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A Study of 2D Non-Stationary Massive MIMO
Channels by Transformation of Delay and Angular

Power Spectral Densities
Carlos F. López and Cheng-Xiang Wang, Fellow, IEEE

Abstract—In this paper, we propose a transformation
method to model space-time-variant (STV) two-dimensional
non-stationary wideband massive multiple-input multiple-output
(MIMO) channels. This method enables us to obtain the STV
joint probability density function of the time of arrival and angle
of arrival (AOA) at any time instant and antenna element of the
array from a predefined configuration of the scatterers. In addi-
tion, we introduce a simplified channel modeling approach based
on STV parameters of the AOA distribution and demonstrate
that key statistical properties of massive MIMO channels, such
as the STV temporal autocorrelation function and Doppler power
spectral density, can be derived in closed form. As examples of
application, we study multiple array-variant properties of three
widely-used geometry-based stochastic models (GBSMs): the Uni-
fied Disk, Ellipse, and Gaussian scattering models. Furthermore,
we present numerical and simulation results of the statistical
properties of these three GBSMs and compare them with those
obtained using the conventional spherical wavefront approach.
We point out possible limitations of the studied channel models
to properly represent massive MIMO channels.

Index Terms—Massive MIMO, non-stationary channel models,
array-variant angular and delay distributions, transformation
method, statistical properties.

I. INTRODUCTION

IN recent years, multiple-input multiple-output (MIMO)
technologies have enabled a remarkable increase in reli-

ability, efficiency, and throughput of wireless communication
systems by employing multiple antennas on one or both sides
of the communication link. Consequently, MIMO technologies
have widely been adopted in modern wireless communication
standards. In particular, massive MIMO, i.e., MIMO tech-
nologies incorporating a large number of antennas, has been
proposed as a solution to cope with the exigent requirements
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of the fifth-generation (5G) wireless communication systems
[1]–[3]. Despite the great challenges caused by employing
a large number of antennas, massive MIMO can provide
substantial gains as practical implementations have recently
demonstrated [4]–[6]. However, important benefits of massive
MIMO technologies, e.g., increased array gain, angular resolu-
tion, and diversity order, are intrinsically related to a sufficient
separation between adjacent antennas and the total size of the
antenna array [7]. Thus, as packing many antennas in very
compact shapes is not always possible or desirable, massive
MIMO deployments often result in antenna arrays spanning
long distances, i.e., longer than the distance where the channel
can be considered wide-sense stationary (WSS).

In order to assess and design new wireless communica-
tion technologies, it is of paramount importance to study
and model the underlying propagation channels. Large-scale
antenna arrays are subject to complex propagation effects, e.g.,
near-field region effects, not present in conventional MIMO
communication systems. These effects have been demonstrated
by measurements and they include array-varying angle of
arrival (AOA), time of arrival (TOA), received power, and
multipath components (MPCs) (dis)appearance among others
[8]–[16]. Consequently, massive MIMO channels can often not
be regarded as wide-sense stationary over the array [17].

In the past, time-domain non-WSS wireless channels were
firstly studied to enable high-mobility communication systems
[18], [19], e.g., vehicular and high-speed train [20], [21], due
to their rapidly-varying characteristics. Recent high-mobility
channel models [22], [23] employed the so called parameters
drifting, i.e., time-variant channel parameters such as TOAs
and AOAs, with increased theoretical and computational com-
plexity. Conversely, the family of COST channel models, e.g.,
COST 207 [24] and COST 2100 [25], are intrinsically non-
stationary in the time domain, but they determine the location
of the clusters of scatterers in the environment from the
specified angular and delay parameters and compute the exact
distance between the scatterers and transceivers. A similar
approach was used in recent works on massive MIMO channel
modeling that incorporated spherical [26]–[29] or parabolic
wavefronts [30], [31]. Spherical and parabolic wavefronts
compute the exact and second-order approximations to the
distances between the scatterers and the antenna elements
of the array, respectively. Similarly to the parameters-drifting
approach, high-order wavefronts capture channel non-WSS
properties over the array at the expense of high theoretical
and computational complexity. However, channel models that
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can lead to closed-form expressions of their statistical prop-
erties can help develop new techniques that improve system
performance [32].

In [26], [28], [29], the authors proposed two-dimensional
(2D) [26] and three-dimensional (3D) [28], [29] wideband
massive MIMO geometry-based stochastic models (GBSMs)
that used spherical wavefronts, temporal parameter drifting,
and space-time birth-death processes to capture near-field
region effects and (dis)appearance of clustered MPCs, re-
spectively. In [31], a 3D wideband massive MIMO GBSMs
were proposed, respectively, including parabolic wavefronts
of reduced complexity, cluster (re)appearance and shadowing
processes in time and space domains. Whereas the authors in
[26], [28], [31] neglected variations of the TOA over the array,
[29] considered them. However, none of these works studied
the space-time-variant (STV) distribution of TOA and AOA.

The quasi-deterministic channel models QuaDRiGa [33]
and mmMAGIC [34] employed a combined approach includ-
ing spherical wavefronts and temporal parameters drifting.
The stochastic COST 2100 [25], METIS [35], 3GPP-NR
[36] and IMT-2020 [37] channel models did not consider
spherical wavefronts and supported mobility at the mobile-
station side only. Although COST 2100 [25] channel model
did not originally support large-scale arrays, an extension was
developed in [38] to incorporate spherical wavefronts and
visibility regions over the array. The map-based deterministic
METIS model and the quasi-deterministic MiWEBA [39]
channel model implicitly included spherical wavefronts and
temporal channel evolution through ray-tracing techniques
with high computational complexity. Among these works,
delay drifts over the array were only considered in QuaDRiGa
[33], map-based METIS [35], and the extended COST 2100
[38] models. However, these works [33], [35], [38] did not
study the effects of delay drifts on the statistical properties of
massive MIMO channels and none of the works above studied
the STV distribution of TOA and AOA.

In [40], the authors employed the theory of transformation
of random variables to investigate the spatial configuration of
the scatterers in multiple coordinate systems for predefined
joint probability density functions (PDFs) of the AOA and
TOA. Similar investigations were conducted in the past for
specific GBSMs [41], [42], but they did not study non-WSS
channels in space or time domains.

In previous works [43], we reported preliminary results on
the delay drift over the array. However, we only studied the
Ellipse channel model and focused on the TOA variations
over the array, neglecting the spatial-temporal variations of
the joint PDF of the TOA and AOA. Theoretical studies on
the STV joint PDF of the TOA and AOA and space-time
parameters drifting for non-WSS massive MIMO channels
are still missing. Moreover, the equivalence of the spherical
wavefront and parameters drifting approaches to model the
statistical properties of massive MIMO channels has not been
investigated yet. To fill these gaps, we propose a transfor-
mation method to theoretically study spatial-temporal non-
stationary wideband massive MIMO channels. The proposed
method employs the theory of transformation of random
variables and geometrical mappings in multiple coordinate

systems to model the STV joint PDF of the TOA and AOA for
the first time. It also enables us to obtain analytical expressions
of the STV scattering function (SF), delay and angular power
spectral densities (PSDs) for arbitrary configurations of the
scatterers. In addition, we propose an approximation method
to obtain the STV angular spread, which was not considered in
previous theoretical studies of massive MIMO channels. Next,
we highlight the contributions and novelties of this paper:

1) We propose a general transformation method to model
the STV joint PDF of the TOA and AOA for 2D non-
WSS massive MIMO channels. For the first time, we
derive closed-form expressions of this joint-PDF for
the three most common ways of specifying the distri-
bution of the scatterers, e.g., in the TOA-AOA, polar,
and Cartesian domains, and for arbitrary-shaped 2D
arrays. Through numerical evaluation and simulation, we
demonstrate the equivalence of the proposed methods
and the spherical-wavefront approach to capture the
statistical properties of the channel.

2) We obtain approximate expressions for the STV angular
spread of the channel when the AOA follows a von
Mises distribution. Additionally, we employ the STV an-
gular spread to approximate new closed-form solutions
of key statistical properties of massive MIMO channels,
such as the temporal autocorrelation function (ACF) and
the Doppler PSD.

3) We study the STV joint PDFs of the AOA and TOA of
widely-used MIMO GBSMs such as the Ellipse, Unified
Disk, and Gaussian scattering models. In all cases, we
show that the joint PDFs of the AOA and TOA are
subject to drifting and spreading over the array. Besides,
we study the frequency correlation function (FCF) of
these GBSMs and show that its array-varying properties
are caused not only by the disappearance of MPCs, but
also by the drift and spread of the TOA over the array.

4) We describe some limitations of existing MIMO GBSMs
that were upgraded to simulate massive MIMO channels,
e.g., the Unified Disk, Ellipse, and Gaussian scattering
models, due to the array-variant characteristics of the
joint PDF of the TOA and AOA.

The rest of this paper is organized as follows. In Section II,
we present the non-stationary wideband massive MIMO chan-
nel model employed in the following sections. In Section III,
we derive the general transformation method for the three
most-used coordinate systems. Section IV applies the trans-
formation method to widely-used MIMO channel models such
as the Ellipse or Gaussian cluster models. The derivation of
key statistical properties of the channel from the transformed
joint PDF of the TOA and AOA is presented in Section V.
In Section VI, we show the good agreement between the
statistical properties obtained through the proposed methods
and the spherical wavefront approach. Conclusions are drawn
in Section VII.

II. A 2D WIDEBAND MASSIVE MIMO STOCHASTIC
CHANNEL MODEL

Let us consider a 2D wideband massive MIMO channel
model depicted in Fig. 1 where the transmitter (Tx) and
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receiver (Rx) are equipped with uniform linear antenna arrays
(ULAs). The transmitting (receiving) ULA is composed of
NT (NR) omnidirectional antenna elements equally spaced
with a distance �T (�R) and it is tilted at an angle �T (�R)
with respect to (w.r.t.) the x-axis of a Cartesian coordinate
system centered at the receiving array’s center. The p-th (p =
1; 2; :::; NT ) transmitting and q-th (q = 1; 2; :::; NR) receiving
antenna elements are denoted by ATp and ARq , respectively. We
assume that the signal is omnidirectionally bounced only once
by each scatterer, denoted by Sn (n = 1; 2; :::; NS), and it
travels a distance Dn;qp(t) = DT

n;p +DR
n;q(t) from ATp to ARq

via Sn at time instant t. Normally, the phase shifts �n intro-
duced by the scatterers are modeled as independent and iden-
tically distributed (i.i.d.) random variables obeying a uniform
distribution over [0; 2�) [44]. The massive MIMO channel is
represented by the matrix H(t; �) = [hqp(t; �)]NR�NT whose
entries denote the channel impulse response (CIR) between
the antennas ATp and ARq . The CIR is given by

hqp(t; �) =

NSX
n=1

cne
j n;qp(t)�(� � �n;qp(t)) (1)

where j =
p
�1, �(�) is the Dirac delta function. The term

 n;qp(t) = k0Dn;qp(t) + �n denotes the phase of the signal,
k0 = 2�=�, and � denotes the carrier wavelength. The n-
th scattered signal is received with amplitude cn and its
associated propagation delay is �n;qp(t) = Dn;qp(t)=c0, where
c0 denotes the speed of light. Since signals from and to
sufficiently separated antenna elements of the array experience
different TOAs, �n;qp(t) in (1) depends on the antenna indices
p and q. The channel transfer function (CTF), i.e., the Fourier
transform of the CIR w.r.t. � , is given by

Hqp(t; f) =

NSX
n=1

cne
j n;qp(t)e�j2�f�n;qp(t): (2)

For simplicity, we assume that the center of the receiving array
is located at the origin at t = 0 and it moves at a constant
speed v forming an angle �v w.r.t. the x-axis. The Tx is static
and located at a distance d from the Rx along the negative x-
axis. Accordingly, the distance traveled by the signal radiated
by ATp and received by ARq via Sn can be computed as

Dn;qp(t)=
q

(xn � xRq � vxt)2 + (yn � yRq � vyt)2

+
q

(xn + d� xTq )2 + (yn � yTp )2 (3)

Sn(xn; yn)

Rx
Tx

x

y

d

v

�v

AT
1

AT
p

AT
NT

AT
2

�T

Sn+1
Sn�1DT

n;p

DT
n DR

n (t)
AR

q

AR
1

AR
2

�R

AR
NR

DR
n;q(t)

�R

�R
n

�T
n

�T

Fig. 1. A 2D wideband massive MIMO channel model.

where (xn; yn) denote the Cartesian coordinates of Sn. The
terms xRq = �Rq cos(�R) and yRq = �Rq sin(�R) with �Rq =
(NR � 2q + 1)�R=2 denote the Cartesian coordinates of the
antenna ARq at t = 0. Similarly, xTp = �Tp cos(�T ) and
yTp = �Tp sin(�T ) with �Tp = (NT � 2p + 1)�T =2 are the
projections of the position vector of ATp w.r.t. the center of the
transmitting array onto x and y axes, respectively. The Carte-
sian components of the velocity vector are vx = v cos(�v) and
vy = v sin(�v).

A. Spherical and Plane Wavefronts

Spherical wavefronts are considered in the model as long
as (3) is used to compute the phase of the signal  n;qp(t)
in (1). The conventional approximation for short periods of
time and small arrays, i.e., the first-order or plane wavefront
approximation, reduces the distance Dn;qp(t) to

Dn;qp(t)�Dn � �Tp cos(�Tn � �T )

��Rq cos(�Rn � �R)� vt cos(�Rn � �v) (4)

where Dn = DT
n +DR

n (0) =
p

(xn + d)2 + y2
n +

p
x2
n + y2

n

denotes the distance between the arrays’ centers, and the
terms �Tn and �Rn denote the angle of departure (AOD)
and AOA of the n-th scattered signal w.r.t. to the arrays’
centers, which can be calculated as �Rn = arctan(yn=xn) and
�Tn = arctan(yn=(xn + d)). Equation (4) can be obtained by
replacing �Tp = x̂DT

n , �Rq = ŷDR
n (0), vt = ẑDR

n (0) in (3) and
using a first-order Taylor approximation of the two radicals
with respect to x̂, ŷ, and ẑ.

In spatial WSS non-massive MIMO channel models, the
plane-wavefront approximation in (4) is usually employed to
compute the phase of the signal in (1) [44]. From (1) and (4),
it can be seen that this approximation leads to linear space-
time variations of the phase, which do not allow to capture the
non-WSS properties of massive MIMO channels. In addition,
the TOA �n;qp(t) in (1) and (2) is usually approximated as
a constant value for every scatterer, i.e., �n;qp(t) = �n. This
assumption may be inaccurate for large antenna arrays.

III. A TRANSFORMATION METHOD OF THE STV JOINT
PDF OF THE TOA AND AOA

In conventional WSS GBSMs [44], scatterers are assumed
to be randomly distributed in the environment according to a
predefined PDF that models the TOA and AOA of the received
signal, and this PDF is space-time-frequency independent [40].
Unlike WSS channels, measurements [8]–[16] have shown that
TOAs and AOAs may change over the array and time for large
arrays and periods of time, respectively. In this section, we
introduce a method based on the transformation of random
variables to obtain the STV joint PDF of TOA-AOA for
every antenna pair ATp –ARq at any time instant t. The method
proposed is developed for the three most common domains
used to specify the distribution of the scatterers: TOA-AOA,
Polar, and Cartesian domains.
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A. Transformation in TOA-AOA Domain

For clarity, the most important elements of the TOA-AOA
transformation are illustrated geometrically in Fig. 2 for a
MIMO system employing 2�2 antennas at time instant t = 0.
Note that we have depicted ULAs for convenience, but the
proposed method is not limited to any arrangement of the
antenna arrays, i.e., it can be applied to arbitrary-shaped 2D
arrays. The origins of the Cartesian coordinate systems (X;Y )
and (X1; Y1) are located at the center of the receiving array
and AR1 , respectively. The AOAs of the signal scattered by
Sn and measured at (X;Y ) and (X1; Y1) are denoted by �Rn
and �R1;n, respectively. Signals radiated from the center of the
transmitting array and bounced by the scatterers located in the
ellipse �, e.g., Sj and Sn, arrive at the center of the receiving
array with the same TOA, which is denoted as �n. Likewise,
the ellipse �1 illustrates the same concept as � when the signals
transmitted from AT2 and received at AR1 experience a constant
delay denoted as �1;n.

The direct transformation of the random TOA and AOA
measured at the center of the array (�; �R) to the TOA and
AOA measured at any antenna element and time instant t
(�1; �

R
1 ) is defined as

� =c�1
0

�p
x2 + y2 +

p
(x+ d)2 + y2

�
(5)

�R = arctan(y=x) (6)

with

x =
1

2

"
(c0�1)2 � d2

qp(t)

c0�1 + dqp(t) cos�R1

#
cos(�R1 + �qp(t)) + xRq + vxt (7)

y =
1

2

"
(c0�1)2 � d2

qp(t)

c0�1 + dqp(t) cos�R1

#
sin(�R1 + �qp(t)) + yRq + vyt: (8)

The parameter dqp(t) denotes the distance between ATp and
ARq and �qp(t) the angle between the segment joining ATp
and ARq and the x-axis at time instant t. These parameters are
calculated in Appendix A.

RxTx

Sn
�

AR
1

AR
2

AT
1

AT
2

dqp

Y1

X1

�1

X

Y

d

�n

�1;n

�R
n

�R
1;n

�T �Rv �v

Sj

Sk

�T
n

Fig. 2. Elements of the transformation of the joint PDF of the TOA and AOA
at t = 0.

As the direct transformation of the random TOA and AOA
is rather complicated and leads to cumbersome expressions
for the Jacobian determinant, we use a stepped approach to
obtain the STV joint PDF of TOA-AOA. The distribution of
the TOA-AOA of a signal radiated from AT2 and received at
AR1 can be obtained using the following steps:

1) From a given distribution of TOA-AOA f�;�R(�; �R),
the joint PDF of the location of the scatterers fXY (x; y)
in the Cartesian coordinates (X;Y ) is derived as pro-
posed in [40]. The transformation of the random vari-
ables (�; �R) is indeed a transformation of coordinates.

2) A second transformation is performed from (X;Y ) into
(X1; Y1), resulting in the PDF fX1Y1(x1; y1). These
two coordinate systems are related by shift and rotation
operations according to the relative positions of the
antennas AT2 and AR1 .

3) The locations of the scatterers in the system (X1; Y1) are
transformed back into the TOA-AOA domain, obtaining
the PDF f�1;�R1

(�1; �
R
1 ) for the antenna elements AT2

and AR1 .
Using the previous approach, the joint PDF can be obtained
as (see Appendix A)

f�1;�R1
(�1; �

R
1 )=

�
jJ1(x; y)jjJ3(�1; �

R
1 )j
��1

f�;�R(�; �R) (9)

where � and �R were obtained in (5)–(8), respectively. The
Jacobian determinants J1(x; y) and J3(�1; �

R
1 ) can be found

in Appendix A. Notice that the actual AOA measured from
ARq is not �R1 but �R1 � �qp(t) due to the rotation of the
coordinate system (X1; Y1) w.r.t. (X;Y ). It can be seen
that for small arrays and periods of time, i.e., �TMT

�
(c0� � d), �RMR

� (c0� � d), and vt � (c0� � d), then
jJ1(x; y)j�1jJ3(�1; �

R
1 )j�1 � 1, �qp(t) � 0, dqp(t) � d, and

f�1;�R1
(�1; �

R
1 ) � f�;�R(�; �R). Thus, when the joint PDF of

TOA-AOA is independent of the antenna element and time
instant, the channel can be considered as WSS.

The main advantage of this stepped approach compared to
the direct one from (�; �R) to (�1; �

R
1 ) is that the equations

of the Jacobian determinants J1 and J3 can be reused for
other specifications of the scatterers’ distribution in different
domains such as (14) and (15). In addition, the expressions for
the Jacobian determinants of the transformations are simpler.

It is important to highlight the difference between the
transformation method proposed and the ones used in pre-
vious theoretical works (e.g., [45]–[47] and [26]–[28]). In the
proposed method, the parameters that define f�;�R(�; �R) are
space-time invariant, but this distribution gets transformed for
different antenna elements of the arrays and time instants.
In those previous works, it was assumed that only some
parameters, e.g., the mean AOA, defining the distribution are
STV, but the distribution remained space-time invariant. The
previous approach is an approximation that may only hold in
some limited cases as we will show in subsequent sections.

B. Transformation in Polar Domain

Analogous to the previous section, the PDF of the po-
sition of the scatterers is transformed in three steps. How-
ever, as the given PDF is defined in polar coordinates, i.e.,
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fR;�R(r; �R), the first transformation of the random variables
(r; �R) to (X;Y ) is performed using X = R cos(�R) and
Y = R sin(�R). The joint PDF of (X;Y ) is given by

fX;Y (x; y) = jJ1(x; y)j�1fR;�R(r; �R) (10)

where

r =
p
x2 + y2 (11)

�R =arctan(y=x) (12)

and J1(x; y) is the Jacobian of the transformation, i.e.,

jJ1(x; y)j�1 =

����� 1p
x2 + y2

����� : (13)

Finally, the joint PDF of (�1; �
R
1 ) can be obtained as

f�1;�R1
(�1; �

R
1 )=

�
jJ1(x; y)jjJ3(�1; �

R
1 )j
��1

fR;�R(r; �R) (14)

where jJ3(�1; �
R
1 )j�1, x, and y are defined in (45), (7), and

(8), respectively.

C. Transformation in Cartesian Domain

In this case, the transformation procedure is reduced to two
steps as it is not necessary to perform a transformation to
Cartesian coordinates. Thus, the joint PDF f�1;�R1

(�1; �
R
1 ) is

a function of the joint PDF fX;Y (x; y) and is obtained as

f�1;�R1
(�1; �

R
1 ) =

���J3(�1; �
R
1 )
����1

fX;Y (x; y) (15)

where x and y are defined in (7) and (8), respectively.

IV. APPLICATION OF THE TRANSFORMATION METHOD TO
MIMO CHANNEL MODELS

In this section, the transformation method described in
Section III is applied to study the TOA-AOA variations across
the array of widely-used channel models defined in each of the
three different domains. For the TOA-AOA domain, the Ellipse
narrowband and wideband channel models are studied. For the
Polar domain, the one-ring model and unified disk scattering
model (UDSM) are analyzed. For the Cartesian domain, the
Gaussian cluster channel model is employed.

1) Ellipse Narrowband and Wideband Channel Models:
In the Ellipse channel model, the scatterers are located in
the perimeter of an ellipse with foci at the center of the
transmitting and receiving arrays. In the single-ellipse model,
the TOA is fixed to a single value �0, but the AOA distribution
is not defined. In this paper, we will employ the von Mises
distribution to model the AOA as an example, as it can cover
both isotropic and non-isotropic angular distributions through
its parameters [44], [48]. For large values of its concentration
parameter �, the von Mises distribution accurately approxi-
mates a Gaussian distribution, which has been widely reported
and used in standard-based channel models such as 3GPP-NR
[36]. The joint PDF is given by

f�;�R(�; �R) = �(� � �0) � 1

2�I0(�)
e� cos(�R���) (16)

where �� and � are the mean AOA and concentration param-
eter, respectively, and I0(�) denotes the zero-order modified
Bessel function of the first kind. It is important to remark
that (16) implies independent time dispersion and frequency
dispersion [44], i.e., its joint PDF of TOA-AOA is separable,
and is also a narrowband channel model, i.e., the absolute
value of the FCF is constant. A more flexible distribution that
includes the previous one as a special case and permits to
capture wideband characteristics of the channel is

f�;�R(�; �R) =
e�

(���0)
��

��
u(� � �0)

1

2�I0(�)
e� cos(�R���) (17)

where u(�) denotes the unit-step function, i.e., u(x) = 1 for
x > 0 and zero otherwise. Note that the marginal distribution
of delays �(� � �0) in (16) has been substituted in (17) by
a shifted exponential distribution with minimum delay �0 and
standard deviation �� , which denotes the delay spread of the
channel. The unit-step function is used to guarantee that the
model is causal. It is clear that as �� ! 0, the PDF in (17)
converges to that in (16). From the communications system’s
perspective, as long as �� is much smaller than the time-
resolution of the system considered, both distributions model
equivalent channels. The transformed PDFs at the antennas
ATp , ARq and time instant t can be obtained by plugging (16)
and (17) into (9). As it will be shown in the results presented
in Section VI, the transformation of (16) breaks down the
separability of the distribution of TOA-AOA, introducing a
dependence between these two random variables. This can
be easily seen by noting that the term �(� � �0) in (16) is
transformed into �(c�1

0 [
p
x2 + y2 +

p
(x+ d)2 + y2] � �0),

with x and y given by (7) and (8), respectively. As the
values of �R1 that solve

p
x2 + y2 +

p
(x+ d)2 + y2 = c0�0

depend on the the delay �1, the TOA and AOA are dependent
and therefore correlated. As this argument can be applied
to any separable distribution, the important independent time
dispersive and Doppler frequency dispersive property [44] of
the Ellipse and other channel models is broken down by the
large dimensions of the array.

2) One-Ring model and Unified Disk Scattering Model
(UDSM): The One-Ring model defines the geometrical config-
uration of the scatterers in a circular ring around the center of
the receiving array. This geometry is usually applied to model
narrowband channels, although its delay spread is not zero and
varies according to the radius of the ring and the distribution of
the AOA [49]. Using the von Mises distribution for the AOA,
the PDF of the position of the scatterers in polar coordinates
is given by

fR;�R(r; �R) = �(r � r0) � 1

2�I0(�)
e� cos(�R���) (18)

where r0 is the radius of the ring. A more flexible distribution
that includes the one-ring model as a special case is the UDSM
[50]. Although the UDSM is constrained to uniform distribu-
tions of the AOA, the PDF of the position of the scatterers
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can be extended to account for non-uniform distributions as

fr;�R(r; �R)=
(kU + 1)

r
(kU+1)
0

rkU �
�
u(r)� u(r � r0)

�
� 1

2�I0(�)
e� cos(�R���) (19)

where kU > �1 is a real-valued parameter called the shape
factor that controls the spread of the scatterers w.r.t. the
radial distance. As kU ! 1, the scatterers become more
concentrated near the edge of the disk forming a ring of
radius r0 and (19) converges to (18). The transformed PDFs
at the antennas ATp , ARq and time instant t can be obtained
by plugging (18) and (19) into (14). The resulting PDFs are
omitted here for brevity.

3) Gaussian Cluster Channel Model: The Gaussian cluster
model has widely been used in multiple standard GBSMs,
e.g., COST 207 [24] and COST 2100 [25], to model single-
and multi-bounce clustered MPCs including intracluster delay
and angle spreads. A simplified PDF of the position of the
scatterers for this model in Cartesian coordinates is given by

fX;Y (x; y) =
1

2��2
xy

e
�1

2�2
xy

[(x�x0)2+(y�y0)2]
(20)

where (x0; y0) denote the coordinates of the center of the
cluster and �xy the spread of the cluster in the xy-plane. Note
that the spreads of the cluster in the x and y axes are assumed
to be equal here for simplicity. The joint PDF f�1;�R1

(�1; �
R
1 )

can be obtained by plugging (20) into (15). The resulting PDF
is omitted here for brevity.

V. STATISTICAL PROPERTIES OF MASSIVE MIMO
CHANNELS

In the following, the STV PDF f�1;�R1
(�1; �

R
1 ) obtained

in Section III will be used to compute the STV statistical
properties of the channel such as the Doppler, delay, and
angular PSDs, and the space-time-frequency cross-correlation
function (STF-CCF).

A. Computation of Statistical Properties from the Transformed
Distribution of the TOA-AOA

1) Delay PSD: The delay PSD or power delay profile
(PDP) is a measure of the distribution of the received power in
the delay domain. It can be seen that the PDP is proportional
to the distribution of the TOA of the received signal [44, p.
348]. Accordingly, the STV PDP can be obtained through the
marginal PDF of �1 as S�1(�1) = �2

0f�1(�1) where �2
0 denotes

the total received power and f�1(�1) denotes the marginal PDF
of the TOA.

2) Angular PSD: Similarly, the angular PSD or power
angular spectrum (PAS) is a measure of the incoming power
in the angular domain. Thus, the STV PAS can be analo-
gously obtained through the marginal PDF of the AOA �R1 as
S�R1 (�R1 ) = �2

0f�R1 (�R1 ) where f�R1 (�R1 ) denotes the marginal
PDF of the AOA.

3) Doppler PSD: For a mobile station moving at a constant
speed v and direction defined by the angle �v , and a set of
statics scatterers, the Doppler frequency � is a function of the
AOA as � = �max cos(�R1 � �v), where �max = v=� denotes
the maximum Doppler frequency. According to this definition,
it can be proved that the Doppler PSD is given by [44]

S�(�)=
2�0

�max
p

1� (�=�max)2
g�R1 (arccos[�=�max]) (21)

where

g�R1 (�R1 ) =
1

2

�
f�R1 (�R1 ) + f�R1 (��R1 )

�
(22)

is the even part of the STV PDF of the AOA.
4) Space-Time-Frequency Cross-Correlation Function

(STF-CCF): In the proposed approach, the cross-correlation
between the signal corresponding to the link ATp –ARq at
time instant t and frequency f , and that of the link ATp0–A

R
q0

at time t + �t and frequency f + �f can be obtained as
�qp;q0p0(t;�t;�f) = E[Hqp(t; f)H�q0p0(t+ �t; f + �f)],
with E(�) denoting the expectation operator and H� the
complex conjugate of H . Thus, the STF-CCF can be
computed as

�qp;q0p0(t;�t;�f) = �2
0

Z 1
0

Z 2�

0

e�jk0	q
0p0
qp (t;�t)e�j2��f�1

�f�1;�R1
(�1; �

R
1 )d�1d�R1 (23)

where 	q0p0

qp (t;�t) = �pp0 cos(�T1 � �T + �qp(t)) +
�qq0 cos(�R1 � �R + �qp(t)) + v�t cos(�R1 � �v + �qp(t))
denotes the phase difference between the signal transmitted
from ATp and received by ARq at time t and the signal
transmitted from ATp0 and received by ARq0 at t + �t. The
distance between ATp and ATp0 is �pp0 = (p� p0)�T , and that
between ARq and ARq0 is �qq0 = (q� q0)�R. It is worth noting
that near-field region effects, which are usually modeled using
spherical wavefronts, are captured in the proposed method by
the space-time variant PDF of the TOA and AOA.

When the spherical wavefront is used, the STF-CCF can be
calculated as [27]

�̂qp;q0p0(t;�t;�f) = �2
0

Z 1
0

Z 2�

0

e�jk0	̂q
0p0
qp (t;�t)e�j2��f�

�f�;�R(�; �R)d�d�R (24)

where 	̂q0p0

qp (t;�t) = Dqp(t) � Dq0p0(t + �t) and Dqp(t)
denotes the total distance traveled by the signal from ATp to
ARq at time instant t as given by (3). Notice that the TOA and
AOA used in (24) are defined at the center of the transmitting
and receiving arrays at time t = 0 and they are space-time
invariant. Consequently, the spherical wavefront is required
to capture non-WSS properties of the channel and the plane
wavefront approximation in (4) cannot be used.

With respect to the deterministic simulation model as de-
fined in (1) and (2) once the random variables involved are
drawn, the STF-CCF can be approximated as a local time-
average, i.e.,

~�qp;q0p0(t;�t;�f) � 1

T

Z t2

t1

Hqp(t
0; f)

�H�q0p0(t0 + �t; f+�f)dt0 (25)
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where t1 = t � T=2 and t2 = t + T=2. The temporal ACFs
can be obtained by setting �f = �qq0 = �pp0 = 0 in
(23), (24), and (25) as �qp;qp(t;�t; 0), �̂qp;qp(t;�t; 0), and
~�qp;qp(t;�t; 0), respectively. By setting �t = �f = 0 in the
same equations, we can calculate the spatial cross-correlation
functions (S-CCFs) as �qp;q0p0(t; 0; 0), �̂qp;q0p0(t; 0; 0), and
~�qp;q0p0(t; 0; 0). The FCFs are computed by setting �qq0 =
�pp0 = �t = 0 as �qp;qp(t; 0;�f), �̂qp;qp(t; 0;�f), and
~�qp;qp(t; 0;�f). The ACFs, S-CCFs, and FCFs obtained de-
pend on the antenna indices and the time instant through �1
and �R1 in (23) and through the total distance in 	̂q0p0

qp (t;�t)
in (24), indicating that the channel is space-time non-WSS.

B. Approximate Solutions to the ACF and Doppler PSD

Although analytic solutions for the STF-CCF in (23) are
difficult to obtain due to the complexity of the STV joint PDF
of the TOA and AOA, approximate expressions for the ACF,
Doppler PSD, and S-CCF can be derived for non-WSS massive
MIMO channels. We propose a simplified approach based on
an implicit assumption of previous works, e.g., [51] and [45],
in which the PAS was assumed space-time invariant, but some
of its parameters were not.

Let us consider that the AOA defined at the center of the
array (�R) follows a von Mises distribution with parameters
(�; ��). Then, if we assume that only the parameters of this
distribution are STV, the PDF of the AOA for any ATp , ARq
and time instant t becomes

f�R1 (�R1 ) =
1

2�I0(�qp(t))
e�qp(t) cos(�R1 ��

�
qp(t)) (26)

where the mean AOA ��qp(t) and concentration parameter
�qp(t) are now dependent of time and antenna indices. In
slowly varying channels, we can assume that the rates of
change of ��qp(t) and �qp(t) are small. Consequently, these
parameters can be considered approximately constant for short
intervals of the array and periods of time. If the spatial-
temporal evolution of these parameters is known, the STV
ACF can be approximated as [44]

�(�t; �
T
p ; �

R
q ;t) �

2�2
0

I0(�qp(t))
I0

�h
�2
qp(t)� (2��max�t)2

�j4��qp(t)�max�t cos(��qp(t)� �v))
i 1

2

!
: (27)

As the parameters ��qp(t) and �qp(t) depend on the position
over the array and time instant, the channel is non-WSS in
these domains. Similarly, according to (21), the STV Doppler
PSD is

S�(�)� 2�2
0 e

�2
qp(t) cos(��qp(t)��v)�=�max

��maxI0(�2
qp(t))

p
1� (�=�max)2

� cosh
�
�2
qp(t) sin(��qp(t)� �v)

p
1� (�=�max)2

�
: (28)

In Appendix B, we derive approximate solutions of the STV
concentration �qp(t) and mean AOA ��qp(t) as

�qp(t)=�

0@1 +

 
�Rq
rc

!2

+

�
vt

rc

�2

� 2
�Rq
rc

cos(��c � �R)

�2
vt

rc
cos(��c � �v) + 2

vt�Rq
r2
c

cos(�R � �v)

!
(29)

and

��qp(t) = arctan(�) (30)

with

� =
rc sin(��c )� �Rq sin(�R)� vt sin(�v)

rc cos(��c )� �Rq cos(�R)� vt cos(�v)
: (31)

It can be easily seen that, for small arrays and short periods
of time, i.e., MR�R=2 � rc and vt � rc, the concentration
parameter and mean AOA become invariant, i.e., �c;q(t) � �c
and ��qp(t) � ��c .

VI. RESULTS AND ANALYSIS

In this section, we will present and compare the array-
variant distribution of channel parameters and statistical prop-
erties obtained using the proposed transformation method,
approximation method, spherical wavefront approach, and
simulation results, for three channel models introduced in
Section III. The results corresponding to the transformation
method were obtained by numerical evaluation of (9), (14),
and (15). Similarly, those corresponding to the approximation
method were computed by evaluating (27)–(28) and making
use of the variant parameters as determined by (29) and (30).
We evaluated (24) to obtain the results corresponding to the
spherical wavefront approach. For the simulation results, we
generated 103 scatterers randomly distributed and computed
the CIR as in (2). Realizations of the channel parameters,
e.g., TOA and AOA, were obtained by the inverse transform
sampling method [52]. To obtain the simulation results, the
statistical properties were computed by averaging 103 realiza-
tions of the STF-CCF in (25).

In the following, we assume that no line-of-sight path exists
between the Tx and Rx, which are located 100 m apart along
the x-axis at t = 0 and both count on ULAs composed of
100 antenna elements each. The separation between adjacent
antennas is �=2 at 2 GHz of carrier frequency.

A. Array-Variant TOA-AOA joint PDF

In Fig. 3, we present the STV joint PDFs of the TOA-
AOA in logarithmic scale (dB) of the wideband Ellipse channel
model at the extremes and center of the receiving array, i.e.,
at AR1 (left), AR50 (center), and AR100 (right). We imposed a
minimum TOA of �0 = 400 ns and a von Mises concentration
parameter k = 0, i.e., uniform scattering in the AOA.

On one hand, the joint PDF of the TOA-AOA at AR50

(center) shows the properties imposed by the channel model
such as uniformity in the AOA domain, exponential decay in
the TOA domain, and independence between TOA and AOA.
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On the other hand, the PDFs at the extremes of the array
are remarkably affected by the transformation. The resulting
meandering shape of the PDFs at AR1 and AR100 shows that the
TOA varies as a function of the AOA. This is most noticeable
when the receiving antenna is far from the focus of the ellipse,
i.e., at AR1 and AR100, as the sum of the distances from the
opposite focus (Tx) to such antennas via scatterers of the
ellipse is highly variant. In the AOA domain, the uniformity
imposed (� = 0) at the center of the array is no longer valid at
its ends. Two maxima of the PDF appear around �R1 � ��=2
and �R1 � �=4 for AR1 and AR100, respectively, indicating a
reduction of the angular spread.

These results show that, at the extremes of a large-scale
array, additional delay spread may be introduced into the
channel model with unforeseen consequences. This artifact of
the Ellipse channel model produced by the large dimensions of
the array was not considered in previous works, e.g., [26]–[28],
[30], [31]. Moreover, Fig. 3 indicates that the transformation
performed breaks down the separability of the joint PDF of
the TOA and AOA, as the conditional distribution of the AOA
given a specific TOA depends on the delay considered.

As the STV statistical properties of the channel are notice-
able only when the scatterers are relatively close to any of
the arrays, we will use the parameters of the channel models
presented in Table I in the following unless otherwise stated.
The parameters of the Ellipse, modified UDSM, and Gaussian
cluster models are selected so that the maximum concentra-
tions of the scatterers of all three models are coincident. The
delay spread of the Ellipse model �� and distance spread of
the UDSM model �r can be chosen arbitrarily small.

B. Array-Variant Delay and Angular PSDs

In Figs. 4 and 5 we present these two marginal distributions
at both extremes of the array, i.e., at AR1 and AR100. Along with
the drift of the marginal PDFs, variations of the angular and

Fig. 3. Joint PDFs of the TOA and AOA at AR1 (left), AR50 (center), and
AR100 (right), for the wideband Ellipse channel model in (17) (d = 100 m,
fc = 2 GHz, �0 = 400 ns, �� = 2 ns, �� = �=5, � = 0, MR = 100,
�R = �=2, �R = �=4, t = 0 s).

delay spreads over the array can be observed. Specifically,
the mean AOA drifts approximately 0.13 rad (7 deg) and the
angular spread is 0.21 rad (12 deg) higher at AR1 than that
at AR100. As it was stated above, the angular spread at AR1
is higher because this antenna is closer to the maximum of
the scattering region than AR100 and it is well known that
the angular size of a region is inversely proportional to the
distance to it. Moreover, as the marginal PDFs of the AOA
are the same for the three models (von Mises), their variations
over the array result in almost identical distributions. Note that
this is consistent with the approximations used in (29) and

Fig. 4. Comparison of the PDFs of the AOA at the two extremes of the
array for the Ellipse, modified UDSM, and Gaussian cluster channel models
(d = 100 m, fc = 2 GHz, �0 = 400 ns, r0 � 11 m, �� = 3:4 ns, kU = 10,
�xy � 3:5 m�1 �� = �=5, � = 10, MR = 100, �R = �=2, �R = �=4,
t = 0 s).

Fig. 5. Comparison of the PDFs of the TOA at the two extremes of the
array for the Ellipse, modified UDSM, and Gaussian cluster channel models
(d = 100 m, fc = 2 GHz, �0 = 400 ns, r0 � 11 m, �� = 3:4 ns, kU = 10,
�xy � 3:5 m�1 �� = �=5, � = 10, MR = 100, �R = �=2, �R = �=4,
t = 0 s).
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TABLE I
PARAMETERS OF THE PDFS OF THE THREE CHANNEL MODELS.

Ellipse UDSM Gaussian

�R (rad) � (ns) �R (rad) r (m) X (m) Y (m)

�� ��R �� �� �� ��R �r �r �X �X �Y �Y
�
5

�
10

400 1 �
5

�
10

11 1 8.9 3.5 6.4 3.5

(30) to obtain the STV parameters of the AOA distribution.
Although each model presents a different marginal PDF of the
TOA, a similar drift of approximately 23 ns of the mean TOA
and small variations of the delay spread (below 1 ns) can be
observed in Fig. 5 for the three models.

C. Array-Variant ACF

In Fig. 6, we present a comparison of the absolute values
of the array-variant local ACFs obtained by the transformation
method, approximation method, spherical wavefront approach,
and simulation, at the two extremes of the receiving ULA
and for different directions of motion �v . Although there are
small differences between the results corresponding to each
method, the ACFs obtained through the transformation and
approximation methods are very similar in the whole range.
Moreover, the good agreement between the methods proposed
and the spherical wavefront approach indicates that all these
methods are approximately equivalent. Note that only the ACF
of the Ellipse model is presented in Fig. 6. This is because
in equal conditions of motion, i.e., v and �v are equal for
the three models, the ACF is only determined by the PDF of
the AOA. As the PDFs of the AOA of the three models are
approximately equal as shown in Fig. 4, it is not necessary to
show the ACFs corresponding to the other models.

Fig. 6. Comparison of the absolute values of the local ACFs obtained by the
transformation method, approximation method, spherical wavefront approach,
and simulation at the two extremes of the receiving array (d = 100 m,
fc = 2 GHz, �0 = 400 ns, �� = 3:4 ns, �� = �=5, � = 10, MR = 100,
�R = �=2, �R = �=4, �max = 90 Hz, v = 13:5 m/s, �T = 0 m, t = 0).

Fig. 7. Comparison of the absolute values of the local Doppler PSDs obtained
by the transformation method, the approximation method, and simulation at
the two extremes of the receiving array (d = 100 m, fc = 2 GHz, �0 = 400
ns, �� = 3:4 ns, �� = �=5, � = 10, MR = 100, �R = �=2, �R = �=4,
�max = 90 Hz, v = 13:5 m/s, �T = 0 m, t = 0).

D. Array-Variant Doppler PSD

In Fig. 7, we present a comparison of the absolute values
of the array-variant Doppler PSDs obtained through the trans-
formation method, the approximation method, the spherical
wavefront approach, and simulation, at the two extremes of the
ULA and for different directions of motion �v . The variations
of the Doppler PSD along the array can be attributed to the
difference in relative motion w.r.t. the scatterers at sufficiently
separated antenna elements, e.g., AR1 and AR100. It can be seen
that not only the Doppler PSD drifts along the array, but also
the Doppler spread is affected. On one hand, when the ULA
points to the maximum concentration of the scatterers, i.e.,
�R��� � 0 or �R��� � �, the Doppler PSD hardly drifts,
but there is a noticeable variation of the Doppler spread along
the array. On the other hand, for a perpendicular orientation
of the ULA, i.e., when �R � �� � ��=2, the Doppler PSD
drifts over the array, but the Doppler spread hardly varies.

E. Array-Variant S-CCF

In Fig. 8, we present a comparison of the absolute values
of the array-variant receive-side S-CCFs obtained by using the
transformation method, the approximation method of variant
parameters, the spherical wavefront approach, and simulation,
at the receive antenna positions AR1 and AR100 for different
values of the angular tilt of the receiving antenna �R. There
is clearly a good agreement between the transformation and
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Fig. 8. Comparison of the absolute values of the local S-CCFs obtained by
the transformation method, the approximation method, the spherical wavefront
approach, and simulation at the two extremes of the receiving array (d = 100
m, fc = 2 GHz, �0 = 400 ns, �� = 3:4 ns, �� = �=5, � = 10, MR = 100,
�R = �=2, �R = �=4, �T = 0 m, t = 0 s).

approximation methods proposed. The differences between the
transformation and approximation methods can be attributed
to the fact that the latter assumes that the function determining
the PAS remains the same, e.g., von Mises (26), at any position
of the array and only the parameters of that function, i.e., �
and ��, are array-variant.

F. Array-Variant FCF

In Fig. 9, the absolute values of the array-variant FCFs of
the Ellipse, modified UDSM, and Gaussian cluster models
are presented. In the figure, it can be seen that the variant
distribution of the TOA results in array-variant FCFs as a
consequence of the large dimensions of the receiving array.
This effect is specially significant for the modified UDSM
and the Ellipse model. In the last one, the imposed nar-
rowband property (�� = 0:3 ns) or frequency flatness is
slowly degraded as the distance between the center of the
array and the considered antenna element increases. The cause
of this artifact has already been explained in the analysis
of Fig. 3. As a consequence, what it was designed as a
frequency non-selective and frequency-uncorrelated channel
model may change to a frequency-selective and frequency-
correlated channel for sufficiently large arrays. Note that in
the case of the Ellipse model we have chosen a sufficiently
small value of the delay spread �� to consider the channel
as frequency non-selective in most practical cases, as it can
be seen in the almost-flat FCF depicted for AR50. Conversely,
the FCF of the Gaussian cluster model is barely affected as
the shift and rotation of a 2D symmetric Gaussian distribution
only affects its mean values, but not its spread. Hence, its
delay PSD only experiences a shift (see Fig. 5), which affects
the phase but not the absolute value of the FCF.

VII. CONCLUSIONS

In this paper, we have proposed a novel method to model
the joint PDF of the TOA and AOA in massive MIMO
channels. The proposed method can be used to study massive
MIMO channel characteristics of both channel measurements
and models. We have also proposed an approximation method
based on varying angular parameters for the von Mises dis-
tribution and obtained approximate closed-form expressions
of key statistical properties of the channel. The statistical
properties obtained with these two methods have shown a
good agreement between them and with the spherical wave-
front approach. The proposed methods incorporated the non-
stationary properties of the channel model through the joint
PDF of the TOA and AOA. Moreover, we showed that the
means and spreads of the AOA and TOA vary over the array.
Due to the delay drift and spread, we demonstrated that the
FCF of massive MIMO channels is array-variant as well.
Finally, it has been demonstrated that artifacts may appear
when conventional MIMO models such as the Ellipse model
and UDSM are applied to large-scale arrays.

APPENDIX A
TRANSFORMED PDF OF THE TOA AND AOA

For single-bounced rays, the TOA-AOA parameters of the
rays (�; �R) are related to their Cartesian coordinates in
(X;Y ) through the following non-linear transformation equa-
tions [40]

X =
1

2

(c0�)2 � d2

c0� + d cos�R
cos�R (32)

Y =
1

2

(c0�)2 � d2

c0� + d cos�R
sin�R: (33)

The PDF in Cartesian coordinates can be calculated by apply-
ing the theory of transformation of random variables as [40]

Fig. 9. Comparison of the absolute values of the local FCFs at AR1 and AR50
obtained by the transformation method, the spherical wavefront approach, and
simulation (d = 100 m, fc = 2 GHz, �0 = 400 ns, r0 � 11 m, �� = 0:3
ns, kU = 10, �xy � 3:5 m�1, �� = �=5, � = 10, MR = 100, �R = �=2,
�R = �=2, �T = 0 m, t = 0 s).
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fX;Y (x; y) = jJ1(x; y)j�1f�;�R
�
�(x; y); arctan(y=x)

�
(34)

with �(x; y) = c�1
0 (
p
x2 + y2 +

p
(x+ d)2 + y2). J1(x; y)

is the Jacobian of the transformation, i.e.,

jJ1(x; y)j�1 = c�1
0

������ 1p
x2 + y2

+
1 + dx

x2+y2p
(x+ d)2 + y2

������ : (35)

Using fX;Y (x; y), we can obtain a second distribution for the
antennas ATp and ARq and time instant t by performing shift
and rotation operations on the random variables (X;Y ) as
defined by the following transformation equations�
X1

Y1

�
=

�
cos�qp(t) sin�qp(t)
� sin�qp(t) cos�qp(t)

�"
X � xRq � vxt
Y � yRq � vyt

#
(36)

where �qp(t) denotes the angle between the segment joining
ATp and ARq at time instant t and the x-axis, which can be
calculated as

�qp(t) = arctan

 
yRq + vyt� yTp

xRq + vxt� xTq + d

!
: (37)

As this transformation corresponds to a shift and rotation
of the coordinate system, hence jJ2(x1; y1)j�1 = 1. The
distribution in Cartesian coordinates is now fX1Y1

(x1; y1) =
fXY (x(x1; y1); y(x1; y1)), with�

x
y

�
=

�
cos�qp(t) � sin�qp(t)
sin�qp(t) cos�qp(t)

� �
x1

y1

�
+

"
xRq + vxt
yRq + vyt

#
:

(38)
In the third step, the random variables (X1; Y1) are trans-
formed back into the TOA-AOA domain (�1; �

R
1 ) by using

the inverse transformation equations of (32) and (33) used in
the first step, i.e.,

�1=c�1
0

�q
X2

1 + Y 2
1 +

q�
X1 + dqp(t)

�2
+ Y 2

1

�
(39)

�R1 =arctan
�
Y1=X1

�
(40)

where the separation dqp(t) between ATp and ARq depends on
the antennas locations at any time as

dqp(t) =

r�
xRq + vxt� d� xTq

�2

+
�
yRq + vyt� yTp

�2

:

(41)

Thus, the joint PDF of the random variables (�1; �
R
1 ) can be

computed as

f�1;�R1
(�1; �

R
1 ; �Rq ;�

T
p ; t) = jJ3(�1; �

R
1 )j�1

�fX1Y1(x1(�1; �1); y1(�1; �1)) (42)

where

x1(�1; �1) =
1

2

(c0�1)2 � d2
qp(t)

c0�1 + dqp(t) cos�R1
cos�R1 (43)

y1(�1; �1) =
1

2

(c0�1)2 � d2
qp(t)

c0�1 + dqp(t) cos�R1
sin�R1 (44)

and J3(�1; �
R
1 ) is the Jacobian of the transformation, i.e.,

jJ3(�1; �
R
1 )j�1 =

c0
4

�������
h
(c0�1)2 � d2

qp(t)
i

�
dqp(t) cos�R1 + c0�1

�3
�
h
(c0�1)2 + d2

qp(t) + 2dqp(t)c0�1 cos�R1

i���� : (45)

Finally, the resulting joint PDF f�1;�R1
(�1; �

R
1 ) in (9) is ob-

tained using (34)–(45).

APPENDIX B
DERIVATION OF THE STV PRAMETERS OF THE VON MISES

DISTRIBUTION

Let us use the Gaussian cluster model defined in (20)
whose marginal distribution of the AOA approximates very
well a von Mises distribution. The distribution of the position
of the scatterers in the Gaussian cluster model expressed in
polar coordinates (R;�R) can be obtained by applying the
transformation equations X = R cos�R and Y = R sin�R as

fR;�R(r; �R) =
r

2��2
xy

e
� 1

2�2
xy

(r2+r2
c�2rrc cos(�R���c ))

(46)

where r2
c = x2

0 + y2
0 and ��c = arctan(y0=x0) have been

used. Clearly, the conditional distribution fr;�R(�Rjr = rc)
follows a von Mises distribution with mean angle ��c and
concentration parameter �c = r2

c=�
2
c . Integrating (46) w.r.t.

r, the distribution of the AOA is given by

f�R(�R)=
e�(rc=

p
2�xy)2

2�

+
1

2
p

2�

rc
�xy

241 + erf

 
rcp
2�xy

cos(�R � ��c )

!35
� cos(�R � ��c )e�(rc=

p
2�xy)2 sin2(�R���c ): (47)

It can be seen that (47) is a very good approximation of the
von Mises distribution with mean angle ��c and concentration
parameter �c = (rc=�xy)2 for �� 1. In practice, a root mean
square error below 1% is obtained for any value of �c. Using
the previous observation, the STV concentration parameter can
be calculated as �2

q(t) = (rc;q(t)=�xy)2, where rc;q(t) can be
obtained by applying the law of cosines as

r2
c;q(t) =r2

c + (�Rq )2 + (vt)2 � 2rc�
R
q cos(��c � �R)

� 2rcvt cos(��c � �v) + 2�Rq vt cos(�R � �v):
(48)

Next, the distance rc and the parameters of the von Mises
distribution imposed at the center of the receiving array ��c and
�c can be used to obtain the standard deviation of the Gaussian
cluster model as �xy = rc=

p
�c. The STV concentration

parameter �qp(t) in (29) can be computed substituting (48)

in
r2
c;q(t)

r2
c
�. Finally, by geometrical considerations, the STV

mean AOA ��qp(t) can be easily obtained as indicated in (30).
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