� �� PðuðtÞ, vðtÞÞ ¼ Elðu0, v0Þ,

(Energy)

where

Mlðf , gÞ :¼ jjf jj2L2ðR3Þ þ ljjgjj2L2ðR3Þ, (1.2)

Kðf , gÞ :¼ jjrf jj2L2ðR3Þ þ jjrgjj2L2ðR3Þ, (1.3)

Pðf , gÞ :¼
ð
R

3

1
36

jf ðxÞj4 þ 9
4
jgðxÞj4 þ jf ðxÞj2jgðxÞj2 þ 1

9
Re �f

3ðxÞgðxÞ
� �

dx: (1.4)

It is worth introducing since now the Pohozaev functional

Gðf , gÞ :¼ Kðf , gÞ � 3Pðf , gÞ, (1.5)

and, for later purposes, we rewrite the functionals P (see (1.4)) by means of its density:
namely

Pðf , gÞ ¼
ð
R

3
Nðf ðxÞ, gðxÞÞdx

where

Nðf ðxÞ, gðxÞÞ :¼ 1
36

jf ðxÞj4 þ 9
4
jgðxÞj4 þ jf ðxÞj2jgðxÞj2 þ 1

9
Re �f

3ðxÞgðxÞ
� �

: (1.6)

The previous conservation laws can be formally proved by usual integration by part,
then a rigorous justification of them can be done by a classical regularization argument,
see [14].
In order to introduce other invariance of the equations, let us give the follow-

ing definition.

Definition 1.1. We say that the initial-value problem (1.1) satisfies the mass-resonance
condition provided that c ¼ 3:

COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS 3



For c ¼ 3, (1.1) has the Galilean invariance: namely, if (u, v) is a solution to (1.1),
then

unðt, xÞ :¼ eix�ne�tjnj2iuðt, x� 2tnÞ, vnðt, xÞ :¼ e3ix�ne�3tjnj2ivðt, x � 2tnÞÞ, n 2 R
3,

(1.7)

is also a solution to (1.1) with initial data ðeix�nu0, e3ix�nv0Þ:
Remark 1.1. Notice that if c 6¼ 3, the system (1.1) is not invariant under the Galilean
transformations as in (1.7).

As, in this paper, we are interested in long time behavior of solutions to (1.1), let us
recall the notion of scattering.

Definition 1.2. We say that a global solution ðuðtÞ, vðtÞÞ to (1.1) scatters in H1ðR3Þ �
H1ðR3Þ if there exists a scattering state ðu6, v6Þ 2 H1ðR3Þ � HðR3Þ such that

lim
t!61 jjðuðtÞ, vðtÞÞ � ðS1ðtÞu6,S2ðtÞv6ÞjjH1ðR3Þ�H1ðR3Þ ¼ 0, (1.8)

where

S1ðtÞ ¼ eitðD�1Þ and S2ðtÞ ¼ ei
t
cðD�lÞ (1.9)

are linear Schr€odinger propagators.
Note that the set of initial data such that solutions to (1.1) satisfy (1.8) is non-empty,

as solutions corresponding to small H1ðR3Þ �H1ðR3Þ-data do scatter (see Sec. 2).

As already mention above, it is well-known that the dynamics of nonlinear
Schr€odinger-type equations is strongly related to the notion of ground states. Hence, we
recall some basic facts about ground state standing waves related to (1.1). By standing
waves, we mean solutions to (1.1) of the form

ðuðt, xÞ, vðt, xÞÞ ¼ eixtf ðxÞ, e3ixtgðxÞ� �
,

where x 2 R is a frequency and (f, g) is a real-valued solution to the system of elliptic
equations

Df � ðxþ 1Þf þ 1
9
f 2 þ 2g2

� �
f þ 1

3
f 2g ¼ 0,

Dg � ðlþ 3cxÞg þ ð9g2 þ 2f 2Þg þ 1
9
f 3 ¼ 0:

8>><
>>: (1.10)

It was proved by Oliveira and Pastor, see [3], that solutions to (1.10) exist, provided
that

x > �min 1,
l
3c

� 	
: (1.11)

Moreover, a non-trivial solution ð/,wÞ to (1.10) is called ground state related to (1.10)
if it minimizes the action functional

Sx,l, cðf , gÞ :¼ Elðf , gÞ þ x
2
M3cðf , gÞ, (1.12)

over all non-trivial solutions to (1.10). Under the assumption (1.11), the set of ground
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states related to (1.10) denoted by

Gðx, l, cÞ :¼ ð/,wÞ 2 Ax,l, c : Sx, l, cð/,wÞ � Sx, l, cðf , gÞ, 8ðf , gÞ 2 Ax, l, c

 �

is not empty, where Ax,l, c is the set of all non-trivial solutions to (1.10). In particu-
lar, Gð0, 3c, cÞ 6¼ ;:
It was shown (see [3, Theorem 3.10]) that if ðu0, v0Þ 2 H1ðR3Þ � H1ðR3Þ satisfies

Elðu0, v0ÞM3cðu0, v0Þ < 1
2
E3cð/,wÞM3cð/,wÞ, (1.13)

Kðu0, v0ÞM3cðu0, v0Þ < Kð/,wÞM3cð/,wÞ, (1.14)

where ð/,wÞ 2 Gð0, 3c, cÞ, then the corresponding solution to (1.1) exists globally in
time. The proof of this result is based on a continuity argument and the following sharp
Gagliardo-Nirenberg inequality

Pðf , gÞ � Copt Kðf , gÞ
� �3

2 M3cðf , gÞ
� �1

2, 8ðf , gÞ 2 H1ðR3Þ � H1ðR3Þ: (1.15)

This type of Gagliardo-Nirenberg inequality was established in [3, Lemma 3.5]. Note
that in [3], this inequality was proved for real-valued H1-functions. However, we can
state it for complex-valued H1-functions as well since Pðf , gÞ � Pðjf j, jgjÞ
and jjrðjf jÞjjL2ðR3Þ � jjrf jjL2ðR3Þ:
We are now in position to state our first main result. The following theorem provides

sufficient conditions to have scattering of solutions. More precisely, for data belonging
to the set given by conditions (1.13) and (1.14), solutions to (1.1) satisfy (1.8), for some
scattering state ðu6, v6Þ:
Theorem 1.1. Let l, c > 0, and ð/,wÞ 2 Gð0, 3c, cÞ. Let ðuðtÞ, vðtÞÞ the corresponding
solution of (1.1) with initial data ðu0, v0Þ 2 H1ðR3Þ �H1ðR3Þ. Assume that the initial
data satisfies (1.13) and (1.14). Provided that
� (non-radial case) either jc� 3j < g for some g ¼ gðE3cððu0, v0ÞÞ,M3cððu0, v0ÞÞÞ > 0

small enough,
� (radial case) or ðu0, v0Þ is radial,then the solution of (1.1) is global and scatters

in H1ðR3Þ � H1ðR3Þ:
Our proof of the scattering results is based on the recent works by Dodson and

Murphy [15] (for non-radial solutions) and [16] (for radial solutions), using suitable
scattering criteria and Morawetz-type estimates. In the non-radial case, we make use of
an interaction Morawetz estimate to derive a space-time estimate. In the radial case, we
make use of localized Morawetz estimates and radial Sobolev embeddings to show a
suitable space-time bound of the solution.
Let us highlight the main novelties of this paper, regarding the linear asymptotic

dynamics. For the classical focusing cubic equation in H1ðR3Þ, scattering (and blow-up)
below the mass-energy threshold, was proved by Holmer and Roudenko in [17] for
radial solutions, by exploiting the concentration/compactness and rigidity scheme in the
spirit of Kenig and Merle, see [18]. The latter scattering result has been then extended
to non-radial solution in Duyckaerts, Holmer, and Roudenko [19]. To remove the radi-
ality assumption, a crucial role is played by the invariance of the cubic NLS under the
Galilean boost, which enables to have a zero momentum for the soliton-like solution.
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As observed in Remark 1.1, Eq. (1.1) lacks the Galilean invariance unless c ¼ 3: Hence
we cannot rely on a Kenig and Merle road map to achieve our scattering results, and
we instead build our analysis on the recent method developed by Dodson and Murphy,
see [15, 16]. In the latter two cited works, Dodson and Murphy give alternative proofs
of the scattering results contained in [17, 19], which avoid the use of the concentration/
compactness and rigidity method. They give a shorter proofs, though quite technical,
based on Morawetz-type estimates. In our work, by borrowing from [15, 16], we prove
interaction Morawetz and Morawetz estimates for (1.1), and we prove Theorem 1.1 for
non-radial solutions which do not fit the mass-resonance condition, as well as for radi-
ally symmetric solutions. In this latter case, instead, we only need (localized) Morawetz
estimates, which are less involved with respect to the interaction Morawetz ones, as we
can take advantage of the spatial decay of radial Sobolev functions.
Our second main result is about formation of singularities in finite time for solutions

to (1.1). We state it for two classes of initial data. Indeed, besides the fact that these ini-
tial data must satisfy the a-priori bounds given by (1.13) and (1.16)—the latter (see
below) replacing the condition (1.14) yielding to global well-posedness—they can belong
either to the space of radial function, or to the anisotropic space of cylindrical function
having finite variance in the last variable. The Theorem reads as follows.

Theorem 1.2. Let l, c > 0, and ð/,wÞ 2 Gð0, 3c, cÞ. Let ðu0, v0Þ 2 H1ðR3Þ �H1ðR3Þ sat-
isfy either Elðu0, v0Þ < 0 or, if Elðu0, v0Þ � 0, we assume moreover that (1.13) holds and

Kðu0, v0ÞM3cðu0, v0Þ > Kð/,wÞM3cð/,wÞ: (1.16)

If the initial data satisfy
� either (u0, v0) is radially symmetric,
� or ðu0, v0Þ 2 R3 � R3, where

R3 :¼ f 2 H1ðR3Þ : f ðy, zÞ ¼ f ðjyj, zÞ, zf 2 L2ðR3Þ
 �
with x ¼ ðy, zÞ, y ¼ ðx1, x2Þ 2 R

2 and z 2 R, then the corresponding solution to (1.1)
blows-up in finite time.

Let us now comment previous known results about blow-up for (1.1) and the one
stated above, and highlight the main novelties of this paper regarding the blow-up
achievements with respect to the previous literature.
In the mass-resonance case, i.e., c¼ 3, and provided l ¼ 3c ¼ 9, the existence of

finite time blow-up solutions to (1.1) with finite variance initial data was proved in [3,
Theorems 4.6 and 4.8]. More precisely, they proved that if ðu0, v0Þ 2 RðR3Þ � RðR3Þ
with RðR3Þ ¼ H1ðR3Þ \ L2ðR3, jxj2dxÞ satisfying either E9ðu0, v0Þ < 0 or if E9ðu0, v0Þ �
0, they moreover assumed that

E9ðu0, v0ÞM9ðu0, v0Þ < 1
2
E9ð/,wÞM9ð/,wÞ,

Kðu0, v0ÞM9ðu0, v0Þ > Kð/,wÞM9ð/,wÞ,
where ð/,wÞ 2 Gð0, 9, 3Þ, then the corresponding solution to (1.1) blows-up in finite
time. The proof of the blow-up result in [3] is based on the following virial identity
(see Remark 3.3)

6 A. H. ARDILA ET AL.



d2

dt2
VðtÞ ¼ 4GðuðtÞ, vðtÞÞ, (1.17)

where

VðtÞ :¼
ð
jxj2 juðt, xÞj2 þ 9jvðt, xÞj2
� �

dx:

Using (1.17), the finite time blow-up result follows from a convexity argument. For the
power-type NLS equation, this kind of convexity strategy goes back to the early work of
Glassey, see [20], for finite variance solutions with negative initial energy. See the works
by Ogawa and Tsutsumi [21] for the removal of the finiteness hypothesis of the vari-
ance, but with the addition of the radial assumption. See the already mentioned paper
[17] for an extension to the cubic NLS up to the mass-energy threshold, of the results
by Glassey, and Ogawa and Tsutsumi.
If we do not assume the mass-resonance condition, or we do not assume that l 6¼

3c, the identity (1.17) ceases to be valid. Thus the convexity argument is no-more
applicable in our general setting. The proof of Theorem 1.2 above relies instead on an
ODE argument, in the same spirit of our previous work [22], using localized virial esti-
mates and the negativity property of the Pohozaev functional (see Lemma 5.1). We
point-out that our result not only extends the one in [3] to radial and cylindrical solu-
tions, but also extends it to the whole range of l, c > 0: It worth mentioning that blow-
up in a full generality, i.e. for infinite-variance solutions with no symmetric assump-
tions, is still an open problem even for the classical cubic NLS.
We conclude this introduction by reporting some notation used along the paper, and

by disclosing how the paper is organized.

1.1. Notations

We use the notation X�Y to denote X � CY for some constant C> 0. When X�Y and
Y�X (possibly for two different universal constants), we write X � Y , or equivalently,
we use the ‘big O’ notation O, e.g., X ¼ OðYÞ: For I 	 R an interval, we denote the
mixed norm

jjf jjLqt LrxðI�R
3Þ ¼

ð
I

ð
R

3
jf ðt, xÞjrdx

� �q
r

dt

 !1
q

with the usual modifications when either r or q are infinity. When q¼ r, we simply
write jjf jjLqt, xðI�R

3Þ: Let f , g 2 Lqt L
r
xðI � R

3Þ, we denote

jjðf , gÞjjLqt Lrx�Lqt L
r
xðI�R

3Þ :¼ jjf jjLqt LrxðI�R
3Þ þ jjgjjLqt LrxðI�R

3Þ

and if q¼ r, we simply write

jjðf , gÞjjLqt, x�Lqt, xðI�R
3Þ :¼ jjf jjLqt, xðI�R

3Þ þ jjgjjLqt, xðI�R
3Þ:

The LpðR3Þ spaces, with 1 � , p � 1, are the usual Lebesgue spaces, as well as spaces
Wk, pðR3Þ spaces, and their homogeneous versions, are the classical Sobolev spaces. To
lighten the notation along the paper, we will avoid to write R

3 (unless necessary), as we
are dealing with a three-dimensional problem.
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1.2. Structure of the paper

This paper is organized as follows. In Sec. 2, we state preliminary results that will be
needed throughout the paper, and we will prove some coercivity conditions which play
a vital role to get the scattering results. In Sec. 3, we introduce localized quantities, and
we derive localized virial estimates, Morawetz and interaction Morawetz estimates which
will be the fundamental tools to establish the main results. The latter a-priori estimates
will be shown in both radial and non-radial settings. In Sec. 4, we give scattering crite-
ria for radial and non-radial solutions. We eventually prove, in Sec. 5, the scattering
results and the blow-up results, by employing the tools developed in the previous
Sections. We conclude with the Appendixes A and B, devoted to the proofs of some
results used along the paper.

2. Preliminary tools

In this section, we introduce some basic tools toward the proof of our main achieve-
ments. Specifically, we give a small data scattering result, as well as useful properties
related to the ground states. We postpone the proof of some of the following results to
Appendix A.

2.1. Small data theory

We have the following small data scattering result, which will be useful in the sequel.

Lemma 2.1. Let l, c > 0, and T> 0. Suppose that (u, v) is a global H1-solution to (1.1)
satisfying

sup
t2R

jjðuðtÞ, vðtÞÞjjH1�H1 � E

for some constant E> 0. There exists �sd ¼ �sdðEÞ > 0 such that if

jjðS1ðt � TÞuðTÞ,S2ðt � TÞvðTÞÞjjL4t L6x�L4t L
6
xð T,1Þ�R

3Þ<�sd,½ (2.1)

then the solution scatters forward in time.

Proof. See Appendix A. w

2.2. Variational analysis

We first recall some basic properties of ground states in Gð0, 3c, cÞ and then show a
coercivity condition (see (2.8)), which play a vital role to get scattering results.
It was shown in [3, Lemma 3.5] that any ground state ð/,wÞ 2 Gð0, 3c, cÞ optimizes

the Gagliardo-Nirenberg inequality (1.15), that is

Copt ¼ Pð/,wÞ
Kð/,wÞð Þ32 M3cð/,wÞ� �1

2

:

Using the Pohozaev identities (see [3, Lemma 3.4])
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Pð/,wÞ ¼ S0, 3c, cð/,wÞ ¼ E3cð/,wÞ ¼ M3cð/,wÞ ¼ 1
3
Kð/,wÞ, (2.2)

we have

Copt ¼ 1
3

Kð/,wÞM3cð/,wÞ� ��1
2: (2.3)

To employ some Morawetz estimates in the proof of the scattering theorem, we will
also use the following refined Gagliardo-Nirenberg inequality.

Lemma 2.2. Let ð/,wÞ 2 Gð0, 3c, cÞ. For any ðf , gÞ 2 H1 � H1 and n1, n2 2 R
3, we have

Pðjf j, jgjÞ � 1
3

Kðf , gÞM3cðf , gÞ
Kð/,wÞM3cð/,wÞ

 !1
2

Kðeix�n1 f , eix�n2gÞ: (2.4)

Proof. See Appendix A. w

We conclude this preliminary section by giving the following two coercivity results.

Lemma 2.3. Let l, c > 0, and ð/,wÞ 2 Gð0, 3c, cÞ. Let ðu0, v0Þ 2 H1 �H1 satisfy (1.13)
and (1.14). Then the corresponding solution to (1.1) exists globally in time and satisfies

sup
t2R

KðuðtÞ, vðtÞÞ � 6Elðu0, v0Þ: (2.5)

Moreover, there exists d ¼ dðu0, v0,/,wÞ > 0 such that

KðuðtÞ, vðtÞÞM3cðuðtÞ, vðtÞÞ � ð1� dÞKð/,wÞM3cð/,wÞ (2.6)

for all t 2 R:

Proof. See Appendix A. w

Lemma 2.4. Let l, c > 0, and ð/,wÞ 2 Gð0, 3c, cÞ. Let ðu0, v0Þ 2 H1 �H1 satisfy (1.13)
and (1.14). Let d be as in (2.6). Then there exists R ¼ Rðd, u0, v0,/,wÞ > 0 sufficiency
large such that for any z 2 R

3,

K CRð� � zÞuðtÞ,CRð� � zÞvðtÞð Þ � M3c CRð� � zÞuðtÞ,CRð� � zÞvðtÞð Þ

� 1� d
2

� �
Kð/,wÞM3cð/,wÞ

(2.7)

uniformly for t 2 R, where CRðxÞ :¼ C x
R

� �
with C a cutoff function satisfying 0 � CðxÞ �

1 for all x 2 R
3. Moreover, there exists � ¼ �ðdÞ > 0 independent of t so that for any

n1, n2 2 R
3, and any z 2 R

3,

K CRð� � zÞeix�n1uðtÞ,CRð� � zÞeix�n2vðtÞ� �� 3P CRð� � zÞuðtÞ,CRð� � zÞvðtÞð Þ
� �K CRð� � zÞeix�n1uðtÞ,CRð� � zÞeix�n2vðtÞ� � (2.8)

for any t 2 R:

Proof. See Appendix A. w
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3. Virial and Morawetz estimates

This section is devoted to the proof of virial-type, Morawetz-type, and interaction
Morawetz-type estimates, which will be crucial for the proof of the main Theorems 1.1
and 1.2.

3.1. Virial estimates

We start with the following identities. In what follows we use the Einstein convention,
so repeated indices are summed.

Lemma 3.1. Let l, b, c > 0, and (u, v) be a H1-solution to (1.1). Then the following iden-
tities hold:

@tðjuj2 þ cbjvj2Þ ¼ �2r � Imð�uruÞ � 2br � Imð�vrvÞ þ 2
3

1� b
3

� �
Imðu3�vÞ, (3.1)

@tImð�u@kuþ c�v@kvÞ ¼ 1
2
@kDðjuj2 þ jvj2Þ � 2@jReð@j�u@kuþ @j�v@kvÞ þ 2@kNðu, vÞ, (3.2)

where N is as in (1.6). In particular, we have

@tðjuj2 þ c2jvj2Þ ¼ �2r � Imð�uruÞ � 2cr � Imð�vrvÞ þ 2
3

1� c
3

� �
Imðu3�vÞ,

@tðjuj2 þ 3cjvj2Þ ¼ �2r � Imð�uruÞ � 6r � Imð�vrvÞ:

Proof. See Appendix B. w

A direct consequence of Lemma 3.1 is the following localized virial identity related
to (1.1).

Lemma 3.2. Let l, c > 0, and u : R3 ! R be a sufficiently smooth and decaying func-
tion. Let (u, v) be a H1-solution to (1.1) defined on the maximal time interval
ð�T�,TþÞ. Define

MuðtÞ :¼ 2Im
ð
ruðxÞ � ðru�u þ crv�vÞðt, xÞdx: (3.3)

Then we have for all t 2 ð�T�,TþÞ,
d
dt

MuðtÞ ¼ �
ð
D2uðxÞðjuj2 þ jvj2Þðt, xÞdx þ 4Re

ð
@2
jkuðxÞð@j�u@kuþ @j�v@kvÞðt, xÞdx

� 4
ð
DuðxÞNðu, vÞðt, xÞdx:

The following Corollary is easy to get.

Corollary 3.3. Recall the definition of G, N, P in (1.5), (1.6), and (1.4), respectively.
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i. If uðxÞ ¼ jxj2,
d
dt

Mjxj2ðtÞ ¼ 8GðuðtÞ, vðtÞÞ: (3.4)

ii. If u is radially symmetric, by denoting jxj ¼ r, we have

d
dt

MuðtÞ ¼ �
ð
D2uðxÞðjuj2 þ jvj2Þðt, xÞdxþ 4

ð
u0ðrÞ
r

ðjruj2 þ jrvj2Þðt, xÞdx

þ 4
ð

u00ðrÞ
r2

� u0ðrÞ
r3

� �
ðjx � ruj2 þ jx � rvj2Þðt, xÞdx

� 4
ð
DuðxÞNðu, vÞðt, xÞdx:

(3.5)

iii. (If u is radial and (u, v) is also radial, then

d
dt

MuðtÞ ¼ �
ð
D2uðxÞðjuj2 þ jvj2Þðt, xÞdxþ 4

ð
u00ðrÞðjruj2 þ jrvj2Þðt, xÞdx

� 4
ð
DuðxÞNðu, vÞðt, xÞdx:

(3.6)

iv. Denote x ¼ ðy, zÞ with y ¼ ðx1, x2Þ 2 R
2 and z 2 R. Let w : R2 ! R be a suffi-

ciently smooth and decaying function. Set uðxÞ ¼ wðyÞ þ z2. If ðuðtÞ, vðtÞÞ 2
R3 � R3 for all t 2 ð�T�,TþÞ, then we have

d
dt

MuðtÞ ¼ �
ð
D2
ywðyÞðjuj2 þ jvj2Þðt, xÞdx þ 4

ð
w00ðqÞðjryuj2 þ jryvj2Þðt, xÞdx

þ 8 jj@zuðtÞjj2L2 þ jj@zvðtÞjj2L2
� �

� 8PðuðtÞ, vðtÞÞ

� 4
ð
DywðyÞNðu, vÞðt, xÞdx,

(3.7)

where q ¼ jyj:

Proof. See Appendix B. w

We now aim to construct precise localization functions that we will use to get the
desired main results of the paper. Let f : ½0,1Þ ! ½0, 2
 be a smooth function satisfying

fðrÞ :¼ 2 if 0 � r � 1,
0 if r � 2:

�

We define the function # : ½0,1Þ ! ½0,1Þ by

#ðrÞ :¼
ðr
0

ðs
0
fðsÞdsds: (3.8)

For R> 0, we define the radial function uR : R3 ! R by

uRðxÞ ¼ uRðrÞ :¼ R2#ðr=RÞ, r ¼ jxj: (3.9)

We readily check that, 8x 2 R
3 and 8r � 0,
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2 � u00
RðrÞ � 0, 2� u0

RðrÞ
r

� 0, 6� DuRðxÞ � 0:

We are ready to state the first virial estimate for radially symmetric solutions.

Lemma 3.4. Let l, c > 0. Let (u, v) be a radial H1-solution to (1.1) defined on the max-
imal time interval ð�T�,TþÞ. Let uR be as in (3.9) and denote MuR

ðtÞ as in (3.3). Then
we have for all t 2 ð�T�,TþÞ,

d
dt

MuR
ðtÞ � 4GðuðtÞ, vðtÞÞ þ CR�2KðuðtÞ, vðtÞÞ þ CR�2 (3.10)

for some constant C> 0 depending only on l, c, and M3cðu0, v0Þ, where G is as in (1.5).

Proof. By (3.6), we have for all t 2 ð�T�,TþÞ,
d
dt

MuR
ðtÞ ¼ �

ð
D2uRðxÞðjuj2 þ jvj2Þðt, xÞdxþ 4

ð
R

3
u00

RðrÞðjruj2 þ jrvj2Þðt, xÞdx

� 4
ð
DuRðxÞNðu, vÞðt, xÞdx:

We rewrite, using G� K þ 3P ¼ 0,

d
dt

MuR
ðtÞ ¼ 8GðuðtÞ, vðtÞÞ � 8KðuðtÞ, vðtÞÞ þ 24PðuðtÞ, vðtÞÞ

�
ð
D2uRðxÞðjuj2 þ jvj2Þðt, xÞdx þ 4

ð
u00

RðrÞðjruj2 þ jrvj2Þðt, xÞdx

� 4
ð
DuRðxÞNðu, vÞðt, xÞdx

¼ 8GðuðtÞ, vðtÞÞ �
ð
D2uRðxÞðjuj2 þ jvj2Þðt, xÞdx

� 4
ð
ð2� u00

RðrÞÞðjruj2 þ jrvj2Þðt, xÞdxþ 4
ð
ð6� DuRðxÞÞNðu, vÞðt, xÞdx:

As jjD2uRjjL1�R�2, the conservation of mass implies thatð
R

3
D2uRðxÞðjuj2 þ jvj2Þðt, xÞdx

����
�����R�2:

The latter, together with u00
RðrÞ � 2 for all r � 0, jjDuRjjL1�1,uRðxÞ ¼ jxj2 on jxj � R,

and H€older’s inequality, yield

d
dt

MuR
ðtÞ � 8GðuðtÞ, vðtÞÞ þ CR�2 þ C

ð
jxj�R

juðt, xÞj4 þ jvðt, xÞj4dx,

where we have used the fact that (see (1.6))

jNðu, vÞj�juj4 þ jvj4:
To estimate the last term, we recall the following radial Sobolev embedding (see e.g.,
[23]): for a radial function f 2 H1ðR3Þ, we have
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sup
x 6¼0

jxjjf ðxÞj � Cjjrf jj12L2 jjf jj
1
2
L2 : (3.11)

Thanks to (3.11) and the conservation of mass, we estimateð
jxj�R

juðt, xÞj4dx � sup
jxj�R

juðt, xÞj2jjuðtÞjj2L2

�R�2 sup
jxj�R

jxjjuðt, xÞjð Þ2jjuðtÞjj2L2

�R�2jjruðtÞjjL2 jjuðtÞjj3L2
�R�2jjruðtÞjjL2
�R�2 jjruðtÞjj2L2 þ 1

� �
:

It follows that

d
dt

MuR
ðtÞ � 8GðuðtÞ, vðtÞÞ þ CR�2 þ CR�2 jjruðtÞjj2L2 þ jjrvðtÞjj2L2

� �
:

The proof is complete. w

Next we derive localized virial estimates for cylindrically symmetric solutions (we also
mention here [22, 24–28], for the qualitative analysis of dispersive-type equations in
anisotropic spaces). To this end, we introduce

wRðyÞ ¼ wRðqÞ :¼ R2fðq=RÞ, q ¼ jyj (3.12)

and set
uRðxÞ :¼ wRðyÞ þ z2: (3.13)

Lemma 3.5. Let l, c > 0. Let (u, v) be a R3-solution to (1.1) defined on the maximal
time interval ð�T�,TþÞ. Let uR be as in (3.13) and denote MuR

ðtÞ as in (3.3). Then we
have for all t 2 ð�T�,TþÞ,

d
dt

MuR
ðtÞ � 8GðuðtÞ, vðtÞÞ þ CR�1KðuðtÞ, vðtÞÞ þ CR�2 (3.14)

for some constant C> 0 depending only on l, c, and Mðu0, v0Þ:

Proof. By (3.7), we have for all t 2 ð�T�,TþÞ,
d
dt

MuR
ðtÞ ¼ �

ð
D2
ywRðyÞðjuj2 þ jvj2Þðt, xÞdx þ 4

ð
R

3
w00

RðqÞðjryuj2 þ jryvj2Þðt, xÞdx

þ 8 jj@zuðtÞjj2L2 þ jj@zvðtÞjj2L2
� �

� 8PðuðtÞ, vðtÞÞ

� 4
ð
DywRðyÞNðu, vÞðt, xÞdx,

where q ¼ jyj: It follows that

d
dt

MuR
ðtÞ � 8GðuðtÞ, vðtÞÞ þ CR�2 � 4

ð
ð2� w00

RðqÞÞðjryuj2 þ jryvj2Þðt, xÞdx

þ 4Re
ð
ð4� DywRðyÞÞNðu, vÞðt, xÞdx:
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As w00
RðqÞ � 2 and jjDywRjjL1�1, the H€older’s inequality implies that

d
dt

MuR
ðtÞ � 8GðuðtÞ, vðtÞÞ þ CR�2 þ C

ð
jyj�R

juðt, xÞj4 þ jvðt, xÞj4dx: (3.15)

We estimate Ð
jyj�Rjuðt, xÞj4dx � Ð

R
jjuðt, zÞjj2L2y jjuðt, zÞjj

2
L1y ðjyj�RÞdz

� sup
z2R

jjuðt, zÞjj2L2y
ð
R

j uðt, zÞjj2L1y ðjyj�RÞdz
��� �

:

�

Set gðzÞ :¼ jjuðt, zÞjj2L2y , we have

gðzÞ ¼
ðz
�1

@sgðsÞds ¼ 2
ðz
�1

Re
ð
R

2
�uðt, y, sÞ@suðt, y, sÞdyds � 2jjuðtÞjjL2x jj@zuðtÞjjL2x

which, by the conservation of mass, implies that

sup
z2R

jjuðt, zÞjj2L2y�jj@zuðtÞjjL2x : (3.16)

By the radial Sobolev embedding (3.11) with respect to the y-variable, we haveð
jjuðt, zÞjj2L1y ðjyj�RÞdz�R�1

ð
jjryuðt, zÞjjL2y jjuðt, zÞjjL2y dz

�R�1
ð
jjryuðt, zÞjj2L2y dz

� �1=2 ð
jjuðt, zÞjj2L2y dz

� �1=2

�R�1jjryuðtÞjjL2x jjuðtÞjjL2x
�R�1jjryuðtÞjjL2x :

(3.17)

Collecting (3.16) and (3.17), we getð
jyj�R

juðt, xÞj4dx�R�1jjryuðtÞjjL2x jj@zuðtÞjjL2x
�R�1 jjryuðtÞjj2L2x þ jj@zuðtÞjj2L2x

� �
�R�1jjruðtÞjj2L2x :

The latter and (3.15) give (3.14). The proof is complete. w

3.2. Interaction Morawetz estimates. Non-radial setting

Following [29], let v be a decreasing radial smooth function such that vðxÞ ¼ 1 for
jxj � 1� r, vðxÞ ¼ 0 for jxj � 1, and jrvj�r�1, where 0 < r < 1 is a small constant.
Let R> 1 be a large parameter. We define the following radial functions

URðxÞ ¼ 1
x3R3

ð
v2Rðx� zÞv2RðzÞdz,

U1,Rðx, yÞ ¼ 1
x3R3

ð
v2Rðx� zÞv4Rðy� zÞdz,

where vRðxÞ :¼ v x
R

� �
and x3 is the volume of unit ball in R

3: We also define the
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functions

WRðxÞ ¼ 1
jxj
ðjxj
0
URðrÞdr, HRðxÞ ¼

ðjxj
0
rWRðrÞdr:

We collect below some properties of the above functions.

Remark 3.1 ([15]). Straightforward calculations give:

� the identities ojHRðxÞ ¼ xjWRðxÞ and ojWRðxÞ ¼ xj
jxj2 ðURðxÞ �WRðxÞÞ, and in

particular,

DHRðxÞ ¼ 2WRðxÞ þ URðxÞ, @2
jkHRðxÞ ¼ djkURðxÞ þ PjkðxÞðWRðxÞ � URðxÞÞ,

(3.18)

where PjkðxÞ ¼ djk � xjxk
jxj2 with djk the Kronecker symbol;

� that the estimates below are satisfied:

WRðxÞ � URðxÞ � 0, jWRðxÞj�min 1,
R
jxj

� 	
,

jrURðxÞj� 1
rR

, jrWRðxÞj� 1
r
min

1
R
,
R

jxj2
( )

,

jURðxÞ � U1,RðxÞj�r, jWRðxÞ � URðxÞj� 1
r
min

jxj
R
,
R
jxj

� 	
:

(3.19)

Let (u, v) be a global H1-solution to (1.1) with initial data (u0, v0) satisfying (1.13) and
(1.14). We define the interaction Morawetz quantity adapted to system (1.1) by

M�2
R ðtÞ ¼ 2

ð ð
Lcðu, vÞðt, yÞrHRðx � yÞ � Imð�uruþ c�vrvÞðt, xÞdxdy,

where

Lcðu, vÞðt, xÞ :¼ ðjuj2 þ c2jvj2Þðt, xÞ:
From the conservation of mass, (2.5), and (3.19), we have

sup
t2R

jM�2
R ðtÞj�R:

By Lemma 3.1, we have

@tLcðu, vÞ ¼ �2r � Imð�uruÞ � 2cr � Imð�vrvÞ þ 2
3

1� c
3

� �
Imðu3�vÞ (3.20)

and

@tImð�u@kuþ c�v@kvÞ ¼ �2@jReð@j�u@kuþ @j�v@kvÞ þ 1
2
@kDðjuj2 þ jvj2Þ þ 2@kNðu, vÞ,

where we recall that

Nðu, vÞ ¼ 1
36

juj4 þ 9
4
jvj4 þ juj2jvj2 þ 1

9
Reð�u3vÞ:
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Here repeated indices are summed. Moreover, by using integration by parts, we readily
see that

d
dt

M�2
R ðtÞ ¼ 4

ð ð
Lcðu, vÞðt, yÞrHRðx� yÞ � rNðu, vÞðt, xÞdxdy (3.21)

þ
ð ð

Lcðu, vÞðt, yÞrHRðx� yÞ � rDðjuj2 þ jvj2Þðt, xÞdxdy (3.22)

�4
ð ð

Lcðu, vÞðt, yÞ@kHRðx � yÞ@jReð@j�u@kuþ @j�v@kvÞðt, xÞdxdy (3.23)

þ2
ð ð

@tLcðu, vÞðt, yÞrHRðx� yÞ � Imð�uruþ c�vrvÞðt, xÞdxdy: (3.24)

We are able to prove the following interaction Morawetz estimates, which will play a
fundamental role for the proof of the scattering theorem in the non-radial framework.

Proposition 3.6. Let l, c > 0, and ð/,wÞ 2 Gð0, 3c, cÞ. Let ðu0, v0Þ 2 H1 �H1 satisfy
(1.13) and (1.14). Let (u, v) be the corresponding global solution to (1.1). Then for arbi-
trary small � > 0, there exist T0 ¼ T0ð�Þ, J ¼ Jð�Þ,R0 ¼ R0ð�, u0, v0/,wÞ sufficiently large
and r ¼ rð�Þ, g ¼ gð�Þ sufficiently small such that if jc� 3j < g, then for any a 2 R,

1
JT0

ðaþT0

a

ðR0eJ

R0

1
R3

ð
R

3
WcðvRð� � zÞuðtÞ, vRð� � zÞvðtÞÞ

�KðvRð� � zÞunðtÞ, vRð� � zÞvnðtÞÞdz dR
R

dt��,

(3.25)

where ðunðt, xÞ, vnðt, xÞÞ :¼ ðeix�nuðt, xÞ, eicx�nvðt, xÞÞ for some n ¼ nðt, z,RÞ 2 R
3 and

Wcðf , gÞ ¼
ð
R

3
Lcðf , gÞðxÞdx:

Proof. Since DHRðx � yÞ ¼ 3U1,Rðx, yÞ þ 3ðUR � U1,RÞðx, yÞ þ 2ðWR � URÞðx � yÞ, by
integration by parts, we have

ð3:21Þ ¼ �12
ð ð

Lcðu, vÞðt, yÞU1,Rðx� yÞNðu, vÞðt, xÞdxdy (3.26)

�12
ð ð

Lcðu, vÞðt, yÞðUR � U1,RÞðx � yÞNðu, vÞðt, xÞdxdy (3.27)

�8
ð ð

Lcðu, vÞðt, yÞðWR � URÞðx � yÞNðu, vÞðt, xÞdxdy: (3.28)

Again, by integration by parts and Remark 3.1, we have

ð3:22Þ ¼
ð ð

Lcðu, vÞðt, yÞrð3URðx � yÞ þ 2ðWR � URÞðx � yÞÞ � rðjuj2 þ jvj2Þðt, xÞdxdy:
(3.29)
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We will treat (3.27), (3.28), and (3.29) as error terms. Moreover, by Remark 3.1, we get

ð3:23Þ ¼ 4
ð ð

Lcðu, vÞðt, yÞURðx� yÞðjruj2 þ jrvj2Þðt, xÞdxdy (3.30)

þ4
ð ð

Lcðu, vÞðt, yÞðWR � URÞðx� yÞPjkðx � yÞReð@j�u@kuþ @j�v@kvÞðt, xÞdxdy: (3.31)

Similarly, by (3.20) and Remark 3.1, we see that

ð3:24Þ ¼ �4
ð ð

URðx� yÞImð�uruþ c�vrvÞðt, yÞ � Imð�uruþ c�vrvÞðt, xÞdxdy (3.32)

�4
ð ð

ðWR � URÞðx� yÞPjkðx � yÞImð�u@kuþ c�v@kvÞðt, yÞImð�u@juþ c�v@jvÞðt, yÞdxdy
(3.33)

þ 4
3

1� c
3

� �ð ð
rHRðx � yÞ � Imð�uruþ c�vrvÞðt, xÞImðu3�vÞðt, yÞdxdy: (3.34)

Now, let =ry denote the angular derivative centered at y, namely

r=yf ðxÞ :¼ rf ðxÞ � x � y
jx � yj

x � y
jx � yjrf ðxÞ
� �

and similarly for =rx: We have

ð3:31Þ þ ð3:33Þ ¼ 4
ð ð

ðWR � URÞðx� yÞððj=ryuj2 þ j=ryvj2Þðt, xÞðjuj2 þ c2jvj2Þðt, yÞ
�Imð�u=ryuþ c�v=ryvÞðt, xÞ � Imð�u=rxuþ c�v=rxvÞðt, yÞÞdxdy:

(3.35)

Hence wR � /R is radial and non-negative, by the Cauchy-Schwarz inequality, we infer
that

ð3:31Þ þ ð3:33Þ ¼ ð3:35Þ � 0:

On the other hand, as vR is radial and non-negative, we have

ð3:30Þ þ ð3:32Þ ¼ 4
x3R3

ð ð ð
v2Rðx � zÞv2Rðy� zÞððjruj2 þ jrvj2Þðt, xÞðjuj2 þ c2jvj2Þðt, yÞ

� Imð�uruþ c�vrvÞðt, yÞ � Imð�uruþ c�vrvÞðt, xÞÞdxdydz
¼ 4

x3R3

ð
Bðu, vÞðt, zÞdz,

(3.36)

where

Bðu, vÞðt, zÞ :¼
ð
v2Rðx � zÞðjruj2 þ jrvj2Þðt, xÞdx

ð
v2Rðy� zÞðjuj2 þ c2jvj2Þðt, yÞdy

�
ð
v2Rðx� zÞImð�uruþ c�vrvÞðt, xÞdx

����
����
2

:

Notice that B(u, v) is invariant under the gauge transformation
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ðuðt, xÞ, vðt, xÞÞ7!ðunðt, xÞ, vnðt, xÞÞ :¼ ðeix�nuðt, xÞ, eicx�nvðt, xÞÞ
for any n 2 R

3: Indeed, we see that

Lcðun, vnÞ ¼ Lcðu, vÞ, Vcðun, vnÞ ¼ nLcðu, vÞ þ Vcðu, vÞ,
Hðun, vnÞ ¼ jnj2Lcðu, vÞ þ Hðu, vÞ þ 2n � Vcðu, vÞ,

where

Vcðu, vÞðt, xÞ :¼ Imð�uruþ c�vrvÞðt, xÞ, Hðu, vÞðt, xÞ :¼ ðjruj2 þ jrvj2Þðt, xÞ,
which implies that Bðun, vnÞ ¼ Bðu, vÞ: Next, we define

nðt, z,RÞ :¼ �
Ð
v2Rðx � zÞVcðu, vÞðt, xÞdxÐ
v2Rðx � zÞLcðu, vÞðt, xÞdx

provided that the denominator is non-zero; otherwise we can define nðt, z,RÞ � 0: With
this choice of n, we have ð

v2Rðx� zÞVcðun, vnÞðt, xÞdx ¼ 0:

Combining this with (3.36), we infer that

ð3:30Þ þ ð3:32Þ ¼ 4
x3R3

ð ð
v2Rðx� zÞHðun, vnÞðt, xÞdx

ð
v2Rðy� zÞLcðu, vÞðt, yÞdy

� �
dz:

Therefore, by the above identity, (3.26), (3.27), (3.29), and (3.34), we get

4
x3R3

ð
R

3

ð
v2Rðy� zÞLcðu, vÞðt, yÞdy

� �
� Ð

v2Rðx� zÞHðun, vnÞðt, xÞ � 3v4Rðx� zÞNðu, vÞðt, xÞdx� �
dz

(3.37)

� d
dt

M�2
R ðtÞ (3.38)

þ
ð ð

Lcðu, vÞðt, yÞð12ðUR � U1,RÞ þ 8ðWR � URÞÞðx � yÞNðu, vÞðt, xÞdxdy (3.39)

�
ð ð

Lcðu, vÞðt, yÞð3rUR þ 2rðWR � URÞÞðx� yÞ � rðjuj2 þ jvj2Þðt, xÞdxdy (3.40)

þ 4
3

c
3
� 1

� �ð ð
rHRðx � yÞ � Imð�uruþ c�vrvÞðt, xÞImðu3�vÞðt, yÞdxdy: (3.41)

Now, we consider (3.37). Sinceð
jrðvf Þj2dx ¼

ð
v2jrf j2dx �

ð
vDvjf j2dx,

we getð
v2Rðx� zÞHðun, vnÞðt, xÞdx ¼

ð
HðvRð� � zÞun, vRð� � zÞvnÞðt, xÞdx

þ
ð
vRðx � zÞD vRðx� zÞð Þðjuj2 þ jvj2Þðt, xÞdx:

(3.42)
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Thus, substituting (3.42) in (3.37) and using Lemma 2.4 with vR instead of CR, we see
that there exists � > 0 such that

1
JT0

ðaþT0

a

ðR0eJ

R0

ð3:37Þ dR
R

dt � 4�
x3JT0

ðaþT0

a

ðR0eJ

R0

1
R3

ð
R

3

�
WcðvRð� � zÞuðtÞ, vRð� � zÞvðtÞÞ

� KðvRð� � zÞunðtÞ, vRð� � zÞvnðtÞÞdz
�
dR
R

dt

þ 4�
x3JT0

ðaþT0

a

ðR0eJ

R0

1
R3

ð
R

3
WcðvRð� � zÞuðtÞ, vRð� � zÞvðtÞÞ

�
ð
R

3
vRð� � zÞD vRð� � zÞð Þðjuj2 þ jvj2Þðt, xÞdx

� �
dz

dR
R

dt:

By the conservation of mass and the fact that jjDðvRÞjjL1�R�2, the absolute value of
the second term in the right hand side can be bounded by

4�
x3JT0

ðaþT0

a

ðR0eJ

R0

CR�2 dR
R

dt�
1
JR2

0
:

This implies that

1
JT0

ðaþT0

a

ðR0eJ

R0

1
R3

ð
R

3
WcðvRð� � zÞuðtÞ, vRð� � zÞvðtÞÞKðvRð� � zÞunðtÞ, vRð� � zÞvnðtÞÞdz dR

R
dt

�
1
JT0

ðaþT0

a

ðR0eJ

R0

ð3:37Þ dR
R

dt þ 1
JR2

0
:

(3.43)

Next, as jM�2
R ðtÞj�R, we have

1
JT0

ðaþT0

a

ðR0eJ

R0

ð3:38Þ dR
R

dt

�����
����� � 1

JT0

ðR0eJ

R0

sup
t2 a, aþT0½ 


M�2
R ðtÞ

���� dRR �
R0eJ

JT0
:

���� (3.44)

By (3.19), the conservation of mass, (2.5), and Sobolev embedding, we have���� 1
JT0

ðaþT0

a

ðR0eJ

R0

ð ð
Lcðu, vÞðt, yÞðUR � U1,RÞðx � yÞNðu, vÞðt, xÞdxdy dR

R
dt

����
�

1
JT0

ðaþT0

a

ðR0eJ

R0

r
dR
R

dt�r,

where we have used the fact thatð
jLcðu, vÞðt, yÞjdy�M3cðuðtÞ, vðtÞÞ,ð
jNðu, vÞðt, xÞjdx�jjðuðtÞ, vðtÞÞjj4L4�L4�jjðuðtÞ, vðtÞÞjj4H1�H1 :

Using (3.19), we see that
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���� 1
JT0

ðaþT0

a

ðR0eJ

R0

ð ð
Lcðu, vÞðt, yÞðWR � URÞðx � yÞNðu, vÞðt, xÞdxdy dR

R
dt

����
�

1
rJT0

ðaþT0

a

ðR0eJ

R0

ð ð
jLcðu, vÞðt, yÞjmin

jx � yj
R

,
R

jx � yj
� 	

jNðu, vÞðt, xÞjdxdy dR
R

dt

�
1

rJT0

ðaþT0

a

ð ð
jLcðu, vÞðt, yÞj

ðR0eJ

R0

min
jx � yj

R
,

R
jx � yj

� 	
dR
R

 !
jNðu, vÞðt, xÞjdxdydt� 1

rJ
,

where we have used the fact thatð1
0
min

jx� yj
R

,
R

jx� yj
� 	

dR
R

�1:

We thus get

1
JT0

ðaþT0

a

ðR0eJ

R0

ð3:39Þ dR
R

dt

�����
������rþ 1

rJ
: (3.45)

As jrURðxÞj, jrðWR � URÞðxÞj� 1
rR , we see that

1
JT0

ðaþT0

a

ðR0eJ

R0

ð3:40Þ dR
R

dt

�����
������ 1

rJR0
: (3.46)

Finally, as jc� 3j < g and jrHRðxÞj�R, we infer from the conservation of mass, (2.5),
and Sobolev embedding that

1
JT0

ðaþT0

a

ðR0eJ

R0

ð3:41Þ dR
R

dt

�����
������ g

JT0

ðaþT0

a

ðR0eJ

R0

dRdt�g
R0eJ

J
: (3.47)

Combining these estimates (3.43), (3.44), (3.45), (3.46), and (3.47), we obtain

1
JT0

ðaþT0

a

ðR0eJ

R0

1
R3

ð
R

3
WcðvRð� � zÞuðtÞ, vRð� � zÞvðtÞÞKðvRð� � zÞunðtÞ, vRð� � zÞvnðtÞÞdz dR

R
dt

�
1
JR2

0
þ R0eJ

JT0
þ rþ 1

rJ
þ 1
rJR0

þ g
R0eJ

J
,

which shows (3.25) by choosing r ¼ �, J ¼ ��3,R0 ¼ ��1,T0 ¼ e�
�3
, and g ¼ e���3

: The
proof is complete. w

3.3. Morawetz estimates. Radial setting

We now turn our attention to the proof of the radial version of the Morawetz estimate
which will be essential in the proof of the scattering theorem in the radially symmetric
setting. In this context, we take advantage of the radial Sobolev embedding to get some
spatial decay.

Lemma 3.7. Let l, c > 0, and ð/,wÞ 2 Gð0, 3c, cÞ. Let ðu0, v0Þ 2 H1 �H1 be radially
symmetric satisfying (1.13) and (1.14). Then for any T> 0 and R ¼ Rðu0, v0,/,wÞ > 0
sufficiently large, the corresponding global solution to (1.1) satisfies
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1
T

ðT
0

ð
jxj�R

2

juðt, xÞj103 þ jvðt, xÞj103
� �

dxdt�
R
T
þ 1
R2

: (3.48)

Proof. Let uR be as in (3.9) and define MuR
ðtÞ as in (3.3). By the Cauchy-Schwarz

inequality, the conservation of mass, and (2.5), we have

sup
t2R

jMuR
ðtÞj�R: (3.49)

By (3.6), we have

d
dt

MuR
ðtÞ ¼ �

ð
D2uRðxÞðjuj2 þ jvj2Þðt, xÞdxþ 4

ð
u00

RðrÞðjruj2 þ jrvj2Þðt, xÞ

� 4
ð
DuRðxÞNðu, vÞðt, xÞdx:

As uRðxÞ ¼ jxj2 for jxj � R, we see that

d
dt

MuR
ðtÞ ¼ 8

ð
jxj�R

ðjruj2 þ jrvj2Þðt, xÞdx � 3
ð
jxj�R

Nðu, vÞðt, xÞdx
 !

�
ð
D2uRðxÞðjuj2 þ jvj2Þðt, xÞdxþ 4Re

ð
jxj>R

@2
jkuRðxÞð@j�u@kuþ @j�v@kvÞðt, xÞdx

� 4
ð
jxj>R

DuRðxÞNðu, vÞðt, xÞdx:

Since jjD2uRjjL1�R�2, the conservation of mass impliesð
D2uRðxÞðjuj2 þ jvj2Þðt, xÞdx�R�2:

As (u, v) is radially symmetric, we use the fact

@j ¼
xj
r
@r, @2

jk ¼
djk
r
� xjxk

r3

� �
@r þ

xjxk
r2

@2
r

to get

@2
jkuRðxÞ@j�uðt, xÞ@kuðt, xÞ ¼ u00

RðrÞj@ruðt, rÞj2 � 0

which implies

Re
ð
jxj>R

@2
jkuRðxÞð@j�u@kuþ @j�v@kvÞðt, xÞ � 0:

On the other hand, by arguing as in the proof of Lemma 3.4, we haveð
jxj>R

DuRðxÞNðu, vÞðt, xÞdx
�����

������R�2KðuðtÞ, vðtÞÞ�R�2:

Thus we get
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d
dt

MuR
ðtÞ � 8

ð
jxj�R

ðjruj2 þ jrvj2Þðt, xÞdx � 3
ð
jxj�R

Nðu, vÞðt, xÞdx
 !

þ CR�2 (3.50)

for all t 2 R: Now, let .RðxÞ ¼ .ðx=RÞ with . as in (4.13). We haveð
jrð.RuðtÞÞj2dx ¼

ð
.2RjruðtÞj2dx �

ð
.RD.RjuðtÞj2dx

¼
ð
jxj�R

jruðtÞj2 �
ð
R=2�jxj�R

ð1� .2RÞjruðtÞj2dx �
ð
.RD.RjuðtÞj2dx

andð
Nð.Ru, .RvÞðt, xÞdx ¼

ð
jxj�R

Nðu, vÞðt, xÞdx þ
ð
R=2�jxj�R

Nð.Ru, .RvÞ � Nðu, vÞð Þðt, xÞdx:

It follows thatð
jxj�R

ðjruj2 þ jrvj2Þðt, xÞdx � 3
ð
jxj�R

Nðu, vÞðt, xÞdx

¼
ð
ðjrð.RuÞj2 þ jrð.RvÞj2Þðt, xÞdx� 3

ð
Nð.Ru, .RvÞðt, xÞdx

þ
ð
R=2�jxj�R

ð1� .2RðxÞÞðjruj2 þ jrvj2Þðt, xÞdx

þ
ð
.RðxÞD.RðxÞðjuj2 þ jvj2Þðt, xÞdx� 3

ð
R=2�jxj�R

Nð.Ru, .RvÞ � Nðu, vÞð Þðt, xÞdx:

As 0 � qR � 1 and jjD.RjjL1�R�2, the conservation of mass, (2.5), and the radial
Sobolev embedding, we haveð

jxj�R
ðjruj2 þ jrvj2Þðt, xÞdx� 3

ð
jxj�R

Nðu, vÞðt, xÞdx

� Kð.RuðtÞ, .RvðtÞÞ � 3Pð.RuðtÞ, .RvðtÞÞ þ OðR�2Þ:
Thanks to (2.8) with .R in place of CR and z ¼ n1 ¼ n2 ¼ 0, there exist R ¼
Rðu0, v0,/,wÞ > 0 sufficiently large and � ¼ �ðu0, v0,/,wÞ > 0 such thatð

jxj�R
ðjruj2 þ jrvj2Þðt, xÞdx � 3

ð
jxj�R

Nðu, vÞðt, xÞdx � �Kð.RuðtÞ, .RvðtÞÞ þ OðR�2Þ

for all t 2 R: This together with (3.50) yields

�Kð.RuðtÞ, .RvðtÞÞ �
d
dt

MuR
ðtÞ þ CR�2

for all t 2 R: Integrating on ½0,T
 and using (3.49), we get

1
T

ðT
0
Kð.RuðtÞ, .RvðtÞÞdt�

R
T
þ 1
R2

:

In particular, we have
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1
T

ðT
0
jjrðqRuðtÞÞjj2L2dt�

R
T
þ 1
R2

which together with the Gagliardo-Nirenberg inequality

jjujj103
L
10
3
�jjrujj2L2 jjujj

4
3
L2

implies

1
T

ðT
0
jjqRuðtÞjj

10
3

L
10
3
dt�

1
T

ðT
0
jjrðqRuðtÞÞjj2L2dt�

R
T
þ 1
R2

:

By the choice of .R, we obtain

1
T

ðT
0

ð
jxj�R

2

juðt, xÞj103 dxdt� R
T
þ 1
R2

:

A similar estimate holds for v. The proof is complete. w

4. Scattering criteria

In this section, we give scattering criteria for solution to (1.1) in the spirit of Dodson
and Murphy [15, 16] (see also [29]). Let us start with the scattering criterion for non-
radial solutions.

Proposition 4.1. Let l, c > 0. Suppose that (u, v) is a global H1-solution to (1.1)
satisfying

sup
t2R

jjðuðtÞ, vðtÞÞjjH1�H1�E (4.1)

for some constant E> 0. Then there exist � ¼ �ðEÞ > 0 small enough and T0 ¼ T0ð�,EÞ >
0 sufficiently large such that if for any a 2 R, there exists t0 2 ða, aþ T0Þ such that

jjðuðtÞ, vðtÞÞjj
L5t, x�L5t, x t0���

1
4, t0½ 
�R

3ð Þ��, (4.2)

then the solution scatters forward in the time.

Proof. By Lemma 2.1, it suffices to show that there exists T> 0 such that

jjðS1ðt � TÞuðTÞ,S2ðt � TÞvðTÞÞjjL4t L6x�L4t L
6
xð½T,1Þ�R

3Þ��
1
32: (4.3)

To prove (4.3), we first write

ðS1ðt � TÞuðTÞ,S2ðt � TÞvðTÞÞ ¼ ðS1ðtÞu0,S2ðtÞv0Þ þ i
ðT
0
ðS1ðt � sÞF1ðsÞ,S2ðt � sÞF2ðsÞÞds:

By Sobolev embedding, Strichartz estimates, and the monotone convergence theorem,
there exists T1 > 0 sufficiently large such that if T > T1, then

jjðS1ðtÞu0,S2ðtÞv0ÞjjL4t L6x�L4t L
6
xð½T,1Þ�R

3Þ��: (4.4)

We take a ¼ T1 and T ¼ t0, where a and t0 are as in (4.2), we write
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i
ðT
0
ðS1ðt � sÞF1ðsÞ,S2ðt � sÞF2ðsÞÞds ¼: H1ðtÞ þ H2ðtÞ,

where

HjðtÞ ¼ i
ð
Ij

ðS1ðt � sÞF1ðsÞ,S2ðt � sÞF2ðsÞÞds, I1 ¼ 0,T � ��
1
4


 �
, I2 ¼ T � ��

1
4,T


 �
:

To estimate H2, we observe that

jjðu, vÞjj
L2t _W

1
2, 6
x �L2t _W

1
2, 6
x ð T���

1
4,T½ 
�R

3Þ
�1: (4.5)

Indeed, by Strichartz estimates, fractional chain rule, (4.1), and (4.2), we have

jjðu, vÞjj
L2t _W

1
2, 6
x �L2t _W

1
2, 6
x ð½T���

1
4,T
�R

3Þ

�Eþ jjðu, vÞjj2
L5t, x�L5t, x T���

1
4,T½ 
�R

3ð Þjjðu, vÞjjL2t _W
1
2, 6
x �L2t _W

1
2, 6
x ð T���

1
4,T½ 
�R

3Þ
�Eþ �2jjðu, vÞjj

L2t _W
1
2, 6
x �L2t _W

1
2, 6
x ð T���

1
4,T½ 
�R

3Þ
:

By choosing � small enough, we get (4.5). By Sobolev embedding and Strichartz esti-
mates, we see that

jjH2jjL4t L6x�L4t L
6
xð½T,1Þ�R

3Þ�jjðu, vÞjj2
L5t, x�L5t, x T���

1
4,T½ 
�R

3ð Þjjðu, vÞjjL2t _W
1
2, 6
x �L2t _W

1
2, 6
x ð T���

1
4,T½ 
�R

3Þ

which together with (4.2) and (4.5) imply

jjH2jjL4t L6x�L4t L
6
xð½T,1Þ�R

3Þ��2: (4.6)

On the other hand, we claim that

jjH1jjL4t L6x�L4t L
6
xð½T,1Þ�R

3Þ��
1
32: (4.7)

In fact, we notice that

H1ðtÞ ¼ ðS1 t � T þ ��
1
4

� �
u T � ��

1
4ð Þ,S2 t � T þ ��

1
4

� �
u T � ��

1
4ð ÞÞ � ðS1ðtÞu0,S2ðtÞv0Þ

which, by Strichartz estimates, implies

jjH1jjL4t L3x�L4t L
3
xð½T,1Þ�R

3Þ�jjðu T � ��
1
4ð Þ, v T � ��

1
4ð ÞÞjjL2�L2 þ jjðu0, v0ÞjjL2�L2�E:

Moreover, as

jjðF1ðtÞ, F2ðtÞÞjjL1�L1�jjðuðtÞ, vðtÞÞjj3L3�L3�jjðuðtÞ, vðtÞÞjj3H1�H1�E3,

we have from the dispersive estimate (A.2) and Young’s inequality that

jjH1jjL4t L1x �L4t L
1
x ð½T,1Þ�R

3Þ�
����
ðT���

1
4

0
jt � sj�3=2ds

����
L4t ð½T,1ÞÞ

��
1
16:

By interpolation, we get

jjH1jjL4t L6x�L4t L
6
xð½T,1Þ�R

3Þ � jjH1jj1=2L4t L
3
x�L4t L

3
xð½T,1Þ�R

3ÞjjH1jj1=2L4t L
1
x �L4t L

1
x ð½T,1Þ�R

3Þ��
1
32
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which proves (4.7). Collecting (4.4), (4.6), and (4.7), we obtain (4.3), and the proof is
complete. w

Let us give now an analogous of the previous Criterion in the radial setting.

Proposition 4.2 (Scattering criterion for radial solutions). Let l, c > 0. Suppose that
(u, v) is a global H1-solution to (1.1) satisfying

sup
t2R

jjðuðtÞ, vðtÞÞjjH1�H1 � E (4.8)

for some constant E> 0. Then there exist � ¼ �ðEÞ > 0 and R ¼ RðEÞ > 0 such that if

liminf
t!1

ð
jxj�R

juðt, xÞj2 þ 3cjvðt, xÞj2
� �

dx � �2, (4.9)

then the solution scatters forward in time.

Proof. Let � > 0 be a small constant. By Lemma 2.1, it suffices to show the existence of
T ¼ Tð�Þ > 0 such that

jjðS1ðt � TÞuðTÞ,S2ðt � TÞvðTÞÞjjL4t L6x�L4t L
6
xð½T,1Þ�R

3Þ < �
1
32: (4.10)

To show this, we follow the argument of [16, Lemma 2.2]. By the Strichartz estimates
and the monotone convergence theorem, there exists T ¼ Tð�Þ > 0 sufficiently large
such that

jjðS1ðtÞu0,S2ðtÞv0ÞjjL4t L6x�L4t L
6
xð½T,1Þ�R

3Þ < �: (4.11)

As in the proof of Proposition 4.1, we write

ðS1ðt � TÞuðTÞ,S2ðt � TÞvðTÞÞ ¼ ðS1ðtÞu0,S2ðtÞv0Þ þ H1ðtÞ þH2ðtÞ,
where

HjðtÞ ¼ i
ð
Ij

ðS1ðt � sÞF1ðsÞ,S2ðt � sÞF2ðsÞÞds, I1 ¼ 0,T � ��
1
4


 �
, I2 ¼ T � ��

1
4,T


 �
:

By (4.9) and enlarging T if necessary, we haveð
.RðxÞ juðT, xÞj2 þ 3cjvðT, xÞj2

� �
dx � �2, (4.12)

where .RðxÞ ¼ .ðx=RÞ with . : R3 ! ½0, 1
 a smooth cutoff function satisfying

.ðxÞ ¼ 1 if jxj � 1=2,
0 if jxj � 1:

�
(4.13)

Using the fact (see Lemma 3.1) that

@tðjuj2 þ 3cjvj2Þ ¼ �2r � Imð�uruÞ � 6r � Imð�vrvÞ,
(4.8), and jjr.RjjL1ðR3Þ�R�1, an integration by parts and the H€older inequality yield

@t

ð
.RðxÞðjuðt, xÞj2 þ 3cjvðt, xÞj2Þdx

����
�����R�1:

Taking R sufficient large such that R�1��
1
4 
 �2, we infer from (4.12) that
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����
ð
.RðxÞðjuð�, xÞj2 þ 3cjvð�, xÞj2Þdx

����
L1t ðI2Þ

��2:

This inequality implies that

jj.RujjL1t L2xðI2�R
3Þ�� and jj.RvjjL1t L2xðI2�R

3Þ��: (4.14)

Thanks to the radial Sobolev embedding (3.11), we have from (4.8) and (4.14) that

jjujjL1t L3xðI2�R
3Þ � jj.RujjL1t L3xðI2�R

3Þ þ jjð1� .RÞujjL1t L3xðI2�R
3Þ

�jj.Rjj1=2L1t L2xðI2�R
3Þjj.Rujj

1=2
L1t L6xðI2�R

3Þ

þ jjð1� .RÞujj1=3L1t L1x ðI2�R
3Þjjð1� .RÞujj2=3L1t L2xðI2�R

3Þ

��
1
2 þ R�1

3��
1
2

provided that R > ��
3
2: A similar estimate holds for v. In particular, we get

jjðu, vÞjjL1t L3x�L1t L3xðI2�R
3Þ��

1
2: (4.15)

Moreover, we have from the local theory that

jjðu, vÞjjL2t L1x �L2t L
1
x ðI2�R

3Þ þ jjðu, vÞjj
L2t _W

1
2, 6
x �L2t _W

1
2, 6
x ðI2�R

3Þ
�ð1þ jI2jÞ

1
2���

1
8:

By Sobolev embedding and Strichartz estimates, we see that that

jjH2jjL4t L6x�L4t L
6
xð½T,1Þ�R

3Þ

�jjðu, vÞjjL1t L3x�L1t L3xðI2�R
3Þjjðu, vÞjjL2t L1x �L2t L

1
x ðI2�R

3Þjjðu, vÞjjL2t _W
1
2, 6
x �L2t _W

1
2, 6
x ðI2�R

3Þ
��

1
4:

(4.16)

On the other hand, the same argument developed in the proof of (4.7) shows that

jjH1jjL4t L6x�L4t L
6
xð½T,1Þ�R

3Þ��
1
32: (4.17)

Collecting (4.11), (4.16), and (4.17), we prove (4.10), and the proof is complete. w

5. Proofs of the main theorems

By exploiting the tools obtained in the previous parts of the paper, we are now able to
prove the scattering for non-radial and radial solutions to (1.1) given in Theorem 1.1.
See [29–31] for analogous results for NLS systems of quadratic type.

5.1. Proof of the scattering results

Proof of Theorem 1.1 for non-radial solutions. It suffices to check the scattering criter-
ion given in Proposition 4.1. To this end, we are inspired to [32]. Fix a 2 R and let � >
0 be a sufficiently small constant. Let T0 ¼ T0ð�Þ > 0 sufficiently large to be chosen
later. We will show that there exists t0 2 ða, aþ T0Þ such that
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jjðu, vÞjj
L5t, x�L5t, x t0���

1
4, t0½ 
�R

3ð Þ��
3
140: (5.1)

By Proposition 3.6, there exist T0 ¼ T0ð�Þ, J ¼ Jð�Þ,R0 ¼ R0ð�, u0, v0,/,wÞ, r ¼ rð�Þ,
and g ¼ gð�Þ such that if jc� 3j < g, then

1
JT0

ðaþT0

a

ðR0eJ

R0

1
R3

ð
R

3
WcðvRð� � zÞuðtÞ, vRð� � zÞvðtÞÞ � KðvRð� � zÞunðtÞ, vRð� � zÞvnðtÞÞdz dR

R
dt��:

It follows that there exists R 2 ½R0, eJR0
 such that

1
T0

ðaþT0

a

1
R3

ð
R

3
WcðvRð� � zÞuðtÞ, vRð� � zÞvðtÞÞKðvRð� � zÞunðtÞ, vRð� � zÞvnðtÞÞdzdt��:

In particular,

1
T0

ðaþT0

a

1
R3

ð
j vRð� � zÞuðtÞjj2L2 jjr vRð� � zÞunðtÞ

� ��� ��j2L2dzdt��

and similarly for v. By the change of variable z ¼ R
4 ðwþ hÞ with w 2 Z

3 and h 2 ½0, 1
3,
we deduce from the integral mean value theorem and Fubini’s theorem that there exists
h 2 ½0, 1
3 such that

1
T0

ðaþT0

a

X
w2Z3

kvR � � R
4
ðwþ hÞ

� �
uðtÞk2L2kr vR � � R

4
ðwþ hÞ

� �
unðtÞ

� �
k2L2dt��:

By splitting the interval ½aþ T0=2, aþ 3T0=4
 into T0�
1
4 subintervals of the same length

��
1
4, we infer that there exists t0 2 ½aþ T0=2, aþ 3T0=4
 such that I0 :¼ ½t0 � ��

1
4, t0
 	

ða, aþ T0Þ andð
I0

X
w2Z3

kvR � � R
4
ðwþ hÞ

� �
uðtÞk2L2kr vR � � R

4
ðwþ hÞ

� �
unðtÞ

� �
k2L2dt��

3
4: (5.2)

In particular, by the classical Gagliardo-Nirenberg inequality

jjf jj4L3�jjf jj2L2 jjrf jj2L2 ,

we obtain

ð
I0

X
w2Z3

kvR � � R
4
ðwþ hÞ

� �
uðtÞk4L3��

3
4: (5.3)

On the other hand, by using the H€older inequality and the Sobolev embedding, we get
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X
w2Z3

����vR � � R
4
ðwþ hÞ

� �
uðtÞ

����
2

L3

�
X
w2Z3

����vR � � R
4
ðwþ hÞ

� �
uðtÞ

����
L2

����vR � � R
4
ðwþ hÞ

� �
uðtÞ

����
L6

�
�X

x2Z3

����
����vR
�
� �R

4
ðwþ hÞ

�
uðtÞ

����
����
2

L2

�1=2�X
w2Z3

����
����vR
�
� �R

4
ðwþ hÞ

�
uðtÞ

����
����
2

L6

�1=2

�jjuðtÞjjL2 jjuðtÞjjH1�1:

(5.4)

For the last line above we used the following: by Sobolev,

X
w2Z3

����
����vR
�
� �R

4
ðwþ hÞ

�
uðtÞ

����
����
2

L6

�
X
w2Z3

����
����vR
�
� �R

4
ðwþ hÞ

�
ruðtÞ

����
����
2

L2
þ 1
R2

����
����ðrvÞR

�
� �R

4
ðwþ hÞ

�
uðtÞ

����
����
2

L2

�jjruðtÞjj2L2 þ
1

R2r2
jjuðtÞjj2L2�jjuðtÞjj2H1

as jrvj�r�1 and R > R0 ¼ ��1 ¼ r�1 (see the end of the proof of Proposition 3.6). It
follows from (5.3), (5.4), and the almost orthogonality that

jjujj3L3t, xðI0�R
3Þ�
ð
I0

X
w2Z3

����vR � � R
4
ðwþ hÞ

� �
uðtÞ

����
3

L3

�
ð
I0

X
w2Z3

����vR � � R
4
ðwþ hÞ

� �
uðtÞ

����
4

L3

 !1
2 X

w2Z3

����vR � � R
4
ðwþ hÞ

� �
uðtÞ

����
4

L2

 !1
2

�
ð
I0

X
w2Z3

����vR � � R
4
ðwþ hÞ

� �
uðtÞ

����
4

L3

 !1
2 ð

I0

X
w2Z3

����vR � � R
4
ðwþ hÞ

� �
uðtÞ

����
4

L2

 !1
2

��
1
4:

(5.5)

On the other hand, by Strichartz estimates, Sobolev embedding and standard continuity
argument, we deduce that

jjujjL10t, xðI0�R
3Þ�hI0i

1
10:

This inequality, (5.5), and interpolation imply that

jjujjL5t, xðI0�R
3Þ�jjujj37

L3t, xðI0�R
3Þjjujj

4
7

L10t, xðI0�R
3Þ��

3
140:

Similarly, we have

jjvjjL5t, xðI0�R
3Þ��

3
140:

Therefore, (5.1) holds, and the proof is complete. w
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Proof of Theorem 1.1 for radial solutions. We fix � > 0 and R as in Proposition 4.2.
From (3.48) and the mean value theorem, we infer that there exist sequences of times
tn ! 1 and radii Rn ! 1 such that

lim
n!1

ð
jxj�Rn

juðt, xÞj103 þ jvðt, xÞj103
� �

dx ¼ 0: (5.6)

Choosing n sufficiently large so that Rn � R, the H€older inequality yields

ð
jxj�R

juðt, xÞj2 þ 3cjvðt, xÞj2
� �

dx�R
3
5

ð
jxj�Rn

juðt, xÞj103 dx
 !3

5

þ
ð
jxj�Rn

jvðt, xÞj103 dx
 !3

5

2
4

3
5

which, by (5.6), shows (4.9). By Proposition 4.2, the solution scatters forward in time. w

5.2. Proof of the blow-up results

It remains to prove the blow-up results as stated in Theorem 1.2. Let us start with the
following observation.

Lemma 5.1. Let l, c > 0, and ð/,wÞ 2 Gð0, 3c, cÞ. Let ðu0, v0Þ 2 H1 � H1 satisfy either
Elðu0, v0Þ < 0 or if Elðu0, v0Þ � 0, we assume that (1.13) and (1.16) hold. Let (u, v) be
the corresponding solution to (1.1) with initial data (u0, v0) defined on the maximal time
interval ð�T�,TþÞ. Then for e > 0 sufficiently small, there exists c ¼ cðeÞ > 0 such that

GðuðtÞ, vðtÞÞ þ eKðuðtÞ, vðtÞÞ � �c (5.7)

for all t 2 ð�T�,TþÞ:
Proof. If Elðu0, v0Þ < 0, then the conservation of energy implies that

GðuðtÞ, vðtÞÞ þ 1
2
KðuðtÞ, vðtÞÞ ¼ 3ElðuðtÞ, vðtÞÞ � 3

2
MlðuðtÞ, vðtÞÞ

� 3ElðuðtÞ, vðtÞÞ ¼ 3Elðu0, v0Þ:
This shows (5.7) with e ¼ 1

2 and c ¼ �3Elðu0, v0Þ > 0:
We next consider the case Elðu0, v0Þ � 0: In this case, we assume (1.13) and (1.16).

By the same argument as in the proof of [3, Theorem 4.6] using (1.13) and (1.16), we
have

KðuðtÞ, vðtÞÞM3cðuðtÞ, vðtÞÞ > Kð/,wÞM3cð/,wÞ, 8t 2 ð�T�,TþÞ:
Moreover, by taking q ¼ qðu0, v0,/,wÞ > 0 such that

Elðu0, v0ÞM3cðu0, v0Þ � 1
2
ð1� qÞE3cð/,wÞM3cð/,wÞ, (5.8)

we can prove (see again the proof of [3, Theorem 4.6]) the existence of d ¼
dðu0, v0,/,wÞ > 0 such that

KðuðtÞ, vðtÞÞM3cðuðtÞ, vðtÞÞ � ð1þ dÞKð/,wÞM3cð/,wÞ, 8t 2 ð�T�,TþÞ: (5.9)

Now for e > 0 small to be chosen later, we have from (5.8), (5.9), and (2.2) that
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ðGðuðtÞ, vðtÞÞ þ eKðuðtÞ, vðtÞÞÞM3cðuðtÞ, vðtÞÞ

¼ ð3ElðuðtÞ, vðtÞÞ � 3
2
MlðuðtÞ, vðtÞÞ � 1

2
� e

� �
KðuðtÞ, vðtÞÞÞM3cðuðtÞ, vðtÞÞ

� 3ElðuðtÞ, vðtÞÞM3cðuðtÞ, vðtÞÞ � 1
2
� e

� �
KðuðtÞ, vðtÞÞM3cðuðtÞ, vðtÞÞ

¼ 3
2
ð1� qÞE3cð/,wÞM3cð/,wÞ � 1

2
� e

� �
ð1þ dÞKð/,wÞM3cð/,wÞ

¼ �ð1
2
ðqþ dÞ � eð1þ dÞÞKð/,wÞM3cð/,wÞ

for all t 2 ð�T�,TþÞ: By choosing 0 < e < qþd
2ð1þdÞ , the conservation of mass yields

GðuðtÞ, vðtÞÞ þ eKðuðtÞ, vðtÞÞ � �
�
1
2
ðqþ dÞ � eð1þ dÞ

�
Kð/,wÞ M3cð/,wÞ

M3cðu0, v0Þ
for all t 2 ð�T�,TþÞ: The proof is complete. w

We are now able to provide a proof of Theorem 1.2. To the best of our knowledge,
the strategy of using an ODE argument—when classical virial estimates based on the
second derivative in time of (localized) variance break down—goes back to the work
[33], where fractional radial NLS is investigated. See instead [22, 34] for some blow-up
results for quadratic NLS systems.

Proof of Theorem 1.2. We only consider the case of radial data, the one for R3-data is
treated in a similar manner using (3.14). Let ðu0, v0Þ 2 H1 �H1 be radially symmetric
and satisfy either Elðu0, v0Þ < 0 or if Elðu0, v0Þ � 0, we assume that (1.13) and (1.16)
hold. Let (u, v) be the corresponding solution to (1.1) defined on the maximal time
interval ð�T�,TþÞ: We only show that Tþ < 1 since the one for T� < 1 is similar.
Assume by contradiction that Tþ ¼ 1: By Lemma 5.1, we have for e > 0 sufficiently
small, there exists c ¼ cðeÞ > 0 such that

GðuðtÞ, uðtÞÞ þ eKðuðtÞ, vðtÞÞ � �c (5.10)

for all t 2 ½0,1Þ: On the other hand, by Lemma 3.10, we have for all t 2 ½0,1Þ,
d
dt

MuR
ðtÞ � 8GðuðtÞ, vðtÞÞ þ CR�2KðuðtÞ, vðtÞÞ þ CR�2, (5.11)

where uR is as in (3.9) and MuR
ðtÞ is as in (3.3). It follows from (5.10) and (5.11) that

for all t 2 ½0,1Þ,
d
dt

MuR
ðtÞ � �8c� 8eKðuðtÞ, vðtÞÞ þ CR�2KðuðtÞ, vðtÞÞ þ CR�2:

By choosing R> 1 sufficiently large, we get

d
dt

MuR
ðtÞ � �4c� 4eKðuðtÞ, vðtÞÞ (5.12)

for all t 2 ½0,1Þ: Integrating the above inequality, we see that MuR
ðtÞ < 0 for all t � t0

with some t0 > 0 sufficiently large. We infer from (5.12) that
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MuR
ðtÞ � �4e

ðt
t0

KðuðsÞ, vðsÞÞds (5.13)

for all t � t0: On the other hand, by the H€older’s inequality and the conservation of
mass, we have

jMuR
ðtÞj � CjjruRjjL1 jjruðtÞjjL2 jjuðtÞjjL2 þ jjrvðtÞjjL2 jjvðtÞjjL2

� �
� CðuR,M3cðu0, v0ÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KðuðtÞ, vðtÞÞp

:
(5.14)

From (5.13) and (5.14), we get

MuR
ðtÞ � �A

ðt
t0

jMuR
ðsÞj2ds (5.15)

for all t � t0, where A ¼ Aðe,uR,M3cðu0, v0ÞÞ > 0: Set

zðtÞ :¼
ðt
t0

jMuR
ðsÞj2ds, t � t0: (5.16)

We see that z(t) is non-decreasing and non-negative. Moreover,

z0ðtÞ ¼ jMuR
ðtÞj2 � A2z2ðtÞ, 8t � t0:

For t1 > t0, we integrate over ½t1, t
 to obtain

zðtÞ � zðt1Þ
1� A2zðt1Þðt � t1Þ , 8t � t1:

This shows that zðtÞ ! þ1 as t % t�, where

t� :¼ t1 þ 1
A2zðt1Þ > t1:

In particular, we have

MuR
ðtÞ � �AzðtÞ ! �1

as t % t�, hence KðuðtÞ, vðtÞÞ ! þ1 as t % t�: Thus the solution cannot exist for all
time t � 0: The proof is complete. w
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Appendix A: proofs of Lemmas 2.1, 2.2, 2.3, and 2.4

Let I 	 R be an interval containing zero. We recall that a pair of functions ðu, vÞ 2
CðI,H1ðR3ÞÞ � CðI,H1ðR3ÞÞ is called a solution to the problem (1.1) if (u, v) satisfies the
Duhamel formula

ðuðtÞ, vðtÞÞ ¼ ðS1ðtÞu0,S2ðtÞv0Þ þ i
ðt
0
ðS1ðt � sÞF1ðsÞ,S2ðt � sÞF2ðsÞÞds

for all t 2 I, where

F1ðsÞ :¼ 1
9
juðsÞj2 þ 2jvðsÞj2

� �
uðsÞ þ 1

3
�u2ðsÞvðsÞ,

F2ðsÞ :¼ 9jvðsÞj2 þ 2juðsÞj2
� �

vðsÞ þ 1
9
u3ðsÞ:

(A.1)

The linear operators S1 and S2 introduced in (1.9) satisfy the following dispersive estimates: for
j¼ 1, 2, and 2 � r � 1,

jjSjðtÞf jjLrðR3Þ�jtj� 3
2�3

rð Þjjf jjLr0 ðR3Þ, f 2 Lr
0 ðR3Þ (A.2)

for all t 6¼ 0, which in turn yield the following Strichartz estimates: for any interval I 	 R and
any Strichartz L2-admissible pairs (q, r) and ðm, nÞ, i.e., pairs of real numbers satisfying
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2
q
þ 3

r
¼ 3

2
, 2 � r � 6: (A.3)

we have, for j¼ 1, 2,

jjSjðtÞf jjLqt LrxðI�R
3Þ�jjf jjL2ðR3Þ, f 2 L2ðR3Þ,����

ðt
0
Sjðt � sÞFðsÞds

����
Lqt L

r
xðI�R

3Þ
�jjFjjLm0

t Ln0x ðI�R
3Þ, F 2 Lm

0
t Ln

0
x ðI � R

3Þ,

where ðm,m0Þ and ðn, n0Þ are H€older conjugate pairs. We refer the readers to the boos [14, 35,
36] for a general treatment of the Strichartz estimates for NLS equations.

We are ready to prove Lemma 2.1.

Proof of Lemma 2.1. From the Duhamel formula, we have

ðuðtÞ, vðtÞÞ ¼ ðS1ðt � TÞuðTÞ,S2ðt � TÞvðTÞÞ þ i
ðt
T
ðS1ðt � sÞF1ðsÞ,S2ðt � sÞF2ðsÞÞds:

By using Sobolev embedding, Strichartz estimates, and interpolation, we get

jjðu, vÞjjL4t L6x�L4t L
6
xð½T,1Þ�R

3Þ � jjðS1ðt � TÞuðTÞ,S2ðt � TÞvðTÞÞjjL4t L6x�L4t L
6
xð½T,1Þ�R

3Þ
þ CjjðF1, F2Þjj

L2t W
1, 65
x �L2t W

1, 65
x ð½T,1Þ�R

3Þ
� jjðS1ðt � TÞuðTÞ,S2ðt � TÞvðTÞÞjjL4t L6x�L4t L

6
xð½T,1Þ�R

3Þ

þ Cjjðu, vÞjj2L4t L6x�L4t L
6
xð½T,1Þ�R

3Þjjðu, vÞjjL1t L3x�L1t L3xð½T,1Þ�R
3Þ

� jjðS1ðt � TÞuðTÞ,S2ðt � TÞvðTÞÞjjL4t L6x�L4t L
6
xð½T,1Þ�R

3Þ
þ Ejjðu, vÞjj

L4t L
6
x�L4t L

6
xð T,1Þ�R

3Þ2,½
Choosing �sd ¼ �sdðEÞ > 0 small enough, the standard continuity argument implies that if (2.1)
holds, then

jjðu, vÞjjL4t L6x�L4t L
6
xð T,1Þ�R

3Þ��sd:½
Now, for 0 < s < t, we have

jjðS1ðtÞuðtÞ,S2ðtÞvðtÞÞ � ðS1ðsÞuðtÞ,S2ðsÞvðsÞÞjjH1�H1

¼
����
ðt
s
ðS1ð�sÞF1ðsÞ,S2ð�sÞF2ðsÞÞds

����
H1�H1

�jjðu, vÞjj2L4t L6x�L4t L
6
xð s, t½ 
�R

3Þjjðu, vÞjjL1t H1
x�L1t H1

xð s, t½ 
�R
3Þ ! 0

as s, t ! 1: Therefore, ðS1ðtÞuðtÞ,S2ðtÞvðtÞÞ

 �

t!1 is a Cauchy sequence in H1 �H1: In par-
ticular, the solution (u, v) scatters in the positive time. w

In the following, we provide the proofs for Lemmas 2.2, 2.3, and 2.4.

Proof of Lemma 2.2. By the sharp Gagliardo-Nirenberg inequality (1.15), Kðjf j, jgjÞ � Kðf , gÞ,
and (2.3), we get

Pðjf j, jgjÞ � 1
3

Kðf , gÞM3cðf , gÞ
Kð/,wÞM3cð/,wÞ

 !1
2

Kðf , gÞ:

Thus
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Pðjf j, jgjÞ � 1
3

inf
n1, n22R3

Kðeix�n1 f , eix�n2gÞM3cðf , gÞ
Kð/,wÞM3cð/,wÞ

 !1
2

Kðeix�n1 f , eix�n2gÞ

0
@

1
A

� 1
3

inf
n1, n22R3

Kðeix�n1 f , eix�n2gÞM3cðf , gÞ
Kð/,wÞM3cð/,wÞ

 !1
2

� inf
n1, n22R3

Kðeix�n1 f , eix�n2gÞ,

which implies (2.4). w

Proof of Lemma 2.3. By (1.15) and l > 0, we have

ElðuðtÞ, vðtÞÞM3cðuðtÞ, vðtÞÞ � 1
2
KðuðtÞ, vðtÞÞM3cðuðtÞ, vðtÞÞ � Copt KðuðtÞ, vðtÞÞM3cðuðtÞ, vðtÞÞ

� �3
2

¼: G KðuðtÞ, vðtÞÞM3cðuðtÞ, vðtÞÞ
� �

for all t 2 ð�T�,TþÞ, where GðkÞ :¼ 1
2 k� Coptk

3
2: Using (2.3), we compute

G Kð/,wÞM3cð/,wÞ
� � ¼ 1

6
Kð/,wÞM3cð/,wÞ ¼ 1

2
E3cð/,wÞM3cð/,wÞ:

By the conservation of mass and energy, and (1.13), we have

G KðuðtÞ, vðtÞÞM3cðuðtÞ, vðtÞÞ
� � � ElðuðtÞ, vðtÞÞM3cðuðtÞ, vðtÞÞ

¼ Elðu0, v0ÞM3cðu0, v0Þ
<

1
2
E3cð/,wÞM3cð/,wÞ ¼ G Kð/,wÞM3cð/,wÞ

� �
for all t 2 ð�T�,TþÞ: Using this and (1.16), the continuity argument yields

KðuðtÞ, vðtÞÞM3cðuðtÞ, vðtÞÞ < Kð/,wÞM3cð/,wÞ (A.4)

for all t 2 ð�T�,TþÞ: The blow-up alternative then implies that T� ¼ Tþ ¼ 1: Next, by (1.15),
(2.3), and (A.4), we have

PðuðtÞ, vðtÞÞ � 1
3

KðuðtÞ, vðtÞÞM3cðuðtÞ, vðtÞÞ
Kð/,wÞM3cð/,wÞ

 !1
2

KðuðtÞ, vðtÞÞ � 1
3
KðuðtÞ, vðtÞÞ

for all t 2 R: It follows that

ElðuðtÞ, vðtÞÞ ¼ 1
2

KðuðtÞ, vðtÞÞ þMlðuðtÞ, vðtÞÞ
� �� PðuðtÞ, vðtÞÞ � 1

6
KðuðtÞ, vðtÞÞ (A.5)

which, by the conservation of energy, implies (2.5).
From (A.5) and (2.3), we see that

KðuðtÞ, vðtÞÞM3cðuðtÞ, vðtÞÞ � 6ElðuðtÞ, vðtÞÞM3cðuðtÞ, vðtÞÞ
¼ 6

ElðuðtÞ, vðtÞÞM3cðuðtÞ, vðtÞÞ
E3cð/,wÞM3cð/,wÞ

 !
E3cð/,wÞM3cð/,wÞ

¼ E3cðuðtÞ, vðtÞÞM3cðuðtÞ, vðtÞÞ
1
2
E3cð/,wÞM3cð/,wÞ

0
@

1
AKð/,wÞM3cð/,wÞ

(A.6)

for all t 2 R: On the other hand, by (1.13), there exists d ¼ dðu0, v0,/,wÞ > 0 such that

Elðu0, v0ÞM3cðu0, v0Þ � ð1� dÞ 1
2
E3cð/,wÞM3cð/,wÞ:

Then from (A.6) and the conservation laws of mass and energy, we obtain
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KðuðtÞ, vðtÞÞM3cðuðtÞ, vðtÞÞ � ð1� dÞKð/,wÞM3cð/,wÞ
for all t 2 R: The proof is complete. w

Proof of Lemma 2.4. It follows from straightforward calculations that jjCRf jj2L2 � jjf jj2L2 andð
C2
RðxÞjrf ðxÞj2dx ¼

ð
jrðCRðxÞf ðxÞÞj2dxþ

ð
CRðxÞDCRðxÞjf ðxÞj2dx, f 2 H1:

As jjDCRjjL1�R�2, we infer from (2.6) and the conservation of mass that there exists a suffi-
ciently large R ¼ Rðd, u0, v0,/,wÞ so that

K CRð� � zÞuðtÞ,CRð� � zÞvðtÞð ÞM3c CRð� � zÞuðtÞ,CRð� � zÞvðtÞð Þ � 1� d
2

� �
Kð/,wÞM3cð/,wÞ

for all t 2 R: The refined Gagliardo-Nirenberg inequality (2.4) implies that

P CRð� � zÞjuðtÞj,CRð� � zÞjvðtÞjð Þ � 1
3

1� d
2

� �1
2

K CRð� � zÞeix�n1uðtÞ,CRð� � zÞeix�n2vðtÞ
� �

which in turn implies (2.8) with � :¼ 1� ð1� d
2Þ

1
2 > 0: w

Appendix B: virial identities

This Appendix is devoted to the proof of the virial identities in Sec. 3.

Proof of Lemma 3.1. Notice that

@tðjuj2 þ cbjvj2Þ ¼ 2Reð�u@tuþ cb�v@tvÞ: (B.1)

Moreover, multiplying Eq. (1.1) with ð�u, b�vÞ and taking the imaginary part, we have

Reð�u@tuþ cb�v@tvÞ ¼ �Imð�uDuþ b�vDvÞ � Im
1
3
�u3vþ b

9
u3�v

� �

¼ �Imð�uDuþ b�vDvÞ þ 1
3

1� b
3

� �
Imðu3�vÞ:

(B.2)

Combining (B.1) and (B.2), we infer that

@tðjuj2 þ cbjvj2Þ ¼ �2Imð�uDuþ b�vDvÞ þ 2
3

1� b
3

� �
Imðu3�vÞ

¼ �2r � Imð�uruÞ � 2br � Imð�vrvÞ þ 2
3

1� b
3

� �
Imðu3�vÞ,

which implies (3.1). On the other hand, we rewrite (1.1) as

i@tuþ Du ¼ H,
ic@tvþ Dv ¼ G,

�

where H ¼ H1 þ H2 þH3 and G ¼ G1 þ G2 þ G3 with

H1 ¼ u, H2 ¼ � 1
9
juj2 þ 2jvj2

� �
u, H3 ¼ � 1

3
�u2v,

G1 ¼ lv, G2 ¼ �ð9jvj2 þ 2juj2Þv, G3 ¼ � 1
9
u3:

It follows from straightforward computations that
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@tImð�u@kuþ c�v@kvÞ ¼ 1
2
@kDðjuj2 þ jvj2Þ � 2@jReð@j�u@kuþ @j�v@kvÞ

þ ð2Reð�H@kuÞ � @kReð�HuÞÞ þ ð2Reð�G@kvÞ � @kReð�GvÞÞ:
(B.3)

A simple calculation leads to

ð2Reð�H1@kuÞ � @kReð�H1uÞÞ þ ð2Reð�G1@kvÞ � @kReð�G1vÞÞ ¼ 0:

Moreover, since

@kðjuj2jvj2Þ ¼ 2Reð�u@kuÞjvj2 þ 2Reð�v@kvÞjuj2
@kðjuj4Þ ¼ 4juj4Reð�u@kuÞ,
@kðjvj4Þ ¼ 4jvj4Reð�v@kvÞ,

we obtain that

ð2Reð�H2@kuÞ � @kReð�H2uÞÞ þ ð2Reð�G2@kvÞ � @kReð�G2vÞÞ ¼ 1
18

juj4 þ 9
2
jvj4 þ 2juj2jvj2:

Finally, as

@kReð�u3vÞ ¼ 3Reð�u2v@k�uÞ þ Reð�u3@kvÞ,
it follows that

ð2Reð�H3@kuÞ � @kReð�H3uÞÞ þ ð2Reð�G3@kvÞ � @kReð�G3vÞÞ ¼ 2
9
@kReð�u3vÞ:

Collecting the above identities, we obtain

ð2Reð�H@kuÞ � @kReð�HuÞÞ þ ð2Reð�G@kvÞ � @kReð�GvÞÞ ¼ 2@kNðu, vÞ,
which, together with (B.3), shows (3.2). The proof is complete. w

Proof of Corollary 3.3. The proof of the identity (3.4) is straightforward. The relation (3.5)
comes from the fact that

@j ¼
xj
r
@r , @2

jk ¼
djk
r
� xjxk

r3

� �
@r þ

xjxk
r2

@2
r ,

for radial function. Hence

Re
ð
@2
jkuðxÞ@j�uðt, xÞ@kuðt, xÞdx ¼

ð
u0ðrÞ
r

jruðt, xÞj2dxþ
ð

u00ðrÞ
r2

� u0ðrÞ
r3

� �
jx � ruðt, xÞj2dx,

where r ¼ jxj, which in turn implies (3.6).
If u is radial and (u, v) as well,

d
dt

MuðtÞ ¼ �
ð
D2uðxÞðjuj2 þ jvj2Þðt, xÞdxþ 4

ð
u00ðrÞðjruj2 þ jrvj2Þðt, xÞdx

� 4
ð
DuðxÞNðu, vÞðt, xÞdx:

From the choice of the function uðxÞ ¼ wðyÞ þ z2, we have

d
dt

MuðtÞ ¼ �
ð
D2
ywðyÞðjuj2 þ jvj2Þðt, xÞdxþ 4Re

ð
@2
jkwðyÞð@j�u@kuþ @j�v@kvÞðt, xÞdx

þ 8 jj@zuðtÞjj2L2 þ jj@zvðtÞjj2L2
� �

� 8PðuðtÞ, vðtÞÞ � 4
ð
DywðyÞNðu, vÞðt, xÞdx

which in turn gives (3.7). w
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