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ABSTRACT
Many countries ban insurers from using genetic test results in underwrit-
ing. One study [Howard, R. C. W. (2014). Report to CIA research committee:
Genetic testingmodel: If theunderwritershadnoaccess toknownresults. Cana-
dian Institute of Actuaries (CIA).] stated that such a ban in Canada would
expose life insurers to adverse selection, causing premiums to increase by
12%. More than a quarter of this cost was attributable to a single disor-
der, Arrhythmogenic Right Ventricular Cardiomyopathy (ARVC). We model
ARVC in a life insurance market, following the methodology of [Haçarız, O.,
Kleinow, T. & Macdonald, A. S. (2021). Genetics, insurance and hypertrophic
cardiomyopathy. Scandinavian Actuarial Journal 2021, 54–81.], including
‘cascade’ genetic testing (CGT), so the rôle of family history in underwriting
is modelled explicitly. We review (in the Appendix) the published epidemi-
ology of ARVC, in particular the existence of an effective treatment, which
we also include in our model. Our results are consistent with those of [Mac-
donald, A. S. & Yu, F. (2011). The impact of genetic information on the insur-
ance industry: Conclusions from the ‘bottom-up’ modelling programme.
Astin Bulletin 41(02), 343–376.] and [Haçarız, O., Kleinow, T. & Macdonald,
A. S. (2021). Genetics, insurance and hypertrophic cardiomyopathy. Scan-
dinavian Actuarial Journal 2021, 54–81.], namely, that in realistic scenarios
premium increases would be negligible. We also consider the possibil-
ity of life settlement companies ‘gaming’ insurers by learning of adverse
genetic test results, and conclude that to profit from purchasing policies
from affected individuals, they would have to predict the future trajectory
of the epidemiology of ARVC better than the epidemiologists themselves.
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1. Introduction

1.1. Life insurers and genetic test results

The use of genetic test results by life insurers has been controversial. Some argue that denying life
insurers access to all available genetic information about policyholders leads potentially to increased
costs due to adverse selection (Howard 2014). On the other hand, there are concerns that disclosure of
genetic test results can lead to genetic discrimination, see Otlowski et al. (2012) or Tiller et al. (2017)
for an Australian perspective.

In this study, we suppose that individuals who know about their own increased mortality risk
might be more likely than usual to purchase life insurance cover. The higher risk is not priced for
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by the insurer, who is unaware of it, leading to losses. A measure of these losses is the proportional
increase in premiums across the board that would be required to recoup the losses. In our view, this
quantity is central to the discussion of the relevance of genetic testing to insurers.

We concentrate on a particular group of inherited cardiac diseases, called cardiomyopathies, and in
particular on two that have been identified as highly significant contributors to adverse selection costs
in a study by Howard (2014). In a previous paper, Haçarız et al. (2021), we modelled Hypertrophic
Cardiomyopathy (HCM). In this paper, we apply the same ideas to model Arrhythmogenic Right
Ventricular Cardiomyopathy (ARVC). The aetiology and epidemiology of ARVC are quite different
from those of HCM, however, especially in one crucial respect; an effective treatment for ARVC is
available, which must be included in the model.

For our quantitative analysis, we apply a stochastic model that allows us to model the joint life
histories of members of a nuclear family, together with decisions they each make during their indi-
vidual lifetimes. Our model takes into account modern genetic testing procedures called cascade
genetic testing, and the choice of model parameters has been informed as much as possible by the
epidemiology.

1.2. Cardiomyopathies, life insurance and adverse selection

Cardiomyopathies are inherited heart disorders, accounting for a significant proportion of cardiac
disease and deaths at younger ages. They are caused by variants of any one of several individual genes
and are mostly dominantly inherited.

In a Canadian study (Howard 2014), the two conditions mentioned above, HCM and ARVC, con-
tributed the highest dollar losses arising from adverse selection, if life insurers were denied access
to genetic test results. ARVC cost $111,141,682 and HCM cost $89,187,658, almost half of the total
cost of $405,455,952 attributable to the thirteen disorders included in the study (see Section 4.2). For
comparison, better-known single-gene disorders cost much less; Huntington disease $2,571,615 and
inherited breast/ovarian cancer $5,363,834.

One reason for the high reported costs – overall about 12% of premium income – was an assump-
tion that persons taking advantage of an adverse genetic test result would buy $1,000,000 of life cover,
10 times the normal amount. However, since this was the case for all 13 disorders, it cannot account
for the large proportion of costs attributable to the cardiomyopathies.

Haçarız et al. (2021) introduced an actuarial model of HCM and genetic testing and found the cost
of adverse selection to be generally much lower. Only by combining several extreme assumptions did
the costs approach those in Howard (2014). The key to their approach was: (a) a detailed study of
the epidemiology of HCM; and (b) an explicit dynamic model of genetic testing within families. In
particular, they paid attention to the trajectory of the published genetic epidemiology, which tends to
evolve from small studies of selected populations to larger studies of less selected populations, with
important consequences for estimates of key parameters such as mortality hazards.

1.3. Plan of the paper

Since much of the genetical background not specific to HCM is in Haçarız et al. (2021), we refer the
reader there. However, in Section 2 we present a short list of definitions essential to reading this paper.
We then describe our model in Section 3. We assume that both insurers (in setting premiums) and
family members (when purchasing life insurance) base their decisions on the information available
to them. The cascade genetic testing model provides an explicit model of that information and in
Sections 3.7 and 3.8, we describe how insurers and family members use it. Our results, showing costs
under various adverse selection scenarios, are in Sections 4–7. In particular, Section 6 considers the
effect of treatment by fitting an implantable cardioverter-defibrillator, which is a novel feature of this
model. Our conclusions are in Section 8.
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2. Genetic epidemiology: terminology

We define the following terms, which have these precise meanings throughout the paper.

(a) The ‘underlying condition’ is the physical change in the heart muscle or its regulatory sys-
tem that defines the disorder. This may be present at birth or may develop later. It may be
symptomatic or asymptomatic.

(b) ‘Onset’ marks the time at which the underlying condition is first present, at birth or later. A
person is at risk of death due to the underlying condition only after onset.

(c) ‘Clinical diagnosis’ means the detection of the underlying condition. This may happen a long
time after onset; that is, the disorder may be present but undetected, perhaps because there
are no symptoms.

(d) ‘Genotype’ is the variant of a relevant gene present in an individual. Usually some rare variant
is associated with the disorder and this is called a ‘deleterious variant’ (DV) (we understand
that ‘mutation’ is falling out of use among geneticists).

(e) ‘Phenotype’ is the physical manifestation of the disorder. Here, we take it to be synonymous
with the underlying condition. If the underlying condition is present, we say that the genotype
has been expressed.

(f) ‘Penetrance’ is the proportion of carriers of a DV who have the underlying condition. It is
usually less than 100%. If the underlying condition can develop after birth the penetrance is
a function of age, which we denote by F(x).

(g) ‘Proband’ is the first person in a family in whom the disorder is detected or a DV found by
genetic testing. Either event reveals for the first time that a DV must ‘run in the family’.

We describe what we need of the epidemiology of Arrhythmogenic Right Ventricular Cardiomy-
opathy (ARVC) in the Appendix. For quick reference, Table 1 lists where the main features can be
found.

3. The model

3.1. A model of an individual’s life history

In Figure 1, we present our mathematical model of ARVC in a life insurance market, in which i is
a label representing a sub-population, related to genotype as described in Section 3.3. This uses the
same framework as the HCM model in Haçarız et al. (2021), although their model was simpler in that
onset and clinical diagnosis of the underlying condition were not represented as events, and there was
no treatment. Appendix 1 of Haçarız et al. (2021) explained the general approach of using a multiple-
state model to represent genetic variability, information and decision-making, and we refer the reader
there.

The model represents events in a life history, as follows:

(a) At any time, buying life insurance.
(b) Onset of the underlying condition (ARVC).
(c) Clinical diagnosis after onset.

Table 1. Main features of ARVC described in the Appendix.

Feature Reference Feature Reference

Clinical features Section A.1 Prevalence Section A.4
Clinical diagnosis Section A.4(b) Penetrance Section A.5
Mode of inheritance Section A.2 Mortality Section A.6

Treatment Section A.6
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Figure 1. A mathematical model of the life history of an individual, possibly at risk of ARVC, in a life insurance market. The label i
( = 0, 1, 2, 3, 4) indicates a sub-population defined by ARVC genotype, see Section 3.3. In μi02

x,z and μi46
x,z , z refers to the duration in

state i0 and state i4, respectively, since (if ) a proband appeared in the family. ICD: Implantable cardioverter-defibrillator.

(d) Being fitted with an ICD after clinical diagnosis.
(e) Having a genetic test for an ARVC-related DV.
(f) Suffering a fatal ARVC-related event before or after an ICD implantation.
(g) Death from any other cause.

3.2. A model of a nuclear family’s life history

The key assumption is that the model in Figure 1 represents the life history of a single individual in
a defined nuclear family, but we model the life histories of all the members of that nuclear family,
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simultaneously in calendar time. Therefore some transition intensities can depend on what has hap-
pened to other family members. In this way, we model the effect of the information gained from
knowing the family history. This information may be used: (a) by insurers, if allowed, in setting pre-
mium rates; and (b) by individuals, in deciding whether to take a genetic test, whether to buy life
insurance, and if so the sum insured.

3.3. Sub-populations and family formation

Each individual is a member of one of five sub-populations, labelled i = 0, 1, 2, 3, 4. Sub-population
0 contains individuals who do not carry an ARVC-related DV. Sub-populations 2 and 4 contain indi-
viduals who carry known and unknown ARVC-related DVs, respectively. Sub-populations 1 and 3
are populated dynamically, as follows.

(a) We begin at calendar time 0, with a large number of individuals born in sub-populations 0, 2
and 4, in proportion to the population prevalences of ARVC genetic variants. Sub-populations
1 and 3 are empty.

(b) At calendar time 20, spouse-pairs form. Everyone still alive in sub-population 2 acquires
a spouse of the opposite sex from sub-population 0, who is moved into sub-population 1.
Likewise sub-population 3 is populated by the spouses of persons in sub-population 4.

(c) At calendar time 30, children are born to each surviving spouse-pair, the number being
Poisson(λ) distributed (so possibly zero). Children are male with probability 1/2. Chil-
dren with a parent who has an ARVC-related variant inherit it with probability 1/2, and
are allocated to sub-population 1, 2, 3 or 4 accordingly. Our default assumption for mean
family size is λ = 1.8, based on recent data for both the UK and USA, see Haçarız et al.
(2021).

Individuals in sub-populations 0, 1 and 3 face identical biological risks, but both they and insurers
may make different decisions depending on their family history.

3.4. Probands and family history

At calendar time 0, no-one in a family has clinical ARVC. A person may become a proband, by being
the first family member to be clinically diagnosed with ARVC or to suffer a fatal ARVC event. The
proband could be a parent or a child. As described in Section A.3, this event initiates CGT in the
family, and it bestows a family history of ARVC upon every surviving family member.

3.5. The cascade genetic testing model

As soon as a proband appears, genetic testing becomes a possibility. First, the proband will be tested
for known DVs. If one is identified, counselling and genetic testing will be offered to all the proband’s
first-degree relatives. We use the same assumptions as Haçarız et al. (2021) for take-up rates of testing,
that for one year after a proband has appeared, other family members have a constant intensity of
� log(1/2) = 0.6931472 of transferring from an untested to a tested state (so that each is tested with
probability 1/2). We refer to Haçarız et al. (2021) and references therein for details.

In families in which an unknown DV is present, genetic testing is not possible, but family members
will be recommended to undergo regular clinical screening.

CGT can ‘cascade’ beyond the nuclear family in which the proband appears. We do not model
this directly, but Haçarız et al. (2021) noted that an effective proxy is to increase the value of λ, since
everyone offered testing under CGT carries the DV with probability 1/2.
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3.6. An example

Here we give an example of a simulated family history in our population. We begin with a large num-
ber N of individuals age zero, with ni in sub-population i (i = 0, 2, 4) and none in sub-populations
1 and 3. Consider, say, a randomly chosen male in sub-population 2 who is still alive at age 20.
He ‘marries’ a randomly chosen female from sub-population 0, who is immediately transferred to
sub-population 1.

Now suppose both individuals are still alive at age 30, and they then have three children (a random
draw from a Poisson distribution). The first is a boy who inherits the DV carried by the father. He
is placed in sub-population 2. The second is a boy who does not inherit the DV. He is placed in
sub-population 1. The third is a girl who also inherits the DV. She is placed in sub-population 2.

Suppose all five family members are alive at calendar time t = 50, when the parents are age 50 and
the children are age 20. Suppose also that the father is then diagnosed with ARVC and the relevant DV
is identified by a genetic test. The father is now a proband. CGT commences, and all three children
are offered counselling and genetic testing. All three now have a family history of ARVC, whether
they decide to be tested or not.

3.7. Information: premium rating

From an insurer’s point of view, there are two classes of family. Families in which no proband exists
have no family history of ARVC; we call these underwriting class C0 families. Families in which a
proband exists (dead or alive) have a family history of ARVC; we call these underwriting class C1

families. These are the two underwriting classes used for calculating premiums, if insurers are allowed
to use family history.

We assume that insurers charge variable age-related premiums, payable continuously, rather than
level premiums depending on age at entry. The premium is calculated as follows.

(a) The insurer calculates the occupancy probabilities in each model state at all future times,
assuming there is no genetic testing and no adverse selection.

(b) The insurer allocates each ‘insured’ state to either class C0 or class C1.
(c) The premium rate per unit sum assured is the weighted average of all transition intensities

from the ‘insured’ states in an underwriting class into ‘dead’ states, the weights being the
occupancy probabilities from (a).

Our default assumption, when we bring genetic testing into the model, is slightly different from the
above, reflecting practice in the UK. We include in underwriting class C0 persons in sub-population
1 who have a family history of ARVC, but who have had a genetic test and therefore know they do not
carry the DV. Also, an ‘untested’ non-carrier individual, whose carrier spouse becomes a proband,
will be included in underwriting class C0, ignoring the small possibility of both parents carrying an
ARVC-related variant.

3.8. Information: insurance purchasing

At any time, each living uninsured individual, who is not themselves a proband, is in one of four
information classes, which determine their insurance purchasing decisions.

(a) Class ζ n: There is no proband and no family history.
(b) Class ζ 50: There is a proband but the individual has not had a genetic test.
(c) Class ζ 0: The individual has had a genetic test which was negative.
(d) Class ζ 100: The individual has had a genetic test which was positive.
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Intensities from ‘uninsured’ to ‘insured’ states, and possibly the sum insured, are defined to be
functions of the information class, and thus reflect dynamically insurance-purchasing decisions,
including adverse selection. Note that an ‘untested’ non-carrier individual, whose spouse becomes
a proband, is assigned to class ζ n.

3.9. A measure of adverse selection costs

We use the same measure of adverse selection costs as in Haçarız et al. (2021), namely, the expected
present value (EPV) of the insurance loss under any adverse selection scenario, divided by the
EPV of the premium income under the same scenario. We partition the population into X and
Y, where X contains persons whose insurance purchases might change under adverse selection,
and Y contains everyone else. In the absence of adverse selection, the insurance losses and dis-
counted premium income are LX and PX in population X, likewise LY and PY in population Y, and
E[LX + LY ] = 0. Under adverse selection, the rates of premium per unit sum insured remain the
same, but the loss and premium income in population X change to L�

X and P�
X , and our measure

is then:

E[L�
X + LY ]

E[P�
X + PY ]

. (1)

We compute E[LY ] and E[PY ] by solving the Kolmogorov forward equations and Thiele’s equa-
tions numerically. This is not possible for sub-populations 1 to 4, because some transition inten-
sities depend dynamically on the family history, so we compute E[L�

X] and E[P�
X] by Monte-Carlo

simulation. We refer to Haçarız et al. (2021) for details.

4. Results: adverse selection costs

4.1. Baseline scenarios

4.1.1. Prevalences of genetic variants
Based on Section A.4, we assume the prevalence of DVs to be 1/1000. Although this in fact is based
on the prevalence of clinical ARVC, doing so is conservative for our purposes. However, there is some
disagreement about this in the literature and we will test alternatives in Section 7.1. Based on Section
A.2, we also assume 70% of DVs to be ‘known’ and 30% ‘unknown’.

4.1.2. Penetrance of DVs
We conservatively estimate the penetrance of clinical ARVC at age x (10 < x � 60) to be F(x) =
0.01x, relying on the reported data in Quarta et al. (2011), see Section A.5. The associated annual
hazard rate of onset at age x is then F�(x)(1 � F(x))�1.

4.1.3. ARVC-related mortality
Howard (2014) (who used a discrete-time model) assumed annual mortality (qx) of 2.3% per year.
Our model is in continuous time, and all rates or hazards mentioned from now on are transition
intensities. In view of the discussion in Section A.6, a mortality hazard of 2.3% per year seems exces-
sive, and possibly based on outdated epidemiology. The comment by Corrado et al. (2017b), quoted
in Section A.6.1, suggests that an annual hazard of less than 1% would be appropriate, and compar-
ison of Tables A1 and A3 suggests that allowance should be made for implanting an ICD. Table A2
also suggests that mortality in relatives of the proband is lower, possibly because of early treatment. It
seems reasonable to either: (a) allow explicitly for ICD implantation; or (b) assume lower mortality
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in relatives of the proband; but not both at the same time. Our (conservative) baseline assumption is
an annual ARVC hazard of 1%, with initially no allowance for ICD treatment.

4.1.4. Population mortality
The population mortality rates (not related to ARVC) are assumed to be those of the Life Tables,
United States (US), 2013 (Arias et al. 2017), males and females.

4.1.5. Clinical diagnosis
We have no empirical data on clinical diagnosis. This is particularly important in sub-populations
3 and 4 with unknown ARVC variants, because clinical screening will be recommended in place of
genetic testing. We assume an annual hazard rate of clinical diagnosis of 0.20, which is conservative
for our purposes, see Section 5.6 for details. For simplicity, this intensity is assumed to be the same
before and after a proband exists in a family.

4.1.6. Insurance purchasing
Following Haçarız et al. (2021), and earlier authors, such as Macdonald & Yu (2011), we assume a
‘normal’ annual rate of insurance purchase of 0.05. Later we will use a rate of 0.01 to represent a
smaller life insurance market (Section 5.2) or as a proxy for a larger market in which lapsation is
significant. We then superimpose higher annual purchase rates, of 0.10 or 0.25, depending dynami-
cally on the information class (Section 3.8) to represent mild or severe adverse selection, respectively.
Specifically, persons in information classes ζ 50 and ζ 100 purchase at the higher rate. In the base-
line all sums insured are £1. However, we will consider the impact of higher sums insured in those
information classes in Section 5.3. If insurers may use family history, they may charge the premium
rate for underwriting class C1. If insurers may not use family history, there is only one underwriting
class, C0.

The force of interest is assumed to be 5% per annum.

4.2. Comparison with Howard (2014)

Based on the dollar costs attributed to ARVC in Howard (2014) (see Section 1.2), namely,
$111,141,682 out of a total adverse selection cost of $405,455,952, added to estimated premium
income of $3.5 billion (in 2012, in Canada), premium increases of about 3% in our model would
be comparable to the costs in Howard (2014). In that study, ARVC and HCM were the two most
costly disorders, contributing almost half of the total cost.

4.3. Baseline adverse selection costs

We summarise the baseline assumptions in Table 2 and present the premium increases under the
baseline adverse selection scenarios in Table 3. The necessary premium increases to redeem the base-
line adverse selection costs are very small, all below 0.02%. Allowing insurers to use family history
reduces the premium increases by a factor of about 3 and 2.5 under mild and severe adverse selection,
respectively.

In the remainder of the paper, we explore the sensitivity of adverse selection costs to the key
parameters in Table 2. In particular we ask: under what conditions might adverse selection costs be
material?

Note that the percentage premium increases under no adverse selection are zero to four decimal
points even though we estimate some of the insurance losses (Equation (1)) by Monte-Carlo simula-
tion. This is because we have to make a small adjustment to the premium rates to allow for the higher
mortality of DV carriers before the assumed reproductive age of 30.
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Table 2. Baseline assumptions for the model parameters.

Prevalence of non-ARVC variants in the general population at age 20 0.999 Section 4.1.1
Prevalence of ARVC variants in the general population at age 20 0.001 Section 4.1.1
Prevalence of known DVs in the ARVC population at birth 70% Section 4.1.1
Prevalence of unknown DVs in the ARVC population at birth 30% Section 4.1.1
Hazard rate of penetrance of ARVC per annum at ages 10–60 μO

x
a Section 4.1.2

Hazard rate of clinical diagnosis before a proband exists per annum for all ages 0.20b Section 4.1.5
Hazard rate of clinical diagnosis after a proband exists per annum for all ages 0.20b Section 4.1.5
Proportion of individuals having an ICD treatment at all ages 0%c Section 6.1
Hazard rate of fatal ARVC before an ICD treatment per annum for all ages 1% Section 4.1.3
Hazard rate of fatal ARVC after an ICD treatment per annum for all ages 0.28% Section 4.1.3
Hazard rate of all other death per annum for all ages μA

x
d Section 4.1.4

Hazard rate of testing in one year at ages 0–70 since (if ) a proband exists μT
x,1

e Section 3.5
Hazard rate of normal insurance purchase per annum at ages 20–60 5% Section 4.1.6
Normal sum assured $1 Section 4.1.6
Force of interest per annum 5% Section 4.1.6

aμO
x = F�(x)(1 � F(x))�1 where F(x) = 0.01x, estimated penetrance of clinical ARVC at age x.

bThis is a conservative assumption for our purposes, please see the details in Section 4.1.5.
cThis represents a proportion of annual rate of clinically diagnosed individuals.
dμA

x is estimated from the reported mortality rates in Life Tables, United States, 2013 (Arias et al. 2017).
eμT

x,1 = 0.6931472, which represents 50% of untested individuals taking up genetic testing in one year.

Table 3. Percentage increases in premiums due to baseline adverse selection scenarios
(Section 4.3 and Table 2).

Adverse Mean premium increase and 95% QI

Selection Family history disallowed Family history allowed

% % % %

None 0.0000 (�0.0136, 0.0120) 0.0000 (�0.0140, 0.0125)
Mild 0.0076 (�0.0059, 0.0209) 0.0025 (�0.0115, 0.0159)
Severe 0.0164 ( 0.0015, 0.0300) 0.0066 (�0.0080, 0.0204)

Note: The 95% quantile intervals (QI) are in respect of the Monte-Carlo estimation of mean
EPVs of cashflows in the ARVC families (see Section 3.9).

5. Factors amplifying adverse selection costs

5.1. Family history disallowed in underwriting

We noted, in Section 4.3, that when insurers are not allowed to use family history, the baseline adverse
selection costs increased by a factor of between about 2.5 and 3 (for HCM the factor was about 2.7,
see Haçarız et al. (2021)).

5.2. A smaller life insurance market

We assume (as a baseline) a ‘normal’ insurance purchase rate of 0.05 per annum, representing a
large life insurance market. To represent a small market we use an annual purchase rate of 0.01. The
purchase rate for individuals in information classes ζ 50 and ζ 100 under ‘mild’ and ‘severe’ adverse
selection is twice (0.02) and 25 times (0.25) the normal purchase rate, respectively. We present the
results in Table 4, ‘Purchase Intensity’. The main result is that severe adverse selection results in per-
centage premium increases about five or six times greater than in the larger market. However, they
are still fractions of one percent.

5.3. Higher sums insured under adverse selection

We so far assumed that, under adverse selection, individuals in information classes ζ 50 and ζ 100

increase their purchases of insurance, but they still choose the ‘normal’ sum insured. We consider here
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Table 4. Mean percentage increases in premiums (95% QIs omitted) due to changing parameters (resulting in amplification of
adverse selection costs) in baseline adverse selection scenarios (Section 5).

Family history disallowed Family history allowed
Adverse selection Adverse selection

None Mild Severe None Mild Severe
Section Varied parameter % % % % % %

5.2 Purchase Intensitya

0.05 0.0000 0.0076 0.0164 0.0000 0.0025 0.0066
0.01 0.0000 0.0120 0.0923 0.0000 0.0023 0.0312

5.3 Sum Insuredb

1 × 0.0000 0.0076 0.0164 0.0000 0.0025 0.0066
2 × 0.0160 0.0313 0.0488 0.0027 0.0077 0.0159
4 × 0.0480 0.0785 0.1134 0.0080 0.0180 0.0344
10 × 0.1438 0.2197 0.3064 0.0238 0.0489 0.0894

5.4 Proportion Testedc

50% 0.0000 0.0076 0.0164 0.0000 0.0025 0.0066
99% 0.0000 0.0076 0.0163 0.0000 0.0036 0.0086

5.4 CGT Extensiond

λ = 1.8 0.0000 0.0076 0.0164 0.0000 0.0025 0.0066
λ = 3.0 0.0000 0.0103 0.0221 0.0000 0.0032 0.0087
λ = 5.0 0.0000 0.0135 0.0290 0.0000 0.0042 0.0113
λ = 7.0 0.0000 0.0160 0.0341 0.0000 0.0051 0.0133

5.5 ARVC Mortalitye

1% 0.0000 0.0076 0.0164 0.0000 0.0025 0.0066
2.3% 0.0000 0.0146 0.0310 0.0000 0.0045 0.0117

5.6 Clinical Diagnosisf

0.02 0.0000 0.0053 0.0105 0.0000 0.0010 0.0023
0.05 0.0000 0.0070 0.0142 0.0000 0.0017 0.0038
0.10 0.0000 0.0077 0.0161 0.0000 0.0022 0.0054
0.20 0.0000 0.0076 0.0164 0.0000 0.0025 0.0066
0.30 0.0000 0.0074 0.0157 0.0000 0.0026 0.0066
0.50 0.0000 0.0071 0.0153 0.0000 0.0026 0.0070
0.75 0.0000 0.0070 0.0148 0.0000 0.0028 0.0070
1.00 0.0000 0.0067 0.0145 0.0000 0.0026 0.0069
1.50 0.0000 0.0066 0.0143 0.0000 0.0026 0.0069
2.00 0.0000 0.0065 0.0140 0.0000 0.0025 0.0068

Note: ‘None’ refers to the ‘normal’ purchase intensity. aAnnual purchase intensities in a large and smaller life insurance markets,
respectively.

bIncreased sums insured taken out by adverse selectors.
cA higher rate of uptake of genetic testing, with approximately 99% acceptance instead of 50%.
dExtending cascade genetic testing (CGT) as a proxy beyond the first generation by increased values of λ, the mean number of

children.
eARVC-related annual mortality hazard rates.
fAnnual hazard rate of clinical diagnosis of those who have suffered onset of ARVC.

higher sums insured for these classes. Following the notation in Section 3.9 and Haçarız et al. (2021),
L�

X is decomposed into two parts:

(a) L�(1)
X , representing those in population X who purchase higher sums insured; and

(b) L�(2)
X , representing those in population X who purchase the normal sum insured.

Therefore, our measure in Equation (1) can be modified, where the individuals contributing to
L�(1)

X purchase n times the normal (unit) sum insured, as follows:

E[nL�(1)
X + L�(2)

X + LY ]

E[nP�(1)
X + P�(2)

X + PY ]
. (2)
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Table 4, ‘Sum Insured’, presents the premium increases where individuals in information classes ζ 50

and ζ 100 purchase sums insured of 2, 4, and 10 times normal, in a large life insurance market. Premium
increases are still small, but the magnitude of them is much higher than that of in the other parameters
in this table.

5.4. More cascade genetic testing

In our model, more genetic testing can happen in two ways.

(a) A higher rate of uptake of testing. Table 4, ‘Proportion Tested’, presents the premium increases
if 99% of ‘untested’ individuals (instead of 50%, see Section 3.5) accept testing within a year
of a proband appearing in the family. This corresponds to a testing hazard rate of 4.60517.
(a) (1)When family history is disallowed, the premium increases are almost identical because

we assume that persons in information classes ζ 50 and ζ 100 behave in the same way under
adverse selection.

(b) (2)When family history is allowed, the premium increases are slightly higher because we
allow ‘negatively’ tested individuals to disclose their test results and pay the premium
rates of underwriting class C0 (see Section 3.7).

(b) CGT extends beyond the nuclear family. If we increase λ, this approximates CGT extending
beyond the nuclear family, since anyone offered a test under CGT is known to be a DV carrier
with probability 1/2. We present the results in Table 4, ‘CGT Extension’, for λ = 1.8; 3.0; 5.0;
and 7.0. The last of these represents CGT spreading through about three other related nuclear
families, and the premium increases are about twice those with λ = 1.8.

5.5. Higher ARVC-related mortality

Based on Section 4.1.3, we calculate premium increases with an ARVC-related annual mortality haz-
ard rate of 2.3% before ICD treatment (instead of 1%). We present the results in Table 4, ‘ARVC
Mortality’. The premium increases are about twice those with the mortality hazard rate of 1%.

5.6. Rate of clinical diagnosis

Haçarız et al. (2021) assumed that clinical diagnosis of HCM followed the occurrence of an HCM-
related event. This was conservative, as it reduced the number of individuals with a pre-existing
condition. There were also no clearly defined treatments for HCM that could be included in the
model.

In the case of ARVC, there is an effective treatment – ICD implantation – and sufficient epidemi-
ology to estimate the reduction in mortality. To include treatment in the model, we have to include
clinical diagnosis also. Unfortunately, there are no empirical data on clinical diagnosis, and even if
there were, it is a factor that is likely to vary from place to place and from time to time.

Instead we investigate a wide range of intensities of clinical onset. Table 4, ‘Clinical Diagnosis’,
presents the premium increases under the baseline scenario of adverse selection (see Section 4.3),
with annual intensities of clinical diagnosis ranging from the very low (0.02) to the very high
(2.00).

(a) A higher rate of clinical diagnosis has two effects, acting in opposite directions. First, it creates
probands in a larger number of families. When family history is allowed in underwriting, this
increases the number of individuals offered the underwriting class C1 premium rates. Second,
it creates a larger number of uninsured individuals with a pre-existing condition.

(b) Table 4, ‘Clinical Diagnosis’, shows that premium increases rise quite quickly until the annual
intensity of clinical onset is about 0.20, and thereafter do not change very much. This is



12 O. HAÇARIZ ET AL.

intuitively reasonable, because an annual intensity of 0.20 is very high, and a large propor-
tion of ‘susceptible’ individuals (those who have suffered onset of ARVC) will be clinically
diagnosed within a few years.

(c) We repeated this exercise in other scenarios, including the smaller market and higher sums
insured taken out by adverse selectors, with similar results. We omit these to save space.

As a result, we adopt an annual intensity of clinical diagnosis of 0.20 in all our scenarios.

5.7. Worst cases

With the help of the results so far, we explore the worst case scenarios in our model. Table 5 presents
the premium increases under ‘severe’ adverse selection in the smaller market, where cascade genetic
testing is firstly extended through the first generation (λ = 1.8) then later through more generations
(λ = 7.0) and individuals in information classes ζ 50 and ζ 100 purchase ten times the normal sum
insured. With an ARVC-related annual mortality hazard rate of 1%, and family history allowed, the
premium increases are still below 1%. But, the premium increases are above 1% in other cases, reach-
ing about 4%, with an ARVC-related annual mortality hazard rate of 2.3%, λ = 7.0, and family history
disallowed. We present these figures merely to test the utmost limits of our model; we do not suggest
they are realistic.

6. Treatment by ICD implantation

6.1. ICD implantation reduces mortality

A noteworthy distinction between this study and Haçarız et al. (2021) is that an effective treatment
for ARVC is available, namely the implantation of an ICD. The large reductions in mortality were
summarised in the studies shown in Table A3.

We estimate ARVC-related mortality after ICD treatment by aggregating the deaths and exposures
of all the studies listed in Table A3, resulting in an annual hazard rate of 0.28%.

6.2. Rates of ICD implantation

Calkins et al. (2017) presents three risk categories (high, intermediate, and low), based on symptoms
of ARVC, to determine the urgency of ICD implantation. This might be justified by the recent studies
estimating the time between clinical diagnosis of ARVC and any ICD implantation.

(a) In Schuler et al. (2012) and Kimura et al. (2016), the median time from clinical diagnosis
to ICD implantation was 1.5 and 2.4 months, respectively. In the former, all patients were

Table 5. Percentage increases in premiums caused by the increased sum insured (10× of normal)
in a smaller life insurance market (the ‘normal’ insurance purchase intensity of 0.01) under ‘severe’
adverse selection (Section 5.7).

ARVC Mean Premium Increase and 95% QI

Mortalitya λb Family history disallowed Family history allowed

% % % % %

1.0 1.8 1.0327 (0.7814, 1.3209) 0.3240 (0.0767, 0.6075)
1.0 7.0 2.1256 (1.8774, 2.3757) 0.6463 (0.4043, 0.9015)
2.3 7.0 4.1815 (3.8720, 4.4976) 1.2160 (0.9145, 1.5315)
aARVC-related annual mortality hazard rates.
bThe mean number of children in which λ = 7.0 represents extensive cascade genetic testing.
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severely symptomatic. In the latter, the authors suspected the presence of referral bias in their
sample.

(b) Otherwise, in Maupain et al. (2018), the median time was 2 years, and in Mazzanti
et al. (2016), an ICD was implanted in 81 ARVC patients over a total follow-up of 1432
person-years. Possibly, these study populations were more heterogeneous than those in (a).

In Figure 1, ICD treatment is represented as a transition between states. This is helpful chiefly
because it fixes the logical order of events, but we have no means of estimating the transition
intensity. However, it is reasonable to assume that treatment, if recommended, will be carried out
as soon as possible after clinical diagnosis. We therefore assume that a fixed proportion of indi-
viduals are fitted with an ICD immediately on clinical diagnosis. The proportions we assume are
0% (the baseline), 25%, 50%, 75% and 100%. We present the results in Table 6, ‘ICD Treatment’.
The adverse selection costs are steadily reduced with increasing use of ICD treatment. With 100%
treated, premium increases are reduced by a factor of about two compared to no ICD treatment
at all.

Table 6. Mean percentage increases in premiums (note that 95% QIs are omitted) varying parameters resulting in diminished
adverse selection costs in baseline adverse selection scenarios (Sections 6 and 7).

Varied Parameter Family history disallowed Family history allowed

Biological/ Purchase Sum Adverse Selection Adverse Selection

Section Behavioural Intensity Insured None Mild Severe None Mild Severe
% % % % % %

6.2 ICD Treatmenta

pICD = 0% 0.05 1 × 0.0000 0.0076 0.0164 0.0000 0.0025 0.0066
pICD = 25% 0.05 1 × 0.0000 0.0069 0.0145 0.0000 0.0023 0.0057
pICD = 50% 0.05 1 × 0.0000 0.0058 0.0124 0.0000 0.0018 0.0046
pICD = 75% 0.05 1 × 0.0000 0.0048 0.0103 0.0000 0.0013 0.0035
pICD = 100% 0.05 1 × 0.0000 0.0038 0.0082 0.0000 0.0009 0.0024

7.1 Prevalenceb

0.1% 0.05 1 × 0.0000 0.0076 0.0164 0.0000 0.0025 0.0066
0.02% 0.05 1 × 0.0000 0.0015 0.0032 0.0000 0.0005 0.0012
0.7% 0.05 1 × 0.0000 0.0010 0.0021 0.0000 0.0003 0.0008

7.2 Selection Biasc

pICD = 0% 0.05 1 × �0.0697 �0.0620 �0.0533 �0.0710 �0.0739 �0.0750
pICD = 50% 0.05 1 × �0.0855 �0.0797 �0.0731 �0.0871 �0.0920 �0.0953
pICD = 100% 0.05 1 × �0.1019 �0.0982 �0.0937 �0.1038 �0.1109 �0.1165
pICD = 0% 0.01 1 × �0.0595 �0.0475 0.0327 �0.0607 �0.0686 �0.0950
pICD = 50% 0.01 1 × �0.0741 �0.0645 �0.0035 �0.0755 �0.0860 �0.1329
pICD = 100% 0.01 1 × �0.0880 �0.0815 �0.0406 �0.0897 �0.1035 �0.1716
pICD = 0% 0.01 10 × 0.0688 0.1880 0.9724 �0.1535 �0.2310 �0.4836
pICD = 50% 0.01 10 × 0.0249 0.1192 0.7162 �0.1996 �0.3035 �0.7523
pICD = 100% 0.01 10 × �0.0190 0.0456 0.4454 �0.2463 �0.3820 �1.0349

v 7.3 Information Classd

ζ 50&ζ 100 0.05 1 × 0.0000 0.0076 0.0164 0.0000 0.0025 0.0066
ζ 100 0.05 1 × 0.0000 0.0027 0.0056 0.0000 0.0017 0.0037

ζ 50&ζ 100 0.01 1 × 0.0000 0.0120 0.0923 0.0000 0.0023 0.0312
ζ 100 0.01 1 × 0.0000 0.0043 0.0328 0.0000 0.0024 0.0206

ζ 50&ζ 100 0.01 10 × 0.1284 0.2477 1.0327 0.0202 0.0432 0.3240
ζ 100 0.01 10 × 0.0460 0.0891 0.3724 0.0255 0.0499 0.2306

Note: ‘None’ refers to the ‘normal’ purchase intensity. a pICD represents a constant proportion of clinically diagnosed individuals
immediately having an ICD implantation.

b Different prevalences of ARVC-related DVs. The last case (0.7%), penetrance is adjusted to maintain the clinical incidence of ARVC.
c It assumes that the insurer calculates premiums in the C1 underwriting class assuming an ARVC-related mortality hazard rate of

2.3%, without ICD treatment at all, when then actual mortality hazard rate is 1%, with/without ICD treatment.
d Inquires premium increases where individuals in information class ζ 50 purchase insurance at ‘normal’ rate and sum insured under

adverse selection.
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7. Other factors diminishing adverse selection costs

7.1. Different DV prevalences

Based on the opinion of Corrado et al. (2017a) (see Section A.4), we will assume a lower DV preva-
lence of 1/5000. Alternatively, based on the results of Lahtinen et al. (2011) (see Section A.4), we will
assume a higher prevalence of known DVs of 1/200, which would increase to at least 1/140 � 0.7%
when non-desmosomal and unknown DV carriers (Section 4.1.1) were included.

The higher prevalence of 0.7% models ‘silent’ ARVC DVs with the same observed clinical out-
comes as with the baseline prevalence of 0.1%. To achieve this, approximately, we multiply the
penetrance F(x) by a factor 0.1/0.7 � 0.14. Then, if the incentive to purchase insurance is shaped
by genetic test results, adverse selection costs should diminish.

We present the results in Table 6, ‘Prevalence’. With prevalence 0.02% the premium increases
are diminished by a factor of about five. With prevalence 0.7% (and adjusted penetrance) they are
diminished by a factor of about eight.

7.2. The effect of selection and ascertainment bias

The epidemiological literature for genetic disorders is subject to selection and ascertainment biases,
meaning that epidemiologists can study only that population which comes to their attention. (See
Hodge (2002) and the references therein for the large literature on this subject.) Risks of onset and
death for these disorders might be different (probably lower) if a representative sample of the whole
population could be studied. Doing so would be very expensive, because of the rarity of these dis-
orders, but as the epidemiology evolves over time, these biases might diminish. Always our past risk
estimates turn out to be high.

Remarkably, if insurers calculate premiums relying on outdated epidemiology, they might even
profit from adverse selection. For instance, suppose the insurer based premiums on an ARVC-related
annual mortality hazard of 2.3% with no ICD treatment (relying on Howard (2014)) but in reality the
mortality hazard rate is 1%, possibly with ICD treatment. We present the results in Table 6, ‘Selection
Bias’. The adverse selection costs are reversed. Specifically when family history is allowed, insurers
make a profit in each scenario, the more so as adverse selection becomes more extreme.

7.3. The purchasing behaviour of information class � 50

Assuming the persons in information class ζ 50 behave in the same way as persons in information
class ζ 100 is conservative for our purposes. In reality, would they really purchase insurance beyond
meeting their needs (especially extremely high sums insured) since they know only that they are
a DV carrier with probability 1/2? Here we consider the possibility that individuals in information
class ζ 50 purchase less insurance than those in information class ζ 100. Table 6, ‘Information Class’,
presents the premium increases when individuals in information class ζ 50 behave ‘normally’ while
those in information class ζ 100 purchase insurance at a higher rate and with higher sums insured.
When family history is disallowed, the adverse selection costs are reduced by a factor of about three,
and when family history is allowed, by a factor of about between 1.4 and 1.8.

8. Conclusions

We modelled premium increases arising from adverse selection caused by life insurers being barred
from access to adverse genetic test results for ARVC-related DVs. Our conclusions are as follows.

(a) Premium increases are very small, less than 0.1%, in most scenarios, certainly in those we
would regard as realistic. This is consistent with the results of Macdonald & Yu (2011) and
Haçarız et al. (2021).
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(b) Premium increases seem to be smaller than those found for HCM in comparable scenarios
(Haçarız et al. 2021). Howard (2014) found the opposite.

(c) The largest premium increase was about 4.2%, broadly comparable with Howard (2014).
However, in addition to assuming that ‘adverse selectors’ took out ten times the normal sum
insured, we also had to make the following extreme assumptions: a small insurance market;
an ARVC-related mortality hazard of 2.3%; no ICD treatment; and extensive CGT (λ = 7.0).
Simply assuming that insurers could use family history reduced the premium increases to
about 1.2%.A key factor relied on by Howard (2014) was the assumption of widespread pur-
chasing of extremely high sums insured under adverse selection. Lombardo (2018), modelling
the adverse selection cost in the US life insurance market using the same epidemiological
assumptions as Howard (2014), also said:The U.S. Model results produced and presented
in this report are very sensitive to the testing rate and face amount assumptions. They are
highly subjective and move the U.S. Model results proportionately. Although it is reasonable
to assume genetic testing rates in the U.S. will increase over time, and that some individuals
with particular genetic characteristics will seek out higher-than-average insurance amounts,
it is at present difficult to validate these two assumptions.’

(d) If insurers calculate premiums based on an ‘outdated’ epidemiology, subject to significant
selection bias, when in fact the risks of onset and death are lower, they may be substantially
protected against the worst of adverse selection. In particular, this would destroy the business
model of any life settlement companies that attempted to originate new insurance policies
based on genetic test results.
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Appendix. Arrhythmogenic Right Ventricular Cardiomyopathy (ARVC)

A.1 Clinical features
Arrhythmogenic Right Ventricular Cardiomyopathy (ARVC) is an inherited heart muscle disorder. See Basso
et al. (2009), Calkins et al. (2017) and references therein for what follows. It substantially causes ventricular arrhythmias,
which might lead to various symptoms, such as palpitations, syncope (fainting), and, not so commonly, fatal sudden
cardiac arrest (SCA). It might also cause heart failure, whose progressive forms might require heart transplant or lead
to death. In general, clinical onset does not arise before ages 10–12 or after age 60. However, it is a major cause of fatal
SCA in young people and athletes, who are otherwise healthy.

A.1.1 Terminology
Several names have been used for the same disorder. Basso et al. (2009), Corrado et al. (2017b), and Corrado
et al. (2017a) are good references for the evolving terminology. The first extensive clinical description of ARVC was
given by Marcus et al. (1982). At that time, it was called ‘arrhythmogenic right ventricular dysplasia’ because it was
thought to be congenital. The later discovery of the genetic substrate of ARVC led to the term ‘cardiomyopathy’ (inher-
ited heart muscle disorder) being used. It was also discovered that left ventricular involvement is common, so the
broader term ‘arrhythmogenic cardiomyopathy’ has also been used. As a result, the names ARVD/C, ARVC/D, and AC
are found in the literature.

The literature uses the term sudden cardiac death (SCD) rather than fatal SCA. We prefer to use the latter because,
in many studies of HCM, endpoints included non-fatal events (see Haçarız et al. 2021). This issue does not arise in
studies of ARVC (Section A.6.1), but we retain the term SCA for consistency with the earlier actuarial study.

A.1.2 Diagnosis
Clinical practitioners have mainly used 1994 and recently 2010 Task Force Criteria (TFC), for the diagnosis of clinical
ARVC (see McKenna et al. 1994 and Marcus et al. 2010, respectively). Diagnosis is made by means of electrocardiogram
(ECG), imaging machines (for example, echocardiogram and magnetic resonance imaging (MRI)), biopsy findings,
family history, and positive genetic test results. However, no ‘gold standard’ has been established yet. For example,
Gandjbakhch et al. (2018) said:

The diagnosis of ARVC/D is probably the most challenging in the field of inherited cardiomyopathies because
of the absence of specific unique diagnostic criteria, its variable expressivity, and its incomplete penetrance in
relatives. The main problem is that a definitive pathological diagnosis is only given by a seldom available histo-
logical study obtained by biopsy, surgery, or necropsy. Indirect evidence can be obtained by multimodal cardiac
imaging studies. ECG data show RV disease, but other RV cardiomyopathies may alter it in a similar way, such
as myocarditis, which interacts with ARVC/D, sarcoidosis, or the rare Uhl’s disease.

This has an impact on estimating prevalence, penetrance, and mortality associated with clinical ARVC (Section
A.4(b)).

A.2 Genetics
ARVC largely follows autosomal dominant inheritance, meaning that one affected parent passes the DV to any child
with 50% probability. Its genetic substrate is commonly explained by variations in desmosomal genes, which encode
proteins involved in the attachment of heart muscle cells (myocytes). We follow two studies reporting DV frequencies
in ARVC patients:

(a) Gandjbakhch et al. (2018) stated that up to about 60% of ARVC patients carry known DVs, the majority in
the desmosomal genes PKP2 (20–45%), DSG2 (4–15%), DSP (1–13%), DSC2 (1–7%) and JUP (0–1%), and a
minority in non-desmosomal genes related to clinical ARVC. The genetic substrate of the remaining 40% or
so of patients is unknown.
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(b) Corrado et al. (2019) stated that 40–50% of ARVC patients carry DVs in desmosomal genes, ordered in decreas-
ing frequency as follows: PKP2, DSP, DSC2, DSG2, JUP. Another 20–30% had DVs in non-desmosomal genes,
and other genetic and non-genetic disorders mimicking clinical ARVC. Another 10–20% had causes unknown
(not clearly indicated, but presumably unknown gene DVs).

A.3 Cascade genetic testing (CGT)
To the best of our knowledge, Haçarız et al. (2021) is the only paper which models cascade genetic testing (CGT) with
an application to life insurance. We refer there for more details. The general CGT procedure can be described as follows.

(a) A person is diagnosed with ARVC in a family in which its presence is previously unknown. This person is
called the ‘proband’ or ‘index patient’.

(b) The proband is genetically tested for the presence of known DVs associated with ARVC.
(c) If the proband carries a known DV, all first-degree relatives are offered genetic testing to identify if they carry

the same DV. Those who test negative are presumed not to be at risk. Those who test positive are recommended
to undergo clinical screening at intervals, and if necessary are treated.

(d) If the proband does not carry a known DV, all first-degree relatives are recommended to undergo clinical
screening at intervals, and if necessary are treated.

(e) The process above can be extended to other first-degree relatives of those first-degree relatives of the proband
who test positive for a known DV, and thus can spread through an extended family in a ‘cascade’ fashion.

(f) Note that nobody offered genetic testing is obliged to agree to take it up.

A.4 Prevalence
ARVC is a rare disorder with a clinical prevalence estimated to be between 1/5000 and 1/1000 in the general population
(Peters et al. 2004, Basso et al. 2009, Andreasen et al. 2013). The first of these studies reported 80 clinically affected
persons at ages 22–91 (mean age 45.6) in a hospital in Quedlinburg serving a population of 80,000, hence a population
prevalence of 1/1000. This has been discussed in the literature.

(a) Sen-Chowdhry et al. (2010) underlines that 1/1000 might be an underestimate, saying ‘ . . . milder cases fre-
quently go unrecognised and nonclassic subtypes were not incorporated and biventricular arrhythmogenic
cardiomyopathy are commonly misattributed to dilated cardiomyopathy.’

(b) Corrado et al. (2017a) said ‘Because the initial manifestation may be sudden cardiac death (SCD), undiag-
nosed patients probably make up an additional 30% in most populations. Yet, the prevailing opinion by most
specialists in this area is that the prevalence is closer to 1:5000. The discordance may be related to frequent
misdiagnoses. One report on the rate of misdiagnosis for AC identified that only 24 of 89 (27%) people referred
to a tertiary center met the diagnostic criteria established at the time.’

On the other hand, prevalence of ARVC-related DV carriers might be higher than prevalence of clinically affected
ARVC patients, as was the case with HCM. Hall et al. (2018) estimated the population prevalence of ARVC-related
DV carriers to be between 1/257 and 1/845 based on the analysis of 138,632 unrelated individuals. In a Finnish study,
29 out of 6,334 unselected individuals carried desmosomal gene variants associated with ARVC, a prevalence of 1/200
(Lahtinen et al. 2011). In Section 7.1, we see how this might significantly reduce adverse selection costs.

A.5 Penetrance
Quarta et al. (2011) estimate the penetrance F(x) (see Section 2) to be about 0% at age 10; 10% at age 20; 20% at age 30;
35% at age 40; 50% at age 50; 55% at age 60; and 60% afterwards, meaning that the penetrance is incomplete (less than
100%). Although clinical studies of ARVC predominantly include men (Section A.6), this study did not distinguish
gender.

A.6 Mortality
We present estimates of the annual hazard rate of ARVC-related mortality in Tables A1, A2, and A3, based on many
studies published between 1987 and 2017, see Basso et al. (2012) and Calkins et al. (2017) for these studies. The impor-
tant distinction is whether or not an implantable cardioverter-defibrillator (ICD) has been fitted, as this has a dramatic
effect on mortality. We estimate an ARVC-related annual mortality hazard rate μx at age x by the number of recorded
deaths dx divided by the total person-years exposed to risk Ec

x among a group of nx observed individuals labelled with
the age x. The age label x refers to a range of ages within which the assumed hazard rate is assumed to be constant.
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(a) Table A1 summarises studies of ARVC regardless of ICD treatment.
(b) Table A2 compares the mortality hazards of probands and their relatives, regardless of ICD treatment.
(c) Table A3 summarises studies of ARVC after ICD treatment.

The average age at entry into the studies in Tables A1, A2, and A3 was between the third and fourth decades of life.
The studies predominantly included men.

A.6.1 Evolution of the estimated mortality hazard
The annual ARVC-related mortality hazard ranged from zero to 4.56% (although the highest annual hazard, see
Table A3, results from a study reporting a single death). Corrado et al. (2017b) noted that:

The estimated overall mortality varies among studies, ranging from 0.08 to 3.6% per year. The mortality was
initially overestimated because it was based on studies at tertiary referral centres, which predominantly included
high-risk patients. Recent studies of community-based patient cohorts have shown that the long-term outcome
for treated index patients and family members is favourable (annual mortality, < 1%).

A.6.2 Relatives of probands
There is some evidence that at-risk relatives of probands (those who carry an identified DV) might have lower ARVC-
related mortality, which might be explained by them receiving early clinical care. See Nava et al. (2000) in Table A1
and Groeneweg et al. (2015) in Table A2. The latter is a large study following up 1,001 individuals (439 probands, 5%
of whom were asymptomatic, and 562 of their relatives, 82% of whom were asymptomatic). Table A2 shows that the
annual mortality hazard of ARVC in probands might be about twice that of their relatives.

Table A1. Annual hazard rate of ARVC-related mortality (μx ) based on the clinical cohorts who had (or not) an ICD treatment during
a follow-up period.

flx – sx nx Men ICD dx Ec
x μx Reference

% % %

29 15 67 n/a 3 132.00 2.27 Blomström-Lundqvist et al. (1987)
33 – 13.5 58 83 n/a 4 510.40 0.78 Leclercq & Coumel (1989)
36 22 86 n/a 3 235.40 1.27 Canu et al. (1993)
30 20 27 15 3 140.00 2.14 Kullo et al. (1995)
40 – 13 72 68 n/a 3 324.00 0.93 Berder et al. (1995)
31 – 13 132 n/a n/a 1 1122.00 0.08 Nava et al. (2000)a

31.8 – 14.4 130 77 n/a 21 1053.00 2.00 Hulot et al. (2004)b

30 – 12 69 52 68 3 414.00 0.72 Dalal et al. (2005)c

44 – 14 61 72 39 10 279.38 3.58 Lemola et al. (2005)d

44.8 – 16.5 313 63 11 9 2660.50 0.34 Peters (2007)
32.6 – 14.1 50 66 40 9 n/a 2.82 Watkins et al. (2009)
35 – 15 96 68 13 12 1024.32 1.17 Pinamonti et al. (2011)e

n/a 125 n/a n/a 4 425.00 0.94 Quarta et al. (2011)e

48 – 15 30 63 43 1 170.10 0.59 Li et al. (2012)
38 88 68 0 12 800.80 1.50 Brun et al. (2016)f

46 – 15 110 75 35 18 1254.00 1.44 Kimura et al. (2016)g

38 – 18 301 58 27 31 1789.00 1.73 Mazzanti et al. (2016)h

Notes: ICD: Implantable cardioverter-defibrillator. x: Age (years). flx : Average age at entry. sx : Standard deviation. nx : Total number
of individuals in a clinical cohort at entry. dx : Total number of ARVC-related deaths during a follow-up period. Ec

x : Central exposure
to risk. ‘Men’ and ‘ICD’ percentages were rounded to integer values. This table is based on Basso et al. (2012), Table 2 and Calkins
et al. (2017), Table 1. anx = 132 were clinically affected family members obtained from 37 probands (19 diagnosed at autopsy).

bThe authors noted that this study might likely have included high-risk ARVC patients. The 1/3 and 2/3 of ARVC-related deaths was
caused by fatal SCA and heart failure, respectively.

cMean follow-up time (unreported) was assumed to be as same as median follow-up time.
dHeart transplantation (HT) was evaluated as an endpoint. The authors noted that this study might likely have had a ‘selection bias’

based on their clinical cohort consisted of ‘highly selected’ ARVC patients.
eHeart transplantation (HT) was evaluated as an endpoint.
f flx – sx was 38.4–15.9; 35.9–14.8; 47.5–12.2 for nx = 88 (22; 54; 12, respectively).
gHeart transplantation (HT) was included into the cause of ARVC-related death. Males were found to expose higher risk of ventricular

arrhythmias than women.
hEndpoints were ‘a first life-threatening arrhythmic event’ (fatal SCA, resuscitated SCA, syncopal ventricular tachycardia or electrical

storm), or ‘cardiovascular mortality’. Of nx = 301, 23 (15 initially observed fatal SCA and 8 lost to follow up) were not followed-up.
If this is taken into account; then we obtain μx = 0.89%, which was reported to be 0.8% in the study.
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Table A2. Annual hazard rate of ARVC-related mortality (μx ) between probands and their relatives, who had (or not) an ICD
treatment during a follow-up period, from Groeneweg et al. (2015).

Family DV Entry flx – sx nx Men ICD dx Ec
x μx

Member Carrier % % %

Proband Yes Alive n/a 416 n/a 84 22 3512 0.63
Dead n/a 23 n/a 0 23 0 n/a

36 – 14 439a 64 84 45 3512 1.28

Relative Yes Alive n/a 385 n/a 23 6 1636 0.37
Dead n/a 24 n/a 0 24 0 n/a

36 – 19 409a 45 23 30 1636 1.83
Probable Alive n/a 152 n/a 9 0 459 0.00

Dead n/a 1 n/a 0 1 0 n/a
38 – 19 153a 49 9 1 459 0.22

Notes: Probable DV carriers represent first degree-relatives of probands with unknown DV(s). Please see the headings in Table A1.
a For nx = 439, 409, 153, the respective mean follow-up times (unreported) are assumed to be 8, 4, 3 years from the reported
mean ages at initial and last follow-up, leading to Ec

x = 3512, 1636, 459, in each group that also assumed to be same for the
nx = 416, 385, 152 alive individuals at entry in these groups.

Table A3. Annual hazard rateofARVC-relatedmortality (μx ) basedon the clinical cohortswhohadan ICD treatmentwere followed-
up.

flx – sx nx Men dx Ec
x μx Reference

% %

31 – 19 12 58 1 21.96 4.56 Link et al. (1997)
36 – 18 9 89 0 24.03 0.00 Tavernier et al. (2001)
40 – 15 132 70 3 435.60 0.69 Corrado et al. (2003)a

43 – 16 60 82 4 396.00 1.01 Wichter et al. (2004)
36 – 13 42 52 0 147.00 0.00 Roguin et al. (2004)
35.9 48 63 0 124.80 0.00 Hodgkinson et al. (2005)b

36 – 14 67 52 2 294.80 0.68 Piccini et al. (2005)c

35.6 – 18 106 67 0 511.98 0.00 Corrado et al. (2010)
31.9 – 11.9 84 46 1 397.32 0.25 Bhonsale et al. (2011)d

n/a 26 81 2 278.20 0.72 Schuler et al. (2012)b

40 – 14 108 60 0 356.40 0.00 Link et al. (2014)
33.6 – 13.9 312 52 3 2745.60 0.11 Orgeron et al. (2017)d

Note: Please see the headings in Table A1. This table is based on Basso et al. (2012), Table 4 and Calkins et al. (2017), Table 2. a Heart
transplantation (HT) was evaluated as an endpoint.

b Mean follow-up time (unreported) was assumed to be as same as median follow-up time.
c Of nx = 67, 12 were noted to be with ‘probable ARVC’.
d An ICD intervention and heart transplant were evaluated as endpoints.

A.6.3 ICD treatment
Tables A1 and A2 state the proportion of subjects who had ICD treatment, when known. Table A3 is based on studies
in which all subjects had ICD treatment. It shows that ICD treatment is effective in reducing ARVC-related mortality,
although many of the studies are small.
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