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Abstract— Digitalization is influencing the design, operation 

and management, as well as planning functions for products and 
services across a myriad of industries. In our research we focus on 
the specific needs and challenges in the asset management of 
remote critical infrastructure. We propose a single Digital Twin 
framework which can synchronize the data and communication 
protocols across multiple devices to support exchanging data 
between the physical world and the cyber world under any 
scenario, anywhere and at any time. Our framework can support 
the synchronization of 1000 different sensors and actuators. The 
results of our Digital Twin are demonstrated using embedded, 
front-end sensing for offshore energy assets. It can filter and 
translate complex data and messages from any embedded sensor 
and operating system. Furthermore, we show how a complete 
Digital Twin framework allows end-users to simulate future events 
capturing the interactions between the environment, people and 
assets, enabling a better understanding of operational risks and 
remaining useful life of assets.  

Keywords— Cyber Physical System, Digital Twin, Embedded 
Sensing, Asset Management, Internet of Things 

I. INTRODUCTION 
 A Digital Twin (DT) can be described as the mirror or the 
copy of a physical object, a digital representation of the physical 
systems and devices with their environment and lifecycle at any 
time, and builds an interaction between the physical and virtual 
worlds [1]–[8]. A DT is commonly used to reflect the 
performance, health and maintenance data from the connected 
physical assets [9]. DT technologies continuously collect data 
from IoT sensing devices to simulate dynamic physical objects 
and environment, and that data is used to enhance the virtual 
models for reflecting the run-time situation of the physical world 
[2], [10]–[13]. Ideally, having high-fidelity virtual models that 

reflect the physical entity in detail is preferred [11], [12]. 
Overall, the virtual representations within the DT must be able 
to accurately reflect the feedback from the physical world in 
real-time [5], [14]. Subsequently, the digital models used are 
required to be realistic because they also represent the real 
physical relationship between the hardware and the 
environment, such as conditions and constraints [3], [12]. Bi-
directional data transmission and the interaction between virtual 
models and the physical assets are key aspects of any DT. The 
DT of an asset must be able to display the current status, 
movement and behavior of the asset with a mono-directional 
data flow set up. However, DTs can be used to reversely control 
the connected physical asset with a complete bi-directional data 
flow set up [4]. 

 The concept of monitoring and controlling physical assets 
through DTs are demonstrated with examples, and this is the 
optimal way to improve operational efficiency and quality [5], 
[12], [15]. For this, a DT framework requires a method to 
synchronize and exchange multimodal data at run-time between 
physical and digital assets. Operators can plan and review 
potential concept behaviors on the virtual model using both real 
and generative data prior to executing a teleoperation [3], [5], 
[12], [16], [17]. Visualization and an effective user interface 
would aid users to interact with the system and the asset, and to 
complete the features of run-time monitoring and record-and-
replay [12], [18], [19]. A generic and extendable DT framework 
should be able to accept multiple sources of data, interoperate 
across multiple assets and be applied at different scales and 
scenario implementations [2], [3], [6], [12], [20]. The primary 
purpose of a DT is to provide data-driven decision support to 
end-users [5], [19], [21]. Therefore, the DT framework is 
suggested to have communication channels for exchanging data 
and commands and an interface to reflect the physical side data 
as well as demonstrating concept behaviors of the asset. More This work was supported by funding from EPSRC under grants 

EP/R026173/1 and EP/P009743/1. 



importantly, the framework should be designed to accept 
multiple physical elements for mirroring the physical world 
virtually. 

 Data driven condition monitoring has been proven to be a 
strong, reliable and cost saving method to allow end users to 
make operational decisions based on the run-time status of their 
assets, where the information acquired is used to monitor the 
health status of the target asset [22]–[24]. Machine learning is a 
method to translate and fuse the data collected to human-
readable, meaningful information [22]. However, the current 
state of condition monitoring systems cannot display large and 
complex data sets efficiently, alongside a lack of communication 
between sub-systems [25]. 

 The use of DT technologies for management of assets can 
result in significant savings in costs, as the DT is able to monitor 
an assets status, leading to improvements in work environment 
safety, efficiency and product quality [1], [9], [15], [17], [18]. 
DTs represent a direct solution to solve the insufficiencies in 
quality analysis and decision-making as complex systems 
become more realistic and easier to monitor and control. 
Consequently, DTs offer operators a better understanding of 
their physical hardware through the application of digital 
technologies within the existing DT examples [1], [2], [6], [16]. 

 This paper presents how distributed embedded sensor 
networks can be used to support a Digital Twin framework, 
which can synchronize the data and communication protocols 
across multiple devices. This framework supports the 
exchanging of data between the physical world and the cyber 
world under any scenario, anywhere and at any time. The 
remainder of the paper is structured as follows; section II 
provides an overview of the experiment and use cases for 
evaluating the digital twin framework. Results and analysis are 
contained in section III where section IIIA contains the results 
for case I, an embedded system, section IIIB utilizes a FMCW 
sensor system and section IIIC demonstrates the results of a 
resilient robotics platform. Section IV presents the discussion 
and section V presents conclusions. 

II. IMPLEMENTATION AND EVALUATION OF THE DIGITAL TWIN 
FRAMEWORK 

Based on the current state of DT research, the DT 
framework presented in this paper has been designed to keep 
the essential elements of the existing DT model and to solve the 
current limitations. It provides two communication channels of 
data and teleoperation commands exchange between the 
physical and virtual environment; ensuring both sides are 
synchronized. The proposed framework involves the use of 
IoTs, network communication, communication protocol, data 
management and CAD models. This framework uses a non-
intrusive, add-on method to tune physical assets as IoT enabled 
devices for communication. Low cost edge computing devices, 
such as Raspberry Pi and Nvidia Jetson could be used as a node 
of the network communication. A server located between the 
physical and the digital sides acts as a data exchange center to 
collate, encode and transmit data at low latency. Fig. 1 
illustrates the architecture of the DT framework. 

 
Fig. 1 The Concept of DT Framework Architecture 

The client-side application has been designed to complete 
the DT for displaying information and being used as a user 
interface. This was planned to be a cross-platform application 
by using Unity 3D and C# to enable the application to be run 
on different devices and operating systems (Windows, Linux, 
macOS, Android, etc.). High fidelity CAD models were used to 
create the twin of physical assets in a digital format. All 
pertinent components of the real asset are included in the CAD 
model to generate digital animation reflecting the real-world 
situation. 

 
This framework allows operators to plan and preview the 

behavior of their physical assets through the Graphical User 
Interface (GUI) as well as receiving run-time data from the 
physical world. Teleoperation commands will be sent to the 
physical workspace once the operator ascertains that the 
simulated behavior is acceptable. The edge computing device 
decodes commands and works as an actuator for redirecting 
them to the connected embedded system and for controlling the 
asset. To verify the capability of the DT framework to reflect 
the target workspace at run-time, we evaluated three use cases 
to compare using a visualized DT for the processing of 
embedded sensor system data. Tailor-made GUIs were 
provided to each use case, and both GUIs were connected to a 
common command channel for teleoperation. 

A. Use Case 1: Embedded System 
In use case 1, two Arduino boards had different setup and 

update rates for emulating a cooling system. One was 
programmed to obtain the temperature data from the workspace. 
The other was connected to a computer cooling fan utilizing a 
hall effect sensor for monitoring the run-time speed of the fan. 
End users needed to use Command Line Interface (CLI) or the 
built-in “Serial Monitor” from Arduino Integrated Development 
Environment (IDE) to receive the run-time data through the 
serial port. Each Arduino board was connected to a Raspberry 
Pi for IoT enabling, as shown in Fig. 2. No direct 
communication channel was given between those devices, both 
separate devices were enabled to connect and communicate to 
the DT server through the internet, and the Raspberry Pi 
converted the data and commands from DT framework 
protocols to the embedded system protocol as well. 



 
Fig. 2 Temperature Sensor Connected to Raspberry Pi 2B with a WIFI 
adaptor for IoT Enabling 

B. Use Case 2: FMCW Sensor System 
In use case 2, an integrated Frequency Modulated 

Continuous Wave (FMCW) radar was used. The sensor 
provides information such as range-to-target and surface 
properties, accompanied by previously inaccessible 
information of subsurface properties of porous and dielectric 
structures [26]–[28]. The utilized K-band FMCW system 
represents a multi-purpose sensor which can provide integrated 
information after a single target sweep. The project engineers 
decided to communicate with the radar device and analyze the 
returned data through MATLAB. A serial port was the 
communication tunnel of the radar, which was connected to a 
laptop PC acting as a network node. This allowed the radar and 
the server to exchange data and commands. 

C. Use Case 3: Resilient Robotics Platform 
In use case 3, with combining the same DT framework to 

the Husky A200 robot which was driven by the Robotic 
Operating System (ROS), the user interface would be able to 
display the run-time status of Husky A200, as well as self-
prognostic messages. The user interface also allowed the 
operator to plan and preview the actions of the attached UR5 
robotic arms before sending the commands to the real-world 
robot. 

III. RESULT AND ANALYSIS 
The DT framework was given a connectivity test, Table 1 

shows that this interoperable DT framework can connect and 
synchronize more than 1000 sensors and actuators, depending 
on the platform and computing resource. It also proves that this 
framework is stable, extendable and generic for different 
platforms, systems and hardware architectures.  

A. Use Case 1: Embedded System 
This scenario exemplified a small-scale cooling system 

under the add-on IoT enabling setting. This mock-up was to 
replicate the cooling system in a control room with a generator, 
which supports serial port communication. Both the cooling 
device and the temperature sensor worked independently. The 
programmed embedded systems used the standard “set-up” and 

TABLE I.  COMPARISON OF THE DT PERFORMANCE ON DIFFERENT 
PLATFORMS 

Platform CPU Memory 
Accepted 

sensors and 
actuators 

Desktop PC 

2 X Intel XEON 
(octa-core) @ 

2.1GHz 
64 GB > 1800 

MacBook Pro 2017 Intel Core i7 (qual-
core) @ 2.9GHz 16 GB 850 

Jetson TX 2 

ARM Cortex-A57 
(quad-core) @ 

2GHz + 
NVIDIA Denver2 

(dual-core) @ 
2GHz 

8 GB 500 

 
“loop” Arduino IDE programming format, which allowed them 
to configure the General-Purpose Input/ Output pins. This was 
especially important for tweeting them to accept incoming 
signals or transmit signals through the output wires before 
relayed into the main workload. Inside the main workload loop, 
the systems continuously checked the parameters from sensors, 
buttons and self-status for variations in their work behaviors. 
 

Digital simulation was used to display the run-time status of 
connected assets. The GUI from Fig. 3 shows the 3D animation 
and filtered information, they also demonstrate the concept of 
simplifying communication with multiple devices using a 
single interface. This GUI combined the data from the 
connected temperature sensor and cooling fan. Animation and 
text information displayed the run-time behavior and status 
from the DT GUI. The GUI displays the run-time rotation speed 
of the cooling fan with an animation on the virtual twin, in 
addition to showing the numerical data. The color scheme of 
the virtual asset helps identify with the run-time health status of 
the physical asset. The GUI acted as a communication bridge 
by linking two completely independent embedded systems 
through the internet and illustrated run-time information. 
Operators can preview the speed of the cooling before sending 
the controlling command to the physical workspace. The 
preview function was activated when the speed control slider 
was changed. Another virtual asset showed up for representing 
the upcoming function based on the speed slider. The 
teleoperation command could be sent to the real asset after the 
operator agreed and click the “send” button. 

B. Use Case 2: FMCW Sensor System 
The objective of this use case was to display filtered data 
graphically from the FMCW radar, with no user knowledge 
required, and where human readable and simple information 
was the key output. The result of each scan was displayed as a 
Fast Fourier Transform (FFT) chart, as illustrated in Fig. 4. This 
use case required end users to have a basic level of background 
knowledge about the relevant radar theory and the contrasts to 
be expected from the differing target materials. Fig. 4.  displays 
the difference in return signal amplitude in the frequency 
domain for two targets of significantly different material 
composition: a metal plate and the planar surface of a balsa and 
glass fiber composite wind turbine blade. There is a clear 
contrast in return signal amplitude from BIN 5 onwards. BIN 5 



 
Fig. 3A screenshot of the DT GUI used animation and text messages to 
display the run-time parameters and workspace information, and it also 
changed the colour of the virtual asset for noticing users that faults have been 
detected. A twin of the virtual model was appeared for the preview of the 
control planning 

 
Fig. 4 Fourier transformed FMCW radar return signal displaying the contrast 
in asset integrity between an undamaged and damaged internal section of 
wind turbine blade structure 

signifies the peak amplitude reflection for the target interface at 
10 cm from the antenna, where data beyond BIN 5 represents 
the subsurface integrity of the wind turbine blade. The data 
extrapolated from the FMCW output successfully displayed the 
strength of returned signal amplitude by the distance of the 
object. However, operators of this system must be able to 
understand how to analyze the target specific data from the 
generated graphical output to attain real-world information of 
the target asset. 
 
 With the same DT framework, end-users could understand 
the status without the FFT chart on the bespoke DT GUI. A set 
of color schemes had been designed to reflect the structure of 
the scanned object. This interface also allowed users to set the 
number of FMCW scans and to start the operation remotely. 
Fig. 5 shows the DT interface that displayed a full-scale (1:1) 
wind turbine model, where the blade color was assigned 
following inspection with the FMCW radar. From this 
interface, a text box and a button for users to insert the number 
of times for scanning the object was provided. These commands 
were transmitted to the radar system and to initiate the scanning 
process. In this case, after 10 scans, the system analyzed and 
returned the result of the wind turbine blade sample, prompting 
the GUI to change the color of the blade on the DT. 

 
Fig. 5 A screenshot of the FMCW DT GUI changed color to illustrate the 
detected material of the wind turbine blade  

The system also displayed text messages informing end users 
that the process had finished and what result had been acquired. 
Form the end user perspective, the system provides a single 
interface to interact with the radar sensor and review the 
analyzed result. This represents a more user-friendly GUI, 
allowing for a wider range of user proficiencies; displaying a 
color-coded output that does not require the operator to read 
complicated 2D FFT charts or depend on technical specialist 
knowledge. 

C. Use Case 3: Resilient Robotics System 
Human-Robot interaction was also investigated for this 

research. Robotic-driven manufacturing is an element of 
Industry 4.0 and the interaction between robot and human will 
be an increasingly important component for the next generation 
of manufacturing. For this scenario, a Clearpath Husky A200 
wheeled robotic platform was used with two UR5 robotic arms 
attached. This robot has been designed and programmed for the 
use case of automated offshore infrastructure inspection with 
Offshore Robotics for Certification of Assets (ORCA) Hub. 
Researchers at the ORCA Hub had created a self-certification 
algorithm to monitor the run-time health status of the robot, 
which enabled the robot to self-certify its systems and 
determine if the robot able to finish its assigned mission. 
System ontology messages were communicated to the main 
system through the Robotic Operating System (ROS), which 
required operators to have a deep knowledge of the Linux 
operating system and CLI. Without a GUI and the method of 
data synchronization, operators were only able to monitor the 
mission status and behavior of all components, such as joint 
angles, wheel angles, voltage and current, through ROS topics. 

 
A DT interface was developed as a visualized monitor and 

control panel for the Husky A200 platform equipped with dual 
manipulator arms. This DT was a single application to show the 
filtered information from the ontology messages and to animate 
the position of both UR5 arms of the real Husky robot. The 
color of the top chassis, and both arms of the virtual Husky, 
would be changed when the physical Husky detected internal 
system and hardware faults. The animation of the virtual Husky 
represented the run-time information of both robotic arms. 



 
Fig. 6 A screenshot of the Husky A200 DT GUI and a picture of the physical 
robot, they demonstrate that both were synchronized through the DT 
framework 

 
Fig. 7 A screenshot of the Husky A200 DT GUI and a picture of the physical 
UR5 robotic arm, they show that the virtual and the physical models were able 
to be synchronized using the DT framework in the real-time where the 
position and the joint angles of the robotic arm changed 

The DT GUI displayed text messages showing latent system 
information, such as hardware voltage, current and temperature. 
In this use case, an external Raspberry Pi 3 was added and 
tasked with subscribing ROS topics from the Husky A200 main 
computer, which was running the ROS core. The Raspberry Pi 
3 worked as an edge-computing device to process the raw data 
from ROS topics. It also connected and transmitted data to the 
DT server. The use of this additional device ensured all the 
computing resources would not be drained when extra tasks 
were added to Husky and demonstrates that missions that 
otherwise would have been interrupted by errors could be seen 
to be operating within normal parameters. 
 

The DT preview function enabled users to remotely plan 
and control the UR5 arms of the Husky platform. The GUI 
displayed a semi-transparent twin on top of the virtual model of 
the robotic asset, which allowed users to understand the 
comparison between the current position and the planning 
position of the arms. This DT GUI integrated the information 
from ROS and simplified the controlling process with providing 
safety preview in a virtual environment. Commands would be 
sent to the aforementioned Raspberry Pi 3 for translation to a 
ROS topic. 

 
Figs. 6 - 9 show that the virtual Husky was able to 

synchronize to the physical Husky A200. The DT GUI showed 
the run-time status of Husky by displaying text messages such  

 
Fig. 8 The evidence of virtual and physical run-time parameter synchronized 
as the mission starts: A) the run-time parameters of the virtual model of the 
left UR5 arm, B) the control panel of the left UR5 arm with its run-time 
parameters, C) the run-time parameters of the virtual model of the right UR5 
arm, D) the control panel of the right UR5 arm with its run-time parameters 

 
Fig. 9 The evidence of virtual and physical run-time parameter synchronized 
during the mission: A) the run-time parameters of the virtual model of the left 
UR5 arm, B) the control panel of the left UR5 arm with its run-time 
parameters, C) the run-time parameters of the virtual model of the right UR5 
arm, D) the control panel of the right UR5 arm with its run-time parameters 

as the information of the battery, temperature and current of two 
motors positioned inside the chassis. Subsequently, the 
ontology messages of Husky and the GUI also synchronized the 
run-time parameters of both UR5 arms Figs. 8 and 9 show the 
joint angles of the virtual Husky match the real parameters of 
both arms, where A and C from these figures show the 
parameters of each joint angle of the virtual model of the robotic 
arms. These parameters can be seen to match the run-time 
parameters of the real-world UR5 arms, which shown in B and 
D of Figs. 8 and 9. This demonstrates that the virtual model 
mirrored the actual robot actions and the GUI could repeatedly 
update those parameters from the real husky and use them to 
change the position of the arms in the virtual environment, 
where the arm position was changed from Fig. 6 to 7. Thus, the 
twin and the physical object were successfully synchronized, 
and the twin could reflect all run-time behaviors.  
 
Fig. 10 illustrates that the GUI changed the color of the virtual 
Husky when an error was detected. This sensitive fault warning 
was displayed via text messages, which could allow users to 
acknowledge the current situation for run-time decision-  

 

 

 



 
Fig. 10 A screenshot of the DT GUI shows that it changed the color of the 
virtual Husky and displayed error messages when faults were detected 

 
Fig. 11 A screenshot of the DT GUI shows that the "Ghost Twin" of Husky 
was being used for planning the upcoming joint positions of the UR5 arms 

making. The “RECOVERY” button at the top right corner 
would immediately terminate the mission, resulting in the 
return of the Husky robotic system to its base station to initiate 
further repair actions. Once the “RECOVERY” button was 
pressed, the connected Raspberry Pi 3 received a command, 
which was translated to a ROS topic. 
 
Therefore, users could have a complete and direct interaction 
with robotic systems utilizing this developed DT framework. 
For the control and preview function, users could make use of 
the “ghost twin” and sliders from the GUI to plan the next 
position of both arms, as shown in Fig. 11. Each slider controls 
a joint angle of the corresponding robotic arm, and the “ghost 
twin” displays the upcoming position planned by users with the 
sliders. Commands are sent to the edge-computing device once 
users make a final decision on upcoming actions, with the 
behavior of the physical robot driven by the updated plan from 
the GUI. 

IV. DISCUSSION 
A DT is a new and important concept in Industry 4.0, with 

limitations identified where existing DT frameworks are unable 
to exchange run-time data between the virtual model and the 
physical asset, no bi-directional data stream has been built to 
allow full synchronization. Operators can only plan and 
preview the behavior of the asset on the virtual model, but it is 
not possible to commit commands to the physical asset. This 

paper has discussed three use cases that identify that a DT is 
suitable for both infrastructure and robotics, due to the shared 
requirement for health monitoring. It has been demonstrated 
that this DT framework provides two communication channels 
of data and teleoperation commands exchange between the 
physical and virtual environment, ensuring both sides are 
synchronized. 

 
In use case 1, the embedded system illustrates that the 

operator can remotely monitor and control the embedded 
systems within infrastructure through the internet with the DT 
framework and GUI. The synchronization of multiple sensors 
and actuators allows the DT interface to display real world 
information, the work environment and the embedded system 
infrastructure as a whole, allowing for synchronization of 
multiple sensors in near to real-time. This enables the operator 
of the DT to easily and quickly identify any problems within a 
plant or environment, leading to decreased operational risk. In 
use case 2, the FMCW sensor provides inspection engineers 
access to previously inaccessible information on the surface and 
subsurface integrity of a wind turbine blade. The data collected 
from the FMCW radar is incorporated into the DT, providing 
the remote operator a holistic view of any faults on the wind 
turbine blade. This information would have previously been 
difficult to visualize for the asset operator or inspection 
contractor, especially as wind turbines move further offshore. 
Application of the 3D model in the DT enables the asset 
management team to visualize faults at an earlier stage, 
enabling an effective maintenance intervention plan to be put in 
place. In use case 3, the DT increases safety-compliance of 
robotic platforms, aiding trust between an operator and robotic 
application, resulting in a resilient robotic system. This DT 
framework improves the interaction between human and robots 
using the GUI application, which simplifies the ROS topic 
subscription and publication with an edge-computing device. 
The mission planning and preview can be performed with the 
“ghosting” feature. This feature of the DT can be used on 
platforms with UR5 arms, or driven by ROS, and ensures safety 
via a simulation of the arm executed before being committed to 
that action on the real-world robotic platform. The purpose of 
this feature is to implement a collision alert via the “ghost 
twin”, minimizing any risk of collision in the real world. This 
action provides warnings to end-users when the planned 
position of manipulator arms contacts with other objects or 
asset infrastructure. The application of inverse kinematics to the 
GUI is a subject of active and ongoing research, which could 
fulfil the concept of easy control and interaction via drag and 
drop of the end effector.  

V. CONCLUSION AND FUTURE WORK 
 Data driven asset monitoring is an evolving area of research 
with advances in sensing technologies, data analytics and 
digital technologies. With increasing complexity in systems 
and growing dependencies across networks of systems, it is 
vital that tools are developed to support the aggregated 
integration of information and data from distributed monitoring 
systems. Our research shows that the developed DT framework 

 



can improve human-asset interaction, requiring less specialist 
knowledge from end users. Thus, DT technologies offer a direct 
and intuitive method to end users concerned with operational 
decision support. The virtual space uses animation to reflect the 
run-time information on the physical assets and the operating 
environment. It also provides intuitive interfaces with displayed 
colors to reflect transition into different states of health. Our 
interoperable DT framework will be further evaluated in other 
real-world scenarios, such as robotic platforms, for proving that 
operators can fully interact with their physical assets through 
the internet and the visualized virtual workspace. 
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