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Abstract
We consider the problem of recovering an original image x from its filtered version y = f (x), assuming that the internal
structure of the filter f (·) is unknown to us (i.e., we can only query the filter as a black-box and, for example, cannot invert
it). We present two new iterative methods to attack the problem, analyze, and evaluate them on various smoothing and
edge-preserving image filters.

Keywords Reverse filtering · Nonlinear filtering · Recovery

1 Introduction and contribution

In this paper, we deal with a reverse imaging problem intro-
duced recently in [19]. Given an image filter y = f (x) with
input x ∈ R

d and output y ∈ R
d , the problem consists of

restoration of x from y under the condition that we can apply
the filter f (·) asmany times as needed but without any knowl-
edge of its internal structure. In particular, it means that we
cannot directly invert the filter. Following [19], we call such
a restoration process reverse filtering or defiltering.

The reverse imagefiltering schemes introduced in [19] and
in the subsequent works [4,12] are aimed at removing slight
filtering effects. In contrast, ourwork is focused on removing,
at least partially, severe filtering effects. Three examples are
shown in Fig. 1, where reverse filtering of images filtered
by a Gaussian, Laplace-of-Gaussian (LoG), and the adaptive
manifold filter (AMF) [6] is demonstrated.

Mathematically, the defilteringproblemconsists of numer-
ically solving the equation

y = f (x), x, y ∈ R
d , (1)
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for x, given y. Here, x is an (unknown) input image, f (·) is a
(black-box) filter, and y is the (given) output image.

Numerical methods for solving (1) include the Newton’s
method and its relatives, various gradient descent schemes,
and fixed-point iterations. Straightforward uses of the New-
ton’s and gradient descent methods require an estimation of
the Jacobian of f (·) and are not computationally feasible, as
a typical image consists of tens of thousands to millions of
pixels.

A simple and efficient fixed-point iteration scheme for
image defiltering was recently proposed by Tao et al. [19].
The scheme consists of the following iterations

xn+1=T(xn) ≡ xn + hn, hn = y − f (xn), x0 = y (2)

and can be considered as an iterative unsharp masking with
filter f (·). Mathematically, (2) corresponds to the Picard’s
iterative method xn+1 = f (xn), a simple and popular method
for numerically solving nonlinear equation (1) (see, for
example, [1] for a comprehensive study of fixed-point iter-
ation methods). A rigorous convergence analysis of (2) for
image filters satisfying certain conditions is given in [19].

As shown in [19], (2) demonstrates excellent results
for removing light filtering effects but, according to our
experiments, often fails when dealing with severe image
deformations. So in this paper, we introduce two iterative
methods

xn+1=P(xn)≡ xn + λn
f (xn + hn) − f (xn − hn)

2
,

λn = 4‖hn‖2
‖ f (xn + hn) − f (xn − hn)‖2 ,
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Gaussian LoG AMF [6]

Fig. 1 Top row: test images we deal with in this paper:
Trui, cameraman, and Barbara. Middle row: the images are
filtered by a Gaussian imgaussfilt(x,5), Laplace-of-
Gaussian imfilter(x,fspecial(’log’,7,0.4)),
and the adaptive manifold filter (AMF)
adaptive_manifold_filter(x,20,0.4)[6], respectively
(Matlab notations are used to specify the parameters of the filters).
Bottom row: defiltering results; notice how well the fine image details
are restored

hn = y − f (xn), x0 = y (3)

and

xn+1=S(xn)≡xn + hn‖hn‖
‖f (xn + hn) − f (xn)‖ , x0 = y (4)

which are inspired by a gradient descent scheme studied
by Polyak [15] and Steffensen’s method [17], respectively
(hence the notations P(·) and S(·)). We propose a brief anal-
ysis of (2), (3) and (4) in the next section.

Given xn the reconstructed image at the n-th step of the
iterative process, we consider two error functions in order to
measure the reconstruction accuracy

Ex (xn) = ‖ x − xn‖
‖x‖ and Ey(xn) = ‖ y − f (xn)‖

‖y‖ . (5)

Although we use both error functions to evaluate the T, P,
and S-iterative processes, only Ey can be used in practice, as
x is not known a priori.

Figure2 presents the Ex and Ey error graphs correspond-
ing to the reverse filtering examples shown in Fig. 1.

trui, Gaussian cameraman, LoG barbara, AMF [6]

Fig. 2 The error graphs for Ex (top row) and Ey (bottom row) for the
reverse filtering examples of Fig. 1. Results for the first 200 iterations are
presented (additional iterations are needed for defiltering the Gaussian
and LoG filtering effects). For LoG, middle column, log–log plots are
used to keep the results of the T and S-iterations visible in the graph

2 Analysis of the previous and proposed
methods

Numerical methods for solving (1) include Newton’s method
and its relatives, as well as various gradient descent schemes,
and fixed-point iterations [13]. Unfortunately, the vast major-
ity of thesemethods require knowledge of the gradient of f (·)
or impose too many restrictions on the behavior of f (·).

Tao et al. [19] use a fixed-point iterationmethod to analyze
convergence properties of their T-iterations (2). Unfortu-
nately, their analysis can be applied only to linear mappings.

A similar scheme

xn+1=M(xn)≡(1 − γμ)xn + γ (y − f (xn)) , x0 = y, (6)

was proposed by Milanfar [12] who used different consider-
ations. Here, γ and μ are positive parameters chosen such
that both γ < 1 and γμ is small. Although the iterative
scheme (6) is supported by a solid analysis of its convergence
properties [12], our experiments have not revealed practical
advantages of (6) over (2). In Fig. 3 we present the Ex -error
graphs for defiltering six linear and nonlinear filters using (2)
and (6) with γμ = 0.001 and μ = 0.5k , k = 0, 1, 2, 3. One
can see that in the majority of cases, (2) slightly outperforms
(6).

In [4], an interesting iterative scheme for solving (1) was
proposed

xn+1 = F−1
(F(y)F(xn)

F(f (xn))

)
. (7)

Here, F stands for the Fourier transform and element-wise
multiplication and division are used. Interestingly, (7) can
be considered as a variant of (6) employed in the frequency
domain and used with variable parameter γn instead of γ and
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Fig. 3 Ex -error graphs for defiltering (2) and (6). Top-left: Gaus-
sian; top-right: AMF[6]; middle-left: bilateral filtering; middle-right:
RTV[24]; bottom-left: WMF[26]; bottom-right: RGF[25]. In the
majority of these tests (2), corresponding to the curves in black, slightly
outperforms (6)

μ = 0. Indeed, the iterative process

F(xn+1) = F(xn) + γn (F(y) − F(f (xn)))

with γn = F(xn)
/F(f (xn))

yields (7). This iterative scheme shows an excellent perfor-
mance for linear filters f (·), provided that periodic boundary
conditions are imposed, as demonstrated by the top-left and
top-middle images of Fig. 4. Unfortunately, if other types of
boundary conditions are chosen, (7) does not lead to good
defiltering results, as shown by the bottom-left and bottom-
middle images. In addition, thismethod does not show a good
performance for some nonlinear filters, as seen in the right
images of Fig. 4.

It is interesting to note that the problem of reverse image
filtering is closely related to stochastic approximation [2,9],
an active research area initiated by Robbins andMonro (RM)
almost seventy years ago [16]. Remarkably, the RM algo-
rithm looks very similar to (2). Given noisy measurements

yn = f (xn) + ηn,

where {ηn} are measurement errors, the algorithm imple-
ments a simple iterative procedure for solving the equation

defiltering Gaussian defiltering LoG defiltering RTV [24]

defiltering Gaussian defiltering LoG defiltering AMF [6]

Fig. 4 Defilteringimgaussfilt(x,5,’Padding’,’circular’)
(top-left) and imgaussfilt(x,5) (bottom-left) by (7). Similar
defiltering results forimfilter(x,fspecial(’log’,7,0.4))
with (top-middle) and without (bottom-middle) periodic bound-
ary conditions by (7). Top-right: defiltering RTV[24] with
default settings by (7). Bottom-right: defiltering AMF[6]
adaptive_manifold_filter(x,20,0.4) by (7)

y = f (x)

xn+1 = xn + an(y − yn),

where {an} is a sequence of nonnegative real numbers satis-
fying

∑
an = ∞ and

∑
a2n < ∞.

OurP-iterations (3) canbe considered as an approximation
of the gradient descent with a variable step-size for minimiz-
ing least-square energy

E(x) = ‖y − f (x)‖2 (8)

whose anti-gradient is approximated by a symmetric finite
difference

−∇E(xn) = 2∇f (xn)hn ≈ f (xn + hn) − f (xn − hn),

where, as before, hn = y−f (xn) is assumed to be sufficiently
small.

It turns out that in the one-dimensional case (single-pixel
images), our iterative scheme (3) approximates the standard
Newton iterations for numerically solving y = f (x). Indeed,
the Newton iterations for solving F(x) ≡ y − f (x) = 0 are
given by

xn+1 = xn − F(xn)

F ′(xn)
= xn + hn

f ′(xn)
, hn = y − f (xn).
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Now we can observe that in the one-dimensional case (3) is
reduced to

xn+1 = xn + 2h2n
f (xn + hn) − f (xn − hn)

≈ xn + hn
f ′(xn)

.

It is also worth mentioning a link between (3) and the
Kiefer–Wolfowitz (KW) stochastic approximation method
[8]. The KW algorithm for a univariate function y = f (x)
consists of an iterative process

xn+1 = xn + an
f (xn + cn) − f (xn − cn)

2cn
, (9)

where cn → 0 in addition to some other conditions imposed
on the sequences {an} and {cn}. A multivariate version of the
KW algorithm can be found, for example, in [9] (initially
both the RM and KW algorithms were proposed by their
authors for univariate functions).

In the one-dimensional case, our S-iterations (4) become
Steffensen’s method [17]

xn+1 = xn + hn
f (xn + hn) − f (xn)

hn, hn = y − f (xn),

which delivers a numerical solution to y = f (x) and has
quadratic convergence like Newton’s method.

3 Numerical experiments and discussion

In this section, we test our methods (3) and (4), and compare
them against (2) using a wide selection of edge-preserving
image filters, in addition to the two linear filters (Gaussian
and LoG) and the adapted manifold filter (AMF) [6] consid-
ered in Sect. 1.

Results obtained are shown in Fig. 5 for the image filters:
WMF [26], RTV[24], RGF [25], ILS [11], WLS [5] and
L0 [23], and in Fig. 6 for the bilateral filter (BF), LLF [14]
and LE [18]. For each image filter, we show an example of a
filtered test image (top row), followed by the results obtained
from T-iterations of Tao et al. [19] (2), P-iterations (3) and
S-iterations (4) in the second, third and fourth row (from
the top). For each method, the minimal Ex -error is indicated
under the image. The bottom row provides error graphs for
Ex (5) for the three methods. The best method is decided
based on the error function Ex (5) and indicated by a thick
color line. Table1 summarizes the bestmethods for eachfilter
according to the Ex -error function.

For the filters used in our experiments and shown in Figs.
5 and 6, we use the Matlab implementations provided by
the authors of the corresponding papers with the following
settings (we use Matlab notations for the filters and their
arguments):

BF LLF [14] LE [18]

Ex=5.12e-03 Ex=3.71e-02 Ex=1.23e-01

Ex=4.01e-03 Ex=4.70e-02 Ex=1.31e-01

Ex=5.09e-03 Ex=3.70e-02 Ex=1.25e-01

Fig. 6 Further experiments with the state-of-the-art edge-preserving
image filters. From top to bottom: first row: filtered images; second
row: the images are defiltered by T-iterations (2); third row: the images
are defiltered by P-iterations (3); fourth row: the images are defiltered by
S-iterations (4); fifth row: the corresponding Ex -error graphs. For each
image, its Ex -error value is presented. For each filtering method, the
image with the minimum Ex -error value is marked by a thick color line,
where black corresponds to the T-iterations (2), red to the P-iterations
(3), and blue to the S-iterations (4)

WMF[26]:jointWMF(x),
RTV[24]:tsmooth(x),
RGF[25]:RollingGuidanceFilter(x,3,0.05,4),
ILS [11]:ILS_LNorm(x,1,0.8,0.0001,4),
WLS[5]:wlsFilter(x),
L0 [23]:L0Smoothing(x,0.01),
BF:imbilatfilt(x,0.05,3),
LLF[14]:double(locallapfilt(im2uint8
(x),0.2,10.0))/255,
LE [18]:localExtrema(x,x,7).
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Table 1 For each filter, the best defiltering method is indicated

Gaussian & LoG RTV[24] LE[18] BF RGF[25] WLS[5] WMF[26] L0 [23] AMF[6] ILS [11] LLF[14]

P S T, S P P T, S S S T, S S T, S

The decision is made based on the error function Ex . P stands for P-iterations (3), S for S-iterations (4), and T for T-iterations (2)

Surprisingly, reverse filtering of linear filters (in this paper,
we consider Gaussian and LoG filters) turns out to be a
difficult task. In the case of periodic boundary conditions,
perfect defiltering is delivered by the method of Dong et al.
(7) proposed in [4]. However, (7) is very sensitive to small
perturbations and fails to recover images resulting from lin-
ear filters with non-periodic boundary conditions (see, e.g.,
Fig. 4).

The method of Tao et al. (2) [19] works well when it is
used for defiltering Gaussians with small variances. In our
example of Gaussian defiltering (see the left images in Figs.
1 and 2), the variance is σ 2 = 5 and (2) fails to produce a
reasonably good result. Our experiments show that (2) also
fails to recover the LoG filtering results (see, for example,
Figs. 1 and 2, middle column).

Our P-iteration scheme (3) is capable of defiltering the
Gaussian and LoG filters, as demonstrated in Figs. 1 and
2. However, the convergence can be slow. For example,
restoring the left and middle images of Fig. 1 requires 100K
iterations.

In addition to the Gaussian and LoG filters, we test ten
state-of-the-art edge-preserving filters, see Figs. 5 and 6 and
the right images of Figs. 1 and 2. For some filters, e.g., AMF,
excellent defiltering results are obtained. For some others,
e.g., LE, only very modest results are achieved. In general,
we see that our P-iteration and S-iteration schemes together
outperform the T-iteration method (2) [19]. However, for
zero-order reverse filtering, (2) is the fastest method, as it
requires only one call of function f (·) per iteration and, if it
approaches an error minimum value, does it quickly.

We find it surprising that for the majority of the tested
filters, small-scale image details can be accurately recovered
if a proper defiltering method is applied. This means that
typically edge-preserving filters only suppress those small-
scale details but do not remove them completely.

In our experiments, we observe only a weak correlation
between the two error functions Ex and Ey (5) for an itera-
tively defiltered image xn . Namely, if Ey does not grow, then
it is very likely that the defiltered image has its main features
preserved, as demonstrated by Fig. 7. In real-life scenarios
when only Ey is available, the number of reverse filtering
iterations has to be selected manually. This is the only user-
specified parameter in our approach.

While, in this paper, we deal with deterministic reverse fil-
tering methods, we feel that randomized algorithms could be
very successful at achieving high-quality defiltering results.

Fig. 7 Overrestoration examples. Left: WMF defiltering with 100 iter-
ations of (4) amplifies certain middle-range frequencies. Right: BF
defiltering with 1K iterations of (4) amplifies some high frequencies.
Compare these results with those for WMF and BF from Figures 5 and
6, respectively

LE [18] WLS [5]

Fig. 8 R-iterations (10) achieve the smallest Ex -errors for the LE filter
[18] (left) and WLS filter [5] (right). Top: images defiltered by (10).
Bottom: the corresponding Ex -error graphs

As an example, let us consider the following simple stochas-
tic iterative process

xn+1=R(xn)≡xn−
E

(
xn+r

cn
2

)
−E

(
xn−r

cn
2

)
cn

(10)

where quadratic energy E is defined by (8), r is a random
image whose components are random numbers uniformly
distributed on the interval [0, 1] and cn = 1/

√
n. One can see

that (10) combines (9) with stochastic gradient descent ideas.
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While (10) shows a modest performance for the majority of
the considered filters, it allows us to achieve some progress
with defiltering the LE filter [18] for which (10) shows the
lowest Ex error. In Fig. 8, we show the result obtained by (10)
for defiltering the LE and WLS filters. The top row shows
the best obtained results, while the bottom row compares the
result of the R-iterations (10) against the results of the T, S
and P-iterations for the Ex error function. Visually (10) does
a better work for retrieving fine details and high frequency
texture in the image.

When dealing with color images, the simplest approach
consists of defiltering each RGB channel. Obviously, more
sophisticated strategies should lead to better results. Fig-
ure9 shows several examples of color images, defiltered
with our approach, from different domains (nature, architec-
ture, humans, animals). In these examples, we test defiltering
capabilities of our schemes (3) and (4) using popular image
filters which have not yet been considered so far in this paper:
(a) Wiener filter, (b) circular averaging filter (pillbox), (c)
motion blur, (d) image guided filter [7], and (e) image guided
filter, where Gaussian smoothing is applied to the guidance
image:

(a) wiener2(x,[5,5],0.1)
(b) imfilter(x,fspecial(’disk’,3))
(c) imfilter(x,fspecial(’motion’,20,45))
(d) imguidedfilter(x)
(e) imguidedfilter(x,imgaussfilt(x,5))

For the linear filters (first three filters), reverse filtering was
done by applying (3). The remaining nonlinear filters were
defiltered by (4). In these five examples, for each color chan-
nel, we stop iterative processes (3) and (4) immediately after
the relative change in successive iterations becomes less than
a user-specified threshold t > 0

‖xn+1 − xn‖
/‖xn‖ < t . (11)

Better results could be obtained if an optimal number of iter-
ations is chosen for each filter. Achieving reasonably good
threshold t in (11) (for all the examples in Fig. 9 defilering
is done with t = 0.0005) demonstrates the robustness of our
schemes (3) and (4).

One seeminglypromising applicationof defiltering schemes
lies in image enhancing. It seems natural to use the proposed
reverse image filtering schemes as follows: The image x in
(1) can be considered as an enhanced version of the input
image y if f (·) is an appropriate filter. In Fig. 10, we combine
AMF [6] with P-iterations (3) for image sharpening and with
S-iterations (4) for image dehazing.

Fig. 10 Original (left) and enhanced (right) images. Top: visually pleas-
ant sharpening results can be achieved by combining AMF [6] and
the P-iteration scheme (3) (in this example, ten iterations of (3) are
used). Bottom: an image dehazing result is achieved by applying five
S-iterations (4) based on the AMF filtering scheme

4 Conclusion and directions for future work

In this work, we have considered the problem of reverse fil-
tering, or defiltering, a severely filtered image y = f (x). We
assumeno knowledge of the internal structure of the filter f (·)
(and thus cannot compute its inverse). Two proposed meth-
ods (3) and (4) are compared against the existing method
(2) introduced in [19]. The comparison is done on severely
filtered images.

Possible directions of future work on defiltering include
the use of stochastic approximation methods for image
defiltering and adapting image reverse filtering schemes
for geometric modeling applications (see, for example, the
recent work [22] devoted to reverse geometry filtering).

Using reverse filtering schemes for image enhancing and
sharpening constitutes another direction for future work. See
a very recent work [3] where single-step polynomial defilter-
ing is used for fast and natural-looking sharpening large-size
images.

Iterative schemes (3) and (4) can be considered as zero-
order optimization methods. Problems requiring zero-order
optimization appear frequently in signal processing and
machine learning [10].

As (3) and (4) can be used to estimate how much of high-
frequency image content is partially suppressed but remains
preserved by an image filtering method, it would be inter-
esting to establish a link with the ability of the method to
protect deep learning schemes against adversarial attacks
which often target high-frequency image components invis-
ible to the human eye [20,21].
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