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LIMIT THEOREMS AND STRUCTURAL PROPERTIES FOR THE
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Abstract

We revisit the so-called Cat-and-Mouse Markov chain, studied earlier by Litvak

and Robert (2012). This is a 2-dimensional Markov chain on the lattice

Z2, where the first component is a simple random walk and the second

component changes when the components meet. We obtain new results for

two generalisations of the model. Firstly, in the 2-dimensional case we consider

general jump distributions for the components and obtain a scaling limit for

the second component (the mouse). When we let the first component (the cat)

to be again a simple random walk, we further generalise the jump distribution

of the second component. Secondly, we consider chains of three and more

dimensions, where we investigate structural properties of the model and find a

limiting law for the last component.
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1. Introduction

We analyse the dynamics of a stochastic process with dependent coordinates, com-

monly referred to as the Cat-and-Mouse (CM) Markov chain (MC), and of its gener-

alisations. Let S be a directed graph. Let {(Cn,Mn)}∞n=0 denote the CM MC on S2,

defined as follows. We assume that {Cn}∞n=0, the location of the cat, is a MC on S

with transition matrix P = (p(x, y)), x, y ∈ S). The second coordinate, the location of

the mouse, {Mn}∞n=0 has the following dynamics:

• If Mn 6= Cn, then Mn+1 = Mn,

• If Mn = Cn, then, conditionally on Mn, the random variable Mn+1 has distribu-

tion (p(Mn, y), y ∈ S) and is independent of Cn+1.

In our model the cat is trying to catch the mouse. The mouse is usually in hiding and

not moving but, if the cat hits the same location of the graph, the mouse jumps. The

cat does not notice where the mouse jumps to, so it proceeds independently.

CM MC is an example of models called Cat-and-Mouse games. CM games are

common in game theory. We refer to Coppersmith et al. (1993), where the authors

showed that a CM game is at the core of many on-line algorithms and, in particular,

may be used in settings considered by Manasse et al. (1990) and Borodin et al. (1992).

Some special cases of CM games on the plane have been studied by Baeza-Yates et al.

(1993). Two examples of CM games have been discussed in Aldous and Fill (2002) in

the context of reversible MCs.

There are many related models in applied probability where time evolution of the

process may be represented as a multi-component Markov chain where one of the

components has independent dynamics and forms a Markov chain itself (for example

Gamarnik (2004), Gamarnik and Squillante (2005), Borst et al. (2008), Foss et al.

(2012)). Typically such dependence is modelled using Markov modulation. In this

paper we consider the case where the first component is a random walk. Thus, our
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model can be viewed as a random-walk-modulated random walk. We consider null-

recurrent and transient cases where we find proper scaling for the components.

We are mainly motivated by the results of the paper by Litvak and Robert (2012)

where the authors analyse scaling properties of the (non-Markovian) sequence {Mn}∞n=0

for a specific transition matrix P when S is either Z,Z2 or Z+. Although it deals with

a relatively simple case of the CM MC, it clearly illustrates a certain phenomenon

related to this type of Markov modulation. This led us to question to what extent

such a phenomenon holds, for what kind of distributions of jumps, and for which types

of Markov modulation.

In this paper we analyse the case S = Z. Henceforth, we will take the transition

matrix P to satisfy p(x, x + 1) = p(x, x − 1) = 1/2. It was proven in Theorem 3 of

Litvak and Robert (2012) that the convergence in distribution{
1
4
√
n
M[nt], t ≥ 0

}
⇒ {B1(LB2

(t)), t ≥ 0} , as n→∞,

holds, where B1(t) and B2(t) are independent standard Brownian motions on R and

LB2(t) is the local time process of B2(t) at 0.

This result looks natural, since the mouse, observed at the meeting times with

the cat, is a simple random walk. The time intervals between meeting times are

independent and identically distributed. They have the same distribution as the time

needed for the cat (also a simple random walk) to get from 1 to 0, which has a regularly

varying tail with parameter 1/2 (see, e.g., Spitzer (1964)). Thus, the scaling for the

location of the mouse is 4
√
n = (n1/2)1/2. Local time LB2

(t) can be interpreted as the

scaled duration of time the cat and the mouse spend together.

In this paper we show that similar behaviour holds when jump-size distributions of

both components have zero mean and finite variance. The behaviour slightly changes

when we introduce heavier tails for the jump-size distribution of the mouse. For this

case we develop more general approach based on the work of Jurlewicz et al. (2012).

In parallel, we introduce additional components while applying an analogue of the

aforementioned Markov modulation. Here, through analysis of dynamical structural

properties, we show the similar phenomenon for additional components.

More specifically, we provide two generalisations of the CM MC introduced above.

The first generalisation relates to the jump distribution of the mouse. Given Cn = Mn,
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random variable Mn+1−Mn has a general distribution which has a finite first moment

and belongs to the strict domain of attraction of a stable law with index α ∈ [1, 2], with

a normalising function {b(n)}∞n=1 (note that distributions with a finite second moment

belong to the domain of attraction of a normal distribution). We find a weak limit

of {b−1(
√
n)M[nt]}t≥0, as n → ∞. This model is more challenging than the classical

setting because, when the mouse jumps, the value of this jump and the time until the

next jump may be dependent. Also, if the jump distribution of the mouse has infinite

second moment, we can not use classical results such as Theorem 5.1 from Kasahara

(1984). Next, we consider the case where both components have general distributions

with finite second moments. Here our results take into account the approach developed

by Uchiyama (2011a).

In the second generalisation we add more components (we will refer to the objects

whose dynamics these components describe as “agents”) to the system, with keeping

the chain “hierarchy”. For instance, adding one extra agent (we refer to it as the dog),

acting on the cat the same way as the cat acts on the mouse, slows down the cat and,

therefore, also the mouse. We are interested in the effect of this on the scaling properties

of the process. Recursive addition of further agents will slow down the mouse further.

For the system with three agents we investigate the dynamical structural properties

and find a weak limit of {n−1/8M[nt]}t≥0, as n → ∞. The system regenerates when

all the agents are at the same point. Therefore, if we find the tail asymptotics of the

time intervals between these events, we can split the process into i.i.d. cycles and use

classical results (for example, Kasahara (1984)).

For the systems with an arbitrary finite number of agents, we provide a relatively

simple result on the weak convergence, for fixed t > 0. In this case, the path analysis

becomes quite difficult and we have not yet found the asymptotics of the time intervals

between regeneration points. Nevertheless, we transform the number of jumps for any

agent and use induction and the result from Dobrushin (1955).

Note that we are interested in limit theorems for Markov modulated Markov chains

with described dependencies and distributions. We would like to mention that, for such

type of models, stability problems were studied in, e.g., [15]–[17] and large deviations

problems in, e.g., [18]–[23].

The paper is structured as follows. In Section 2 we define our models and formulate
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our results. In Sections 3 and 4 we analyse the trajectories of the CM MC and Dog-and-

Cat-and-Mouse (DCM) MC respectively. This analysis gives the main idea of the proof

of our result on scaling properties of DCM MC (Theorem 3). In Section 5.1, we prove

our results on scaling properties of general CM MC (Theorem 1 and Theorem 2).

We shift the time of our process and use characteristic functions to show that the

conditions of Theorem 3.1 from Jurlewicz et al. (2012) hold. In Section 5.2, we prove

Theorem 3. We approximate the dynamics of the mouse by considering only the values

of the process at times when all agents are at the same point of the integer line and

then use Theorem 5.1 from Kasahara (1984) to obtain the result. In the Section 5.3,

we prove our result on scaling properties for the system with an arbitrary finite number

of agents. We approximate the component X(N) by the component X(N−1), slowed

down by an independent renewal process.

The Appendix includes definitions and proofs of supplementary results. In Ap-

pendix A, we define weak convergence of stochastic processes. In Appendix B we

provide auxiliary results on randomly stopped sums with positive summands having

regularly varying tail distribution and infinite mean.

Throughout the paper we use the following conventions and notations. For two

ultimately positive functions f(t) and g(t) we write f(t) ∼ g(t) if limt→∞ f(t)/g(t) = 1.

For any event A, its indicator function I[A] is a random variable that takes value 1 if

the event occurs, and value 0, otherwise. Finally we use the following abbreviations:

CM – Cat-and-Mouse, DCM – Dog-and-Cat-and-Mouse, MC – Markov chain, i.i.d. –

independent and identically distributed, r.v. – random variable, a.s. – almost surely,

w.p. – with probability.

2. Models and results

In this section we recall the CM MC on the integers and introduce several of its

generalisations.

2.1. “Standard” Cat-and-Mouse Markov chain on Z (C → M)

Let ξ = ±1 w.p. 1/2. Let {ξ(1)
n }∞n=1 and {ξ(2)

n }∞n=1 be two mutually independent

sequences of independent copies of ξ. We define the dynamics of CM MC (Cn,Mn) as
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follows:

Cn = Cn−1 + ξ(1)
n ,

Mn = Mn−1 +

0, if Cn−1 6= Mn−1,

ξ
(2)
n , if Cn−1 = Mn−1,

for n ≥ 1.

Let D[[0,∞),R] denote the space of all right continuous functions on [0,∞) having

left limits (RCLL, or càdlàg functions).

Let M(nt) = M[nt], t ≥ 0, be a continuous-time stochastic process taking values

Mk, k ≥ 0, for t ∈ [k/n, (k+1)/n). Clearly, it is piecewise constant and its trajectories

belong to D[[0,∞),R].

Litvak and Robert (2012) proved weak convergence{
1
4
√
n
M(nt), t ≥ 0

}
D⇒ {B1(LB2(t)), t ≥ 0} , as n→∞ (1)

(see Appendix A for definitions), where B1(t) and B2(t) are independent standard

Brownian motions on R and LB2(t) is the local time process of B2(t) at 0.

2.2. Cat-and-Mouse model with a general jump distribution of the mouse

(C → M)

In this Subsection we introduce our results for CM MC with more general distribu-

tions of r.v.’s ξ
(1)
n and ξ

(2)
n . We start with the same distribution of ξ

(1)
n and generalise

distribution of ξ
(2)
n . Thus, the cat is a simple random walk and the mouse is a general

random walk. Then we also generalise the distribution of ξ
(1)
n , however we need certain

restrictions on the mouse (finite second moments).

2.2.1 We continue to assume that the dynamics of the cat is described by a simple

random walk on Z. Let ξ = ±1 w.p. 1/2. Let C0 = 0, Cn = Cn−1 + ξ
(1)
n , where

ξ, ξ
(1)
1 , ξ

(1)
2 , . . . are i.i.d r.v.’s.

Let M0 = 0, Mn = Mn−1 + ξ
(2)
n I[Cn−1 = Mn−1] where {ξ(2)

n }∞n=1 are i.i.d r.v.’s

independent of {ξ(1)
n }∞n=1. Assume

µ = Eξ(2)
1 is finite (2)

and there exist a function b(c) > 0, c ≥ 0, and a r.v. A(2) having a stable distribution
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with index α ∈ [1, 2] such that∑n
k=1(ξ

(2)
k − µ)

b(n)
⇒ A(2), as n→∞. (3)

Define

τ(0) = 0 and τ(n) = inf{m > τ(n− 1) : Cm = Mm}, for n ≥ 1. (4)

Given (2), we show that the tail-distribution of τ(1) is regularly varying with index 1/2.

As a consequence of this result, there exists a r.v. D(2) having a stable distribution

with index 1/2 such that

τ(n)

n2
⇒ D(2), as n→∞. (5)

In the proof of Theorem 1 we will show that, in fact, there is a joint convergence(∑n
k=1(ξ

(2)
k − µ)

b(n)
,
τ(n)

n2

)
⇒ (A(2), D(2)), as n→∞, (6)

where the r.v.’s on the right-hand side are independent. Further, let {(A(2)(t), D(2)(t))}t≥0

denote a stochastic process with independent increments such that (A(2)(1), D(2)(1))

has the same distribution as (A(2), D(2)), or Lévy process generated by (A(2), D(2)).

Let E(2)(s) = inf{t ≥ 0 : D(2)(t) > s}.

Theorem 1. Assume that (2) and (3) hold. Then

• if µ = 0, we have{
M(nt)

b(
√
n)
, t ≥ 0

}
D⇒ {A(2)(E(2)(t)), t ≥ 0}, as n→∞, (7)

• if µ 6= 0, we have{
M(nt)√

n
, t ≥ 0

}
D⇒ {µE(2)(t), t ≥ 0}, as n→∞. (8)

2.2.2 Assume now that both ξ
(1)
1 and ξ

(2)
1 have general distributions on the integer

lattice. The main difference for the mouse is that we need to assume finite second

moment for ξ
(2)
1 . The core of our result is the fact that changing simple random walk

to a general random walk does not change the scaling if we assume aperiodicity and

finite second moments for the increments.
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Theorem 2. Assume that Eξ(1) = 0, Varξ
(1)
1 < ∞ and ξ

(1)
1 has an aperiodic distri-

bution. Assume Varξ
(2)
1 <∞ and, therefore, (3) holds with b(n) =

√
nVarξ

(2)
1 and a

standard normal r.v. A(2). Then the statements (7) and (8) of Theorem 1 continue to

hold, with b(
√
n) = n1/4

√
Varξ

(2)
1 in (7).

2.3. Dog-and-Cat-and-Mouse model (D → C → M)

Let ξ = ±1 w.p. 1/2. Let {ξ(1)
n }∞n=1, {ξ(2)

n }∞n=1 and {ξ(3)
n }∞n=1 be mutually indepen-

dent sequences of independent copies of ξ. We can define the dynamics of DCM MC

{(Dn, Cn,Mn)n}∞n=1 as follows:

Dn = Dn−1 + ξ(1)
n ,

Cn = Cn−1 +

0, if Dn−1 6= Cn−1,

ξ
(2)
n , if Dn−1 = Cn−1,

Mn = Mn−1 +

0, if Cn−1 6= Mn−1,

ξ
(3)
n , if Cn−1 = Mn−1,

for n ≥ 1.

Let T (3)(0) = 0 and T (3)(k) = min{n > T (3)(k − 1) : Dn = Cn = Mn}, for

k ≥ 1. We show that the tail-distribution of T (3)(1) is regularly varying with index

1/4. Further, we show that there exists a positive r.v. D(3) with a stable distribution

and Laplace transform exp(−s1/4) such that

T (3)(k)

29k4
⇒ D(3), as k →∞. (9)

Let {D(3)(t)}t≥0 be a Lévy process generated by D(3) and E(3)(s) = inf{t ≥ 0 :

D(3)(t) > s}.

Theorem 3. We have EM(T (3)(1)) = 0, σ2 = VarM(T (3)(1)) = 2, and{
M(nt)

2−9/8n1/8σ
, t ≥ 0

}
D⇒ {B(E(3)(t)), t ≥ 0}, as n→∞, (10)

where B(t) is a standard Brownian motion, independent of E(3)(t).
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2.4. Linear hierarchical chains (X(1) → X(2) → . . . → X(N)) of length N

In this Subsection we consider a generalisation of the CM MC to the case of N

dimensions. Due to the complexity of sample paths for N > 3, we have not yet proved

the analogue of (5) and (9). Thus, we prove the convergence for every fixed t > 0

instead of the weak convergence of the processes.

Let ξ = ±1 w.p. 1/2. Let {{ξ(j)
n }∞n=1}Nj=1 be mutually independent sequences of

independent copies of ξ. Assume X
(1)
0 = . . . = X

(N)
0 = 0. Then MC (X

(1)
n , . . . , X

(N)
n )

is defined as follows:

X(1)
n = X

(1)
n−1 + ξ(1)

n ,

X(j)
n = X

(j)
n−1 +

0, if X
(j−1)
n−1 6= X

(j)
n−1,

ξ
(j)
n , if X

(j−1)
n−1 = X

(j)
n−1,

for j ∈ {2, . . . , N} and for n ≥ 1.

For the next result we need the following distribution : let Gα be a one-sided stable

distribution satisfying the condition xα(1−Gα(x))→ (2− α)/α, as x→∞.

Theorem 4. Let {ζi}∞i=1 be i.i.d. r.v.’s satisfying P{ζi ≥ y} = G1/2(9/y2). Let ψ be

an r.v. with standard normal distribution independent of {ζi}∞i=1. Then, for any fixed

t > 0, we have

X
(N)
[nt]

n1/2N
⇒ t1/2

N

ψ

N∏
i=1

√√
π

2
ζi, as n→∞.

3. Trajectories of the “standard” Cat-and-Mouse model

Here we revisit the “standard” CM model and highlight a number of properties that

are of use in the analysis of the DCM model.

We assume that C0 = M0 = 0. Let Vn = |Cn −Mn|, for n ≥ 0. Then we can

write Mn+1 = Mn + ξ
(2)
n+1I[Vn = 0], for n ≥ 1. Note that Vn+1 = |Cn+1 −Mn+1| =

|Cn −Mn + ξ
(1)
n+1 − ξ

(2)
n+1I[Vn = 0]|. We can further observe that

Vn+1 =

|ξ
(1)
n+1 − ξ

(2)
n+1|

d
= 1 + ξ

(1)
n+1, if Vn = 0,

|Cn −Mn + ξ
(1)
n+1|

d
= Vn + ξ

(1)
n+1, if Vn 6= 0

Thus, Vn forms a MC. Let pi(j) = P{Vn+1 = j|Vn = i}, for i, j ≥ 0. Note that

p0(j) = p1(j) for any j.
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Let

U (2)(0) = 0 and U (2)(k) = min{n > U (2)(k − 1) : Vn ∈ {0, 1}}. (11)

Since p0(j) = p1(j) for any j, we have that r.v.’s {U (2)(k)− U (2)(k − 1)}∞k=1 are i.i.d.

and r.v. (U (2)(k) − U (2)(k − 1)) does not depend on VU(2)(k−1), for k ≥ 1. From the

Markov property we have

VU(2)(k)+1
d
= 1 + ξ

(1)
1 =

0, w.p. 1
2 ,

2, w.p. 1
2 .

(12)

Thus, after each time-instant U (2)(k) the cat and the mouse jump with equal

probabilities either to the same point or to two different points distant by 2. In

the latter case, VU(2)(k+1) = 1, since the cat’s jumps are 1 or −1. For the cat, let

τ
(1)
m = min{n :

∑n
k=1 ξ

(1)
k = m} denote the hitting time of the state m. Then

U (2)(1)
d
= 1 +

0, w.p. 1
2 ,

τ
(1)
1 , w.p. 1

2 .

(13)

The tail asymptotics for τ
(1)
1 are known: P{τ (1)

1 > n} ∼
√

2/(πn), as n → ∞ (see,

e.g., Section III.2 in Feller (1971a) for related result). Since τ
(1)
1 has a distribution

with a regularly varying tail, for any m = 2, 3, . . . we have

P{τ (1)
m > n} ∼ mP{τ (1)

1 > n} ∼
√

2m2/(πn), as n→∞.

4. Trajectories in the Dog-and-Cat-and-Mouse model

In this Section we look at the structural properties of the DCM MC on Z. Let us

describe the main idea of the analysis which may be of independent interest as, we

believe, it may be applied to other multi-component MCs.

Let {T (3)(n)}∞n=0 be the meeting time-instants, when all the agents meet at a certain

point of Z, and {Jk}∞k=1 = {T (3)(k) − T (3)(k − 1)}∞k=1 be the times between such

events. Let MT (3)(n), n = 0, 1, . . ., be the locations of the mouse (and, therefore,

the common location of the agents) at the embedded epochs T (3)(n) and {Yk}∞k=1 =

{MT (3)(k)−MT (3)(k−1)}∞k=1 the corresponding jump sizes between the embedded epochs.

Due to time homogeneity, random vectors {(Yk, Jk)} are i.i.d..
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Let N(t) = max{n : T (3)(n) =
∑n
k=1 Jk ≤ t}, for t ≥ 0. Let S0 = 0 and

Sn =
∑n
k=1 Yk. We show that the statement of Theorem 3 holds if we swap Mn with

a continuous-time process

M̃(t) = SN(t) =

N(t)∑
k=1

Yk, for t ≥ 0. (14)

The process M̃(t) is a so-called coupled continuous-time random walk (see Becker-

Kern et al. (2004)) and we use Theorem 5.1 from Kasahara (1984) to obtain its scaling

properties.

4.1. Distribution of r.v. J
(3)
1

We assume that D0 = C0 = M0 = 0. Let Vn = (Vn1, Vn2) = (|Dn−Cn|, |Cn−Mn|).

Then we can write

(Dn+1, Cn+1,Mn+1) = (Dn + ξ
(1)
n+1, Cn + ξ

(2)
n+1I[Vn1 = 0],Mn + ξ

(3)
n+1I[Vn2 = 0]).

Note further that

Vn+1
d
=



(1 + ξ
(1)
n+1, 1 + ξ

(2)
n+1), if Vn1 = Vn2 = 0,

(1 + ξ
(1)
n+1, Vn2 + ξ

(2)
n+1), if Vn1 = 0 and Vn2 6= 0,

(Vn1 + ξ
(1)
n+1, 1), if Vn1 6= 0 and Vn2 = 0,

(Vn1 + ξ
(1)
n+1, Vn2), if Vn1 6= 0 and Vn2 6= 0.

(15)

Thus, {Vn}∞n=0 is a MC. Let pij(k, l) = P{Vn+1 = (k, l)|Vn = (i, j)}, for i, j, k, l ≥ 0.

Note that p00(k, l) = p01(k, l) for any k, l.

Let

U (3)(0) = 0 and U (3)(k) = min{n > U (3)(k − 1) : Vn ∈ {(0, 0), (0, 1)}}. (16)

Since p00(m, l) = p01(m, l) for any m, l, we have that r.v.’s {U (3)(k)−U (3)(k− 1)}∞k=1

are i.i.d. and r.v. (U (3)(k)− U (3)(k − 1)) does not depend on VU(3)(k−1), for k ≥ 1.

In other words, the auxiliary states are Dn = Cn = Mn ± 1. To find the resulting

asymptotics we need the asymptotics of U (3)(1) and the relation between time-instants

T (3)(1) and {U (3)(k)}∞k=1.
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Lemma 1. Let V0 ∈ {(0, 0), (0, 1)}. Then we have

P{U (3)(1) > n} ∼ 21/4

Γ(3/4)n1/4
, as n→∞.

Further, U (3)(1) = 1 iff VU(3)(1) = (0, 0).

Proof. Let V0 = (0, 0). It is apparent from the first line of equation (15) that

P{V1 = (0, 0)} = P{V1 = (2, 0)} = P{V1 = (0, 2)} = P{V1 = (2, 2)} =
1

4
. (17)

Since p00(k, l) = p01(k, l), r.v. V1 has the same distribution given V0 = (0, 1).

(a) V1 = (0, 0). (b) V1 = (2, 0). (c) V1 = (0, 2). (d) V1 = (2, 2).

Figure 1: The positioning after the first jump.

Let V1 = (0, 2) (Figure 1c). From the second and the fourth lines of equation (15)

we know that |V(k+1)2−Vk2| ∈ {0, 1}, given Vk2 6= 0. Therefore Vk2 arrives at 1, before

hitting 0 and VU(3)(1) = (0, 1). Let τ, τ1, τ2, . . . be independent copies of τ
(1)
1 . Then

U (3)(1) has the same distribution as
∑τ
k=1 τk and we have that

P{
τ∑
k=1

τk > n} ∼ n−1/4 Γ1/2(1/2)Γ(1/2)

Γ(3/4)

√√
2

π

√
2

π
=

23/4

Γ(3/4)n1/4
,

as n→∞ (see Appendix B).

Let V1 = (2, 2) (Figure 1d). From the fourth line of equation (15), Vk2 remains

at 2 (the cat and the mouse do not move) until Vk1 reaches 0. This happens after a

time which has the same distribution as τ
(1)
2 = min{n > 0 :

∑n
k=1 ξ

(1)
k = 2}. Thus,

we travel from (2, 2) to (0, 2) while never hitting (0, 0). We also know that the tail

distribution of the travel time is P{τ (1)
2 > n} ∼

√
8/πn, as n → ∞. Therefore, we

travel from (2, 2) to (0, 2) much faster than from (0, 2) to (0, 1) and, given V1 = (2, 2),

we again have P{U (3)(1) > n} ∼ P{
∑τ
k=1 τk > n}, as n→∞.
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Finally, let V1 = (2, 0) (Figure 1b). From the third line of equation (15) we have

V2
d
= (2 + ξ

(1)
2 , 1) and VU(3)(1) = (0, 1), where P{U (3)(1) > n} ∼

√
8/πn, as n→∞.

Thus,

P{U (3)(1) > n} ∼ 1

2
P{

τ∑
k=1

τk > n} ∼ 21/4

Γ(3/4)n1/4
, as n→∞. (18)

�

Thus, we get the relation between time-instants T (3)(1) and {U (3)(k)}∞k=1. Each

time we are at the auxiliary state we have a probability 1/4 to jump into the state

Dn = Cn = Mn independent of anything else. Using Lemma 1 and the results of

Section 1.5 from Borovkov & Borovkov (2008) we get the following result.

Proposition 1. Let ν = inf{k ≥ 1 : U (3)(k) − U (3)(k − 1) = 1}. Then ν has a

geometric distribution with parameter 1/4 and

P{J (3)
1 > n} = P{U (3)(ν) > n} ∼ 4P{U (3)(1) > n}, as n→∞, (19)

and therefore there exists a positive r.v. D(3) with a stable distribution and Laplace

transform exp(−s1/4) such that

T (3)(n)

29n4
=

∑n
k=1 J

(3)
k

29n4
⇒ D(3), as n→∞. (20)

4.2. Distribution of r.v. Y
(3)
1

In the previous Subsection we analysed the time our process spends between aux-

iliary states. In this Subsection we analyse the total jumps of the mouse between the

states (it can have either zero jumps, one jump, or two jumps).

Let {Zk}∞k=0 be an auxiliary Markov chain which satisfies Zk = MU(3)(k)−CU(3)(k) ∈

{−1, 0, 1}. As before, at the times n = 0 and n = U (3)(ν) = T (3)(1) we have Dn =

Cn = Mn and, therefore, Z0 = Zν = 0. For any k ∈ {1, ν − 1} we have Zk = ±1.

Let

γ
(3)
k = MU(3)(k) −MU(3)(k−1) for k ≥ 1. (21)

These r.v.’s depend on each other through the auxiliary Markov chain {Zk}∞k=0. If we

condition on the values of {Zk}∞k=0, r.v.’s {γ(3)
k }∞k=1 become independent. We represent
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the total jump as follows:

Y
(3)
1 = MT (3)(1) =

ν∑
k=1

γ
(3)
k .

We calculate its first and second moment and comment on a general power moment.

Since D0 = C0 = M0 = 0, r.v. ν equals one if and only if Z1 = 0 and γ
(3)
1 = ±1.

Additionally, we have

P{γ(3)
1 = ±1, Z1 = 0 | Z0 = 0} = P{D1 = C1 = M1 = ±1} =

1

8
. (22)

Another case of exactly one jump is when the cat and the mouse jump in different

directions. Here we have

P{γ(3)
1 = ±1, Z1 = ±1 | Z0 = 0} = P{C1 = ∓1,M1 = ±1} =

1

4
. (23)

Further, the mouse can have two jumps in the same direction w.p.

P{γ(3)
1 = ±2, Z1 = ±1 | Z0 = 0} = P{D1 = ∓1, C1 = M1 = ±1,M2 = ±2} =

1

16
,

(24)

or two jumps in the opposite directions w.p.

P{γ(3)
1 = 0, Z1 = ±1 | Z0 = 0} = P{D1 = ±1, C1 = M1 = ∓1,M2 = 0} =

1

16
, (25)

Thus, given Z0 = 0 we have

P{Z1 = 0} =
1

4
and P{Z1 = ±1} =

3

8
, (26)

P{γ(3)
1 = 0} =

1

8
, P{γ(3)

1 = ±1} =
3

8
and P{γ(3)

1 = ±2} =
1

16
. (27)

From the obtained we get that Eγ(3)
1 = 0 and Varγ

(3)
1 = 5/4.

To analyse the distribution of γ
(3)
k , k ≥ 2, and not overcomplicate the indices we

assume that D0 = C0 = 0 and M0 = 1, so Z0 = 1. The case Z0 = −1 is analogous by

the symmetry. Then the mouse can make either zero jumps or exactly one before the

next auxiliary state. In the case of zero jumps we have

P{γ(3)
1 = ±0, Z1 = 0 | Z0 = 1} = P{D1 = C1 = 1} =

1

4
, (28)
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P{γ(3)
1 = ±0, Z1 = 1 | Z0 = 1} = P{C1 = −1} =

1

2
. (29)

For the case of exactly one jump we have

P{γ(3)
1 = 1, Z1 = 1 | Z0 = 1} = P{D1 = −1, C1 = 1,M2 = 2} =

1

8
, (30)

P{γ(3)
1 = −1, Z1 = −1 | Z0 = 1} = P{D1 = −1, C1 = 1,M2 = 0} =

1

8
. (31)

Thus, given Z0 = 1 we have

P{Z1 = 0} =
1

4
, P{Z1 = 1} =

5

8
and P{Z1 = −1} =

1

8
, (32)

P{γ(3)
1 = 0} =

3

4
and P{γ(3)

1 = ±1} =
1

8
. (33)

From the obtained we get that E
(
γ

(3)
1 |Z0 = 1

)
= 0 and Var

(
γ

(3)
1 |Z0 = 1

)
= 1/4.

Let us return to the case D0 = C0 = M0 = 0. Combining the results (27) and (33)

we get

EY (3)
1 = E

ν∑
k=1

γ
(3)
k = E

∞∑
k=1

(
γ

(3)
k I[ν ≥ k]

)
= Eγ(3)

1 +

∞∑
k=2

E
(
γ

(3)
k I[ν ≥ k]

)
=

∞∑
k=2

E
(
γ

(3)
k I[Zk−1 = 1] + γ

(3)
k I[Zk−1 = −1]

)
= 0. (34)

In the similar manner we transform the second moment:

E(Y
(3)
1 )2 =

∞∑
k=1

E
(

(γ
(3)
k )2I[ν ≥ k]

)
+ 2

∞∑
k=1

∞∑
m=k+1

E
(
γ

(3)
k γ(3)

m I[ν ≥ m]
)
. (35)

If we fix the values of {Zk}∞k=0 the r.v.’s γ
(3)
k and γ

(3)
m become independent. Combined

with the fact that E
(
γ

(3)
m |Zm−1 = ±1

)
= 0, we get that the second sum in (35) equals

zero. Now we use the obtained conditioned second moments and the fact that the r.v.

ν has a geometric distribution with parameter 1/4. We obtain

E(Y
(3)
1 )2 = E(γ

(3)
1 )2 +

∞∑
k=2

E
(

(γ
(3)
k )2| Zk−1 = ±1

)
P{ν ≥ k} =

5

4
+

1

4
(Eν − 1) = 2.

(36)

Finally, we have |γ(3)
1 | ≤ 2 and r.v. ν has a light-tailed distribution. Therefore, r.v.

Y
(3)
1 = M

J
(3)
1

=
∑ν
k=1 γ

(3)
k has a light-tailed distribution. Using that and a symmetry

argument, we get the following result.

Proposition 2. We have EY (3)
1 = 0, VarY

(3)
1 = 2 and E(Y

(3)
1 )m <∞, for any m ≥ 3.
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5. Proofs of main results

In this section we provide proofs of our main results.

5.1. Proof of Theorem 1

For i = 1, 2, let S
(i)
0 = 0 and S

(i)
n =

∑n
k=1 ξ

(i)
k , for n ≥ 1. Let

τ(0) = 0 and τ(n) = inf{m > τ(n− 1) : S(1)
m = S(2)

n }, for n ≥ 1. (37)

Since {ξ(1)
k }∞k=1 and {ξ(2)

k }∞k=1 are independent sequences of i.i.d. r.v.’s, we have that

τ(n)− τ(n− 1)
d
= τ(1), for n ≥ 1.

Let η(t) = max{k ≥ 0 : τ(k) ≤ t} for t ≥ 0. Define a continuous-time process M ′(t)

by

M ′(t) = 0 for t ∈ [0, 1) and M ′(t) = S
(2)
η(t−1)+1 =

η(t−1)+1∑
k=1

ξ
(2)
k , for t ≥ 1. (38)

It is straightforward to verify that {M ′(n), n ≥ 0} d
= {M(n), n ≥ 0}. In the rest of

the section we will omit the dash and simply write M(t). The process {M̂(t)}t≥0 =

{M ′(t+ 1)}t≥0 is a so-called oracle continuous-time random walk (see, e.g., Jurlewicz

et al. (2012)). We need the following proposition.

Proposition 3. We have

dJ1,∞

({
M(ct)

b(
√
c)
, t ≥ 0

}
,

{
M(ct+ 1)

b(
√
c)

, t ≥ 0

})
a.s.→ 0, as c→∞. (39)

Proof. This result follows from properties of the Skorokhod topology and the fact

that b(c) → ∞, as c → ∞. First, we change time interval [0,∞) to [0, T ] with an

arbitrary finite T . Second, we introduce an appropriate function λc (see Appendix

A) such that M(λ(ct)) and M̂(ct + 1) differ only near 0 and T . Then the distance

between processes on time interval [0, T ] can be bounded by a r.v. which has the same

distribution as max(ξ
(2)
1 , ξ

(2)
2 )/b(c). Since this bound converges to 0 a.s., we get the

result. �

First, consider the case Eξ(2)
1 = 0. We want to show that(

S
(2)
n

b(n)
,
τ(n)

n2

)
⇒ (A(2), D(2)), as n→∞. (40)



Limit theorems and structural properties for the Cat-and-Mouse Markov chain 17

Given that, we will show that the first part of Theorem 1 follows from the next

proposition.

Proposition 4. (Theorem 3.1, Jurlewicz et al. (2012)) Assume (40) holds. Then{
M̂(ct)

b(
√
c)
, t ≥ 0

}
=

{
M(ct+ 1)

b(
√
c)

, t ≥ 0

}
D⇒
{
A(2)(E(2)(t)), t ≥ 0

}
, as c→∞. (41)

A similar result was proven in Theorem 3.6 from Henry and Straka (2011).

We will now show that relation (40) holds and that r.v.’s A(2) and D(2) are inde-

pendent, which means

E exp

(
i

(
λ1
S

(2)
n

b(n)
+ λ2

τ(n)

n2

))
= E exp

(
i

(
λ1
ξ

(2)
1

b(n)
+ λ2

τ(1)

n2

))n
=

(
1 +

f1(λ1) + f2(λ2)

n
+ o

(
1

n

))n
, (42)

as n → ∞, for some functions f1 and f2. Indeed, convergence of characteristic

functions is equivalent to weak convergence of r.v.’s and for independence of r.v.’s it is

sufficient to verify that the characteristic function of the sum is equal to the product

of respective characteristic functions. Since the right-hand side of (42) converges to

exp(f1(λ1)) exp(f2(λ2)), it will prove the convergence and the independence of the

limits A(2) and D(2).

3.1 We start with the case of Theorem 1. From condition (3) we have a weak

convergence of S
(2)
n /b(n) to a r.v. A(2). Again, this is equivalent to convergence of

characteristic functions. Thus, (3) implies

E exp

(
iλ1

∑n
k=1 ξ

(2)
k

b(n)

)
=

[
E exp

(
iλ1

ξ
(2)
1

b(n)

)]n
→ E exp

(
iλ1A

(2)
)
, as n→∞. (43)

Additionally, if Bn(n) → z, as n → ∞, then n logB(n) → log z, which leads to

logB(n) ∼ n−1 log z. Finally, such relation leads to B(n) ∼ 1 + n−1 log z, as n → ∞.

Thus, we have the following

E exp

(
iλ1

ξ
(2)
1

b(n)

)
∼ 1 +

l1(λ1)

n
, as n→∞, (44)

where l1(λ) = logE exp(iλA(2)), the logarithmic characteristic function of A(2).

Let {τ (1)
k }∞k=1 be independent copies of τ , the time needed for the simple random

walk to hit 0 if it starts from 1, independent of {ξ(2)
n }∞n=1. Then we have the following
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relation for τ(1):

τ(1)
d
= I[ξ(2)

n 6= 0]

|ξ(2)n |∑
k=1

τ
(1)
k + I[ξ(2)

n = 0](1 + τ
(1)
1 ). (45)

Since P{τ > n} ∼
√

2/(πn), as n→∞, we have

P{τ(1) > n} ∼ (E|ξ(2)
1 |+ P{ξ(2)

1 = 0})P{τ > n} (46)

and there exists a r.v. D(2) having a stable distribution with index 1/2 such that

τ(n)

n2
⇒ D(2), as n→∞. (47)

Using the same argument as for (44) we get

E exp
(
iλ2

τ

n2

)
∼ 1 +

l2(λ2)

n
, as n→∞, (48)

where λ2(λ) = logE exp(iλD(2)/(E|ξ(2)
1 |+P{ξ(2)

1 = 0})), the logarithmic characteristic

function of D(2)/(E|ξ(2)
1 |+ P{ξ(2)

1 = 0}). Then we use the total probability formula to

get the following:

E exp

(
i

[
λ1
ξ

(2)
1

b(n)
+ λ2

τ(1)

n2

])

=

∞∑
−∞

exp

(
iλ1

k

b(n)

)
P{ξ(2)

1 = k}E exp

(
iλ2

τ(1)

n2
|ξ(2)

1 = k

)
= P{ξ(2)

1 = 0}E exp

(
iλ2

1 + τ

n2

)
+

+
∑
k 6=0

exp

(
iλ1

k

b(n)

)
P{ξ(2)

1 = k}
(
E exp

(
iλ2

τ

n2

))|k|
.

In order to transform the last sum in the last equation we use (48) and get the following,

for any m > 0:(
E exp

(
iλ2

τ

n2

))m
=

(
1 +

l2(λ2)

n
+ o

(
1

n

))m
= exp

(
m ln(1 +

l2(λ2) + o(1)

n
)

)
= exp

(
ml2(λ2)

n
(1 + o(1))

)
= 1 +

ml2(λ2)(1 + o(1))

n
+

1

n2

∞∑
j=2

(ml2(λ2)(1 + o(1)))j

nj−2j!
,
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as n→∞. Now we use the fact that if
∑∞
−∞An =

∑∞
−∞Bn +

∑∞
−∞ Cn and if series∑∞

−∞An and
∑∞
−∞Bn converge, then

∑∞
−∞ Cn converges too. We have∑

k 6=0

exp

(
iλ1

k

b(n)

)
P{ξ(2)

1 = k}
(
E exp

(
iλ2

τ

n2

))|k|
=

(
E exp

(
iλ1

ξ
(2)
1

b(n)

)
− P{ξ(2)

1 = 0}

)

+
l2(λ2)

n

∑
k 6=0

|k| exp

(
iλ1

k

b(n)

)
P{ξ(2)

1 = k}+ o

(
1

n

)

=

(
E exp

(
iλ1

ξ
(2)
1

b(n)

)
− P{ξ(2)

1 = 0}

)
+ E|ξ(2)

1 |
l2(λ2)

n
+ o

(
1

n

)
,

as n→∞. Using (44) and (48), we have

E exp

(
i

[
λ1
ξ

(2)
1

b(n)
+ λ2

τ(1)

n2

])

= 1 +
l1(λ1)

n
+ (E|ξ(2)

1 |+ P{ξ(2)
1 = 0}) l2(λ2)

n
+ o

(
1

n

)
, (49)

as n → ∞. We have proved that equation (42) holds with f1(λ1) = l1(λ1) and

f2(λ2) = (E|ξ(2)
1 |+ P{ξ(2)

1 = 0})l2(λ2). Therefore, equation (40) holds and we can use

Propositions 3 and 4 to prove the first part of Theorem 1.

Turn now to the second part and assume Eξ(2) = µ 6= 0. Then the above argu-

ments are applicable to
∑η(t)+1
k=1 (ξ

(2)
k − µ). Thus, we have shown that the process((∑η(nt)+1

k=1 (ξ
(2)
k − µ)

)
/b(
√
n), t ≥ 0

)
weakly converges to the limiting one (see Ap-

pendix A for corresponding definitions). Since µ <∞, we have b(n) = o(n), as n→∞,

and therefore the process(∑η(nt)+1
k=1 (ξ

(2)
k − µ)√
n

, t ≥ 0

)
=

(∑η(nt)+1
k=1 (ξ

(2)
k − µ)

b(
√
n)

b(
√
n)√
n

, t ≥ 0

)
(50)

converges to the zero-valued process.

Thus, it follows from the representation

M̂(nt)√
n

=

∑η(nt)+1
k=1 (ξ

(2)
k − µ)√
n

+
µ(η(nt) + 1)√

n
(51)

and from the Corollary of Theorem 3.2 from Meerschaert and Scheffler (2004) that{
M̂(nt)√

n
, t ≥ 0

}
D⇒ {µE(2)(t), t ≥ 0}, as n→∞. (52)
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3.2 Turn now to the second case. Under the assumption of the finiteness of second

moments we can expand our result to the case where both ξ(1) and ξ(2) have general

distributions. Assume now that {S(1)
n }∞n=0 = {

∑n
k=1 ξ

(1)
k }∞n=0 is an aperiodic random

walk with zero-mean and finite-variance-σ2
1 increments. A theory of general random

walks and their hitting times is well developed. Nevertheless, it was challenging for us

to find results uniform in terms of the hitting point. From Section 3.3 of Uchiyama

(2011a), we have that, uniformly in x,

E
[
exp (itτ(1)) | ξ(2)

1 = x
]

= 1− (a∗(x) + ex(t))(σ1

√
−2it+ o(

√
|t|)), as t→ 0, (53)

where

a∗(x) = 1 +

∞∑
n=1

(
P{S(1)

n = 0} − P{S(1)
n = −x}

)
, (54)

ex(t) = cx(t) + isx(t), (55)

|cx(t)| = O
(
x2
√
|t|
)
, as t→ 0, (56)

s0(t) = 0 and
sx(t)

x
= o(1), as t→ 0, uniformly in x 6= 0. (57)

Following steps similar to those used in the previous part we take t = λ2/n
2 and,

eventually, let n become large. A very important relation here is (56). When we

take characteristic function E exp

(
i

[
λ1

ξ
(2)
1

σ2
√
n

+ λ2
τ(1)
n2

])
and start to separate it into

different summands the relation (56) leads to a summand∑
x∈Z

O

(
x2

n2

)
P{ξ(2)

1 = x}, as n→∞, (58)

and this is the main reason why we need to assume that ξ
(2)
1 has a finite second moment.

Assume now that Eξ(2)
1 = 0 and σ2 = Varξ

(2)
1 <∞. We have (see, e.g., Proposition

7.2 from Uchiyama (2011b))

σ2
1(a∗(x)− I(x = 0)) ∼ |x|, as |x| → ∞. (59)

As a consequence we get Ea∗(ξ(2)
1 ) < ∞. Let p(2)(x) = P{ξ(2)

1 = x}. Then the total

probability formula gives us
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E exp

(
i

[
λ1

ξ
(2)
1

σ2
√
n

+ λ2
τ(1)

n2

])

=
∑
x∈Z

exp

(
iλ1

[
x

σ2
√
n

])
E
[
exp

(
i

[
λ2
τ(1)

n2

])
| ξ(2)

1 = x

]
p(2)(x). (60)

Now we use (53)-(57) to get

E exp

(
i

[
λ1

ξ
(2)
1

σ2
√
n

+ λ2
τ(1)

n2

])
= E

[
exp

(
iλ1

[
ξ

(2)
1

σ2
√
n

])]
−

− σ1

√
−2iλ2

n
E

[
a∗(ξ

(2)
1 ) exp

(
iλ1

[
ξ

(2)
1

σ2
√
n

])]
+

+O

(
1

n2
E

[(
ξ

(2)
1

)2

exp

(
iλ1

[
ξ

(2)
1

σ2
√
n

])])
+

+ o

(
1

n
E

[
ξ

(2)
1 exp

(
iλ1

[
ξ

(2)
1

σ2
√
n

])])
+ o

(
1

n

)
,

as n → ∞. Next, we use relation (59) and the Taylor expansion for the exponent to

get

E

[
a∗(ξ

(2)
1 ) exp

(
iλ1

[
ξ

(2)
1

σ2
√
n

])]
= E

[
a∗(ξ

(2)
1 )
]

+ o(1), as n→∞. (61)

Since Eξ(2)
1 = 0 and Varξ

(2)
1 < ∞, the Central Limit Theorem holds. Thus, we have

the analogue of (44) with l1 being a logarithmic characteristic function of a r.v. with

standard normal distribution. Finally, we get

E exp

(
i

[
λ1

ξ
(2)
1

σ2
√
n

+ λ2
τ(1)

n2

])
= 1 +

l1(λ1)

n
− σ1

√
−2iλ2

n
E
[
a∗(ξ

(2)
1 )
]

+ o

(
1

n

)
.

(62)

Thus, we proved equation (42) for this case and the rest of the proof follows the same

argument as in the previous case.

5.2. Proof of Theorem 3

Random vectors {Y (3)
n , J

(3)
n }∞n=1 are i.i.d., where Y

(3)
1 =

∑ν
k=1 γ

(3)
k and J

(3)
1 =

T (3)(1) = U (3)(ν). We have

η(t) = max{n > 0 :

n∑
k=1

J
(3)
k ≤ t} and M̃(t) =

η(t)∑
k=1

Y
(3)
k . (63)
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From Propositions 1 and 2 we have

EY (3)
1 = 0, VarY

(3)
1 = 2, E(Y

(3)
1 )m <∞, for m ≥ 2, and P{J (3)

1 > n} ∼ 29/4

Γ(3/4)n1/4
,

(64)

as n→∞. From Theorem 5.1 from Kasahara (1984) we have M̃(nt)

2−9/8n1/8

√
VarY

(3)
1

, t ≥ 0

 D⇒ {B(E(3)(t)), t ≥ 0}, as n→∞, (65)

where B(t) is a standard Brownian motion, independent of E(3)(t).

We show now that (65) holds with M(nt) in the place of M̃(nt). It is sufficient to

prove that for any fixed T > 0

max1≤k≤[nT ]

{
M̃k −Mk

}
n1/8

a.s.→ 0, as n→∞. (66)

In the time interval (η(nt), nT ] there are no time-instants n when D(n) = C(n) =

M(n), however the mouse may have jumps. Nevertheless, the number of this jumps

can be bounded by 2ν̂, where r.v. ν̂ has a geometric distribution with parameter 1/4.

Let Un = maxT (3)(n−1)≤l≤T (3)(n) |M̃l −Ml|, n ≥ 1. We have

max
1≤l≤J(3)

1

|M̃l −Ml|
d
≤

ν∑
k=1

|ξk|. (67)

Proposition 5. For any m ≥ 1 we have EUm1 <∞ and n−1/m max1≤l≤n Ul converges

to 0 a.s., as n→∞.

We have η(nT ) → ∞ a.s. and there exists a r.v. ζ such that n−1/4η(nT ) ⇒ ζ, as

n→∞ (see, e.g., Section XI.5 in Feller (1971b)). Thus,

|max1≤k≤[nT ]

{
M̃k −Mk

}
|

n1/8
≤

max1≤l≤η(nT ) {Ul}
n1/8

+
2ν̂

n1/8

=
max1≤l≤η(nT ) {Ul}

η1/4(nT )

(
η(nT )

n1/2

)1/4

+
2ν̂

n1/8

a.s.→ 0. (68)

This completes the proof of Theorem 3.
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5.3. Proof of Theorem 4

Random process X(1) is a simple random walk on Z and for j ∈ [2, N ] we have

P{X(j)(n)−X(j)(n− 1) = 1| X(j)(n− 1) = X(j−1)(n− 1)}

= P{X(j)(n)−X(j)(n− 1) = −1| X(j)(n− 1) = X(j−1)(n− 1)} =
1

2
.

Let us give a new representation for such process. Let X(1)(0) = X(2)(0) = . . . =

X(N)(0) = 0 and let r.v. Tj(n) denote the time when X(j) makes n-th step. Let

Tj(0) = 0. Note the difference between Tj and T (3). Thus, {X(j)(Tj(k))}∞k=0 is a

simple random walk on Z and if X(j)(n) 6= X(j)(n− 1) then n ∈ {Tj(k)}∞k=1. Let

ξ
(j)
k = X(j)(Tj(k))−X(j)(Tj(k − 1)) = X(j)(Tj(k))−X(j)(Tj(k)− 1)

for j ≥ 1 and k ≥ 1. By definition {{ξ(j)
k }∞k=0}Nj=1 are mutually independent and equal

±1 w.p. 1/2.

Since X(1) jumps every time, T1(k) = k for k ≥ 0. Let τ be the time that simple

random walk goes from point 1 to 0. From Section 3 it is easy to deduce that the time

between meeting time-instants of the cat and the mouse has the same distribution as τ .

Thus, if we look at the system only at the times {Tj(k)}∞k=0 the time between meeting

time-instants of X(j) and X(j+1) has the same distribution as τ .

Let us define νj(n) = max{k ≥ 0 : Tj(k) ≤ n}, the number of time-instants up to

time n when X(j) changed its value. Then we can rewrite the dynamics of the j-th

coordinate as

X(j)(n) =

νj(n)∑
k=1

ξ
(j)
Tj(k).

Our restrictions on the distribution of the increments ξ
(j)
k , for k ≥ 1, give us the next

important property of our process.

Proposition 6. Sequences {Tj(k)}∞k=0 and {ξ(j)
k }∞k=1 are independent for any j ∈

{1, . . . , N}.

This property comes from the space-symmetry of the model.

For j = 1 the result is trivial, since ν1(n) = n. We show the result for j = 2 and

then extend it onto j > 2. Define

1τ(0) = 0 and 1τ(k) = inf{n > 1τ(k − 1) : X(1)(n) = X(2)(n)}, for k ≥ 1. (69)
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One can see that in our model T2(k) = 1 + 1τ(k − 1), for k ≥ 1. In the time interval

[1, 1τ(1)] the second coordinate changes its value only at the time T2(1) = 1. Thus,

the time 1τ(1) does not depend on ξ
(2)
k , for k ≥ 2. Additionally, the trajectory

{X(1)(n)}∞n=0 has the same distribution as {−X(1)(n)}∞n=0. Thus,

P{1τ(1) = n, ξ
(2)
1 = 1} = P{1τ(1) = n, ξ

(2)
1 = −1}. (70)

As a corollary of the last equation, we get that 1τ(1) has the same distribution as the

time that is needed for the simple random walk to hit 0 if it starts from 1. This implies

that

P{1τ(1) > n} ∼
√

2

πn
, as n→∞. (71)

From the symmetry of our model, it follows further that the sequence {1τ(k)}∞k=0,

and subsequently the sequences {T2(k)}∞k=0 and {ν2(n)}∞n=1, do not depend on {ξ(2)
k }∞k=1

(and, therefore, on {ξ(j)
k }k≥1,j≥2).

For the analysis of {Tj(k)}∞k=0, j > 2, we need to define an ’embedded version’ of

1τ(k). Let

jτ(0) = 0 and jτ(k) = inf{m > jτ(k − 1) : X(j)(Tj(m)) = X(j+1)(Tj(m))}, for k ≥ 1.

(72)

The process {jτ(k)}∞k=0 counts the number of times that the process X(j) changed its

value between the time-instants when X(j) and X(j+1) have the same value. Using

the same argument as before, we get that the sequence {jτ(k)}∞k=0 does not depend

on {ξ(j+1)
k }∞k=1.

The j-th coordinate X(j) changes its value for the k-th time at the time-instant n

if and only if up to time n− 1 processes X(j−1) and X(j) had the same value exactly

k − 1 times (not including X(j−1)(0) = X(j)(0) = 0) and the last time was at the

time-instant n− 1 (which also means that at the time-instant n− 1 the process X(j−1)

changes its value). This can be rewritten as

Tj(k) = n ⇔ n− 1 = Tj−1(j−1τ(k − 1)), for j ≥ 2, k ≥ 1, (73)

and thus Tj(k) = 1 + Tj−1(j−1τ(k − 1)). Thus, since sequences {T2(k)}∞k=0 and

{2τ(k)}∞k=0 do not depend on {ξ(j)
k }k≥1,j≥3, the same holds for {T3(k)}∞k=0. There-

fore, using the induction, we get that the sequences {Tj(k)}∞k=0 and {ξ(j)
k }∞k=1 are

independent for any j ≥ 1.
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As a corollary of this result we get

X(j)(n) =

νj(n)∑
k=1

ξ
(j)
Tj(k)

d
=

νj(n)∑
k=1

ξ
(j)
k . (74)

Let jη(n) = max{k ≥ 0 : jτ(k) ≤ n} for n ≥ 0 and j ∈ [1, . . . , N ]. Since the

sequence {jτ(k)}∞k=0 depends only on the sequence {ξ(j)
k }∞k=1, we have that {jη(n)}N−1

j=1

are i.i.d. r.v.’s. For n ≥ 1 and j ∈ {1, . . . , N} we have

νj(n) = max{k ≥ 0 : Tj(k) ≤ n} = max{k ≥ 1 : 1 + Tj−1(j−1τ(k − 1)) ≤ n}

= 1 + max{k ≥ 0 : Tj−1(j−1τ(k)) ≤ n− 1}

= 1 + max{k ≥ 0 : j−1τ(k) ≤ νj−1(n− 1)}

= 1 + j−1η(νj−1(n− 1)). (75)

For n < N − 1 we can iterate the process and get

νN (n) = 1 + N−1η(1 + N−2η(. . . (1 + N−nη(0)) . . .))

= 1 + N−1η(1 + N−2η(. . . (1 + N−n+1η(1)) . . .))

d
= 1 + n−1η(1 + n−2η(. . . (1 + 1η(1)) . . .))

= νn(n). (76)

For n ≥ N − 1 we have

νN (n) = 1 + N−1η(1 + N−2η(. . .+ 1η(n−N + 1))). (77)

We want to construct a process with the same distribution as {νN (n)}∞n=0 in a form

of νN−1(ϕ(n)), where process {ϕ(n)}∞n=0 is independent of everything else. Define

process {η(n)}∞n=0
d
= {N−1η(n)}∞n=0, which is independent of everything else. Then,

for n ≥ N − 1, we have

νN (n)
d
= 1 + N−2η(1 + N−3η(. . .+ η(n−N + 1))). (78)

Using the same formula for νN−1(m) with such m that m−(N−1)+1 = 1+N−1η(n−

N + 1), we get

νN (n)
d
= νN−1(N − 1 + η(n−N + 1)), for n ≥ N − 1. (79)
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Then, for n ≥ N we have X(N)(n)
d
= X(N−1)(N − 1 + η(n−N + 1)). There exists

a non-degenerate r.v. ζ (see Section XI.5 in Feller (1971b)) such that P{ζi ≥ y} =

G1/2(9/y2) and

η(n)P{N−1τ(1) > n} ⇒ ζ, as n→∞. (80)

Therefore, using (71) we get

j − 1 + η(n− j + 1)√
n

=
j − 1 + η(n− j + 1)√

n− j + 1

√
n− j + 1√

n
⇒
√
π

2
ζ, (81)

as n→∞, for j ≥ 1. We now present a known result that we utilise to prove Theorem

4.

Proposition 7. (Dobrushin (1955), (v)) Let Y (t) and τn be independent sequences of

r.v.’s such that

Y (t)

btβ
⇒ Y, as t→∞, and

τn
dnδ
⇒ τ, as n→∞. (82)

Then for independent Y and τ we have

Y (τn)

bdβnβδ
⇒ Y τβ , as n→∞. (83)

Indeed, by the Central Limit Theorem X(1)(n)/
√
n weakly converges to a normally

distributed r.v. ψ (we assume that ψ and ζ are independent). Together with (81)

and independence of X(1)(n) and η(n), this insures that condition (82) holds with

Y (t) = X(1)([t]), τn = 1 + η(n− 1) and β = δ = 1/2. By the Proposition 7, we get

X(2)(n)

n1/4

d
=
X(1)(1 + η(n− 1))

n1/4
⇒ ψ

√√
π

2
ζ, as n→∞. (84)

Let {ζj}Nj=2 be independent copies of ζ which are independent of ψ. Next, we use

the induction argument. For some j ≥ 1 condition (82) holds with Y (t) = X(j)([t]),

τn = j − 1 + η(n− j + 1), β = 2−j and δ = 2−1. By Proposition 7, we get

X(j+1)(n)

n2−(j+1)

d
=
X(j)(j − 1 + η(n− j + 1))

n2−(j+1)
⇒ ψ

j+1∏
i=2

√√
π

2
ζi, as n→∞. (85)

This concludes the proof of Theorem 4.
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Appendix

Appendix A. Weak convergence for processes from D[[0,∞),R]

To make the paper self-contained we recall definition of J1-topology (see, e.g.,

Skorokhod (1956)). Let D[[0, T ],R] denote the space of all right continuous functions

on [0, T ] having left limits. For any g ∈ D[[0, T ],R] let
∥∥g∥∥ = supt∈[0,T ] |g(t)|.

Let Λ be the set of increasing continuous functions λ : [0, T ] → [0, T ], such that

λ(0) = 0 and λ(T ) = T . Let λid denote the identity function. Then

dJ1,T (g1, g2) = inf
λ∈Λ

max(
∥∥g1 ◦ λ− g2

∥∥,∥∥λ− λid∥∥)

defines a metric inducing J1.

On the space D[[0,∞),R] the J1-topology is defined by the metric

dJ1,∞(g1, g2) =

∫ ∞
0

e−t min(1, dJ1,t(g1, g2))dt.

Convergence gn → g in (D[[0,∞),R], τ) means that dτ,T (gn, g)→ 0 for every continuity

point T of g.

Let {{Xn(t)}t≥0}∞n=1 and {X(t)}t≥0 be stochastic processes with trajectories from

D[[0,∞),R]. We say that weak convergence

{Xn(t)}t≥0
D⇒ {X(t)}t≥0,

holds if

Ef({Xn(t)}t≥0)→ Ef({X(t)}t≥0), as n→∞,

for any continuous and bounded function f on D[[0,∞),R] endowed with J1-topology.

Proposition 8. Let {Xn}∞n=1 and {Yn}∞n=1 be two sequences of stochastic processes

with trajectories from D[[0,∞),R]. Given dJ1,∞(Xn, Yn)
a.s.→ 0, we have

Xn − Yn
D⇒ 0.
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Appendix B. Tail asymptotics for randomly stopped sum

Let ξ1, ξ2, . . . be positive i.i.d. r.v.’s with a common distribution function F . Let

S0 = 0 and Sk = ξ1 + . . . ξk, k ≥ 1. Let τ be a counting r.v. with distribution

function G, independent of {ξk}∞k=1. For a general overview concerning asymptotics of

tail-distribution of Sτ see, e.g., Denisov et al. (2010) and references therein. The next

result follows from Corollary 3 from Foss & Zachary (2003).

Proposition 9. Assume that F (x) ∼ l1(x)/xα, α ∈ [0, 1) and τ has any distribution

with Eτ <∞. Then

P{Sτ > n} ∼ EτP{ξ > n} as n→∞. (86)

The next result we use in Lemma 1 and we prove it using Tauberian theorems.

Proposition 10. Assume that F (x) ∼ l1(x)/xα and G(x) ∼ l2(x)/xβ, α, β ∈ (0, 1).

Then

P{Sτ > n} ∼ n−αβ Γβ(1− α)Γ(1− β)

Γ(1− αβ)
lβ1 (n) l2

(
nα

Γ(1− α)l1 (n)

)
, as n→∞. (87)

Proof. Denote the c.d.f. of Sτ as H. Let

F (x) = 1− F (x), x ∈ R, (88)

F̂ (λ) = Ee−λξ1 =

∫ ∞
0

e−λxdF (x), λ ≥ 0. (89)

Define G, Ĝ,H, and Ĥ similarly. We use the following result.

Proposition 11. (Corollary 8.1.7, Bingham, Goldie and Teugels (1987)) For

a constant α ∈ [0, 1], l and for a slowly varying at infinity function, the following are

equivalent:

1− F̂ (λ) ∼ λαl
(

1

λ

)
, as λ ↓ 0, (90)

F (x) ∼ l(x)
xαΓ(1−α) , as x→∞, if 0 ≤ α < 1,∫ x

0
tdF (t) ∼

∫ x
0
F (t)dt ∼ l(x), as x→∞, if α = 1.

(91)
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Using this result, we get

1− F̂ (λ) ∼ λαΓ(1− α)l1

(
1

λ

)
and 1− Ĝ(λ) ∼ λβΓ(1− β)l2

(
1

λ

)
, as λ ↓ 0. (92)

Let us analyse Ĥ:

Ĥ(λ) = Ee−λSτ =

∞∑
k=1

e−λ(ξ1+...+ξk)P{τ = k} = E
(
Ee−λξ1

)τ
= Ĝ(− ln F̂ (λ)). (93)

Since

− ln F̂ (λ) = − ln(1− (1− F̂ (λ))) ∼ 1− F̂ (λ), as λ ↓ 0, (94)

we have

1− Ĥ(λ) ∼ 1− Ĝ
(
λαΓ(1− α)l1

(
1

λ

))
∼ λαβΓβ(1− α)Γ(1− β)lβ1

(
1

λ

)
l2

(
1

λαΓ(1− α)l1
(

1
λ

)) , (95)

as λ ↓ 0, and finally

H(x) ∼ x−αβ Γβ(1− α)Γ(1− β)

Γ(1− αβ)
lβ1 (x) l2

(
xα

Γ(1− α)l1 (x)

)
, as x→∞. (96)

�
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