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Abstract  Hypoglycaemia is a condition when blood 

sugar levels in body are too low. This condition is usually 

a side effect of insulin treatment in diabetic patients. 

Symptoms of hypoglycaemia vary not only between 

individuals but also within individuals making it difficult 

for the patients to recognize their hypoglycaemia episodes. 

Given this condition, and because the symptoms are not 

exclusive to only hypoglycaemia, it is very important for 

patients to be able to identify that they are having a 

hypoglycaemia episode. Consistency models are statistical 

models that quantify the consistency of individual 

symptoms reported during hypoglycaemia. Because there 

are variations of consistency model, it is important to 

identify which model best fits the data. The aim of this 

paper is to asses and verify the models. We developed an 

assessment method based on stochastic latent residuals and 

performed posterior predictive checking as the model 

verification. It was found that a grouped symptom 

consistency model with multiplicative form of symptom 

propensity and episode intensity threshold fits the data 

better and has more reliable predictive ability as compared 

to other models. This model can be used in assisting 

patients and medical practitioners to quantify patients’ 

reporting symptoms capability, hence promote awareness 

of their hypoglycaemia episodes so that corrective actions 

can be quickly taken.  

Keywords  Latent Residual, Posterior Predictive 

Checking, Model Verification, Model Assessment 

 

1. Introduction

Hypoglycaemia is a condition of low glucose level in 

blood, i.e. below 4mmol/L. It is a common side effect of 

insulin treatment in diabetic patients. It is crucial to treat a 

hypoglycaemia episode promptly to avoid severe 

hypoglycaemia episode, where patient needs other people’s 

help to recover. However, it is not easy for the patient to 

identify a hypoglycaemia episode because symptoms of 

hypoglycaemia vary within individuals. A given symptom 

is not equally covarying with blood glucose levels [1] 

implying a degree of between-subject variability. 

Individuals experiencing various symptoms of 

hypoglycaemia are not necessarily able to recognize a 

hypoglycaemic episode because the individuals’ ability to 

recognize hypoglycaemia is significantly correlated with 

the number of symptoms reported per episode [2]. There 

are marked variability of the reported symptoms between 

episodes of hypoglycaemia [3] but the study is limited to 

children respondents. A consistency model was developed 

to quantify the consistency of reporting the symptoms of 

hypoglycaemia by adult patients [4]. Zulkafli et al [5] then 

introduced the grouped symptoms models as one of the 

consistency estimations models. This model adds another 

source of variation to symptoms’ reportings by distributing 

the 26 symptoms to several groups according to the causes. 

Other functional form was briefly introduced as an 

alternative to be used in the consistency models [5]. 

With several consistency models developed, the 

challenge is to evaluate the performance of each model 

before making decisions on which model can give better 

consistency estimates. 
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Residual analysis is one prominent way in validating a 

statistical model. Cox and Snell, [3] introduced a general 

definition of residual for non-linear models. Deviance, 

Pearson and Anscombe residuals are examples of type of 

residuals commonly used in residual analysis. However, 

these residuals have unknown sampling distribution which 

will affect the interpretation of the analysis [7]. 

Among works that has been done in measuring the 

performance of statistical models related to diabetic data 

use coefficient of determination ( 𝑅2 ) goodness-of-fit 

measure [8] and robust method [9]. However, the work 

does not apply to the concept of latent residuals. 

Latent residual analysis was used in analyzing binary 

response variable in regression framework [10,11]. 𝜒2 test 

for latent model testing is sensitive to distributional 

properties of the observed variables [12]. The test also will 

have high probability of Type 1 error with complex model 

[13]. Therefore, the intent of this paper is to present a 

method for assessing the adequacy of the stochastic model 

with latent variables utilissing the concept of stochastic 

latent residuals, 𝑧𝑖𝑗𝑘. 

Also, one of the important aims of this work is to develop 

a model which can be used to make prediction of values of 

interest with quantified confidence. A good predictive 

model, enables us to predict how consistent a patient is in 

reporting hypoglycaemia when given some of his/her 

specific characteristics. This can be used in order to assist 

early detection of hypoglycaemia and give necessary 

advice to the patient. Therefore, the second objective of this 

paper is to examine the consistency model’s predictive 

capability by employing a validation approach relying on 

the posterior predictive distribution. 

2. Materials and Methods 

The methods of model assessment discussed in this 

paper are applied to data collected from 66 diabetic patients 

where each subject is given a unique ID number [14]. Each 

patient recorded his/her symptoms in each hypoglycaemia 

episode experienced for a duration of 9 to 12 months. 

2.1. The Consistency Model 

A consistency model was developed under Bayesian 

approach [4]. Observed variable 𝑌𝑖𝑗𝑘  takes value 1 if 

patient 𝑖 =  1, . . . , I  reports symptom 𝑗 =  1, . . . , J  in 

episode 𝑘 =  1, . . . , K𝑖 by patient 𝑖 =  1, . . . , I. Otherwise, 

𝑌𝑖𝑗𝑘  takes value 0. 𝑌𝑖𝑗𝑘~ Bernoulli (𝑝𝑖𝑗𝑘 ) where 𝑝𝑖𝑗𝑘  is 

the probability of symptom 𝑗 is reported in episode 𝑘 by 

patient  𝑖 . A threshold, 𝜏 𝑖𝑗𝑘  is defined for patient 𝑖 

reporting symptoms 𝑗  at episode 𝑘  and symptom 𝑗  is 

considered as reported when the threshold 𝜏𝑖𝑗𝑘 exceeded 

by a functional form ℎ(𝛼𝑖𝑗 , 𝛽𝑖𝑘. ), i.e 𝜏 𝑖𝑗𝑘 ≤  ℎ(𝛼𝑖𝑗 , 𝛽𝑖𝑘). 

𝛼𝑖𝑗  and 𝛽𝑖𝑘  are latent variables which correspond to the 

propensity of symptoms 𝑗  for patient 𝑖  and intensity of 

episodes 𝑘 in patient 𝑖 respectively.  

The threshold, 𝜏𝑖𝑗𝑘 is assumed to follow a log-normal 

distribution, 𝜏𝑖𝑗𝑘 ~ Log-Normal(0, 𝜎𝑖
2) where 𝜎𝑖

2  is the 

parameter associated with the variability of symptoms 

reported by individual patient 𝑖. The consistency estimate 

is defined as 𝑐𝑖 =
1

100+𝜎𝑖
2.  

Each of the parameter is assigned a prior distribution as 

follows; 

𝛼𝑖𝑗  ∼  Gamma(1,0.1), 𝑖 =  1, . . . ,66 and 𝑗 =  1, . . . ,26 

𝛽𝑖𝑘  ∼  Gamma(1,0.1), 𝑖 =  1, . . . ,66 and 𝑘 =  1, . . . , 𝐾𝑖 

  𝜎𝑖
2  ∼  Inv-Gamma(1,0.1), 𝑖 =  1, . . . ,66.  

This consistency model was later expanded by 

separating the symptoms into different groups according to 

their causes in order to have an additional source of 

variation [5]. Therefore, the prior corresponding to the 

symptoms propensity then become 

𝛼𝑖𝑗𝑙  ∼  Gamma (𝜃,
𝜃

𝑢𝑙
) , 𝑙 = 1, … ,6 

giving E(𝛼𝑖𝑗𝑙) =  𝑢𝑙 and  Var(𝛼𝑖𝑗𝑙) = 𝑢𝑙
2/𝜃, 𝑙 =  1, . . . ,6 

Earlier work of the consistency model assumed a 

threshold form ℎ(𝛼𝑖𝑗 , 𝛽𝑖𝑘 . ) = 𝛼𝑖𝑗𝛽𝑖𝑘  [4]. Later, another 

option for the functional form was introduced, i.e. 

ℎ(𝛼𝑖𝑗 , 𝛽𝑖𝑘 . ) = 𝛼𝑖𝑗 + 𝛽𝑖𝑘  and their differeces were briefly 

discussed [5]. 

2.2. Stochastic Latent Residual 

The stochastic latent residuals, 𝑧𝑖𝑗𝑘, would give rise to 

the observed data under the considered model. Following 

the concept of generalised residuals [6], the data can be 

regarded as generated through a functional model, 𝑔(·), 

[15] depending on the vector of all model parameters and 

latent variables, say 𝜃, i.e. 

𝑦 =  𝑔𝜃(𝑧)                 (1) 

where 𝑧 ∼  𝑈(0, 1) are generalised residuals. Then, in the 

general case, (1) can be inverted to give the stochastic latent 

residuals 

𝑧 =  𝑔𝜃
−1 (𝑦)               (2) 

For the assumed discrete model we have 

𝑦𝑖𝑗𝑘  =  𝐼{𝑧𝑖𝑗𝑘  ≤  𝑝𝑖𝑗𝑘} 

where 𝑧𝑖𝑗𝑘  ∼  𝑈(0, 1) and 𝐼{·} is the indicator function. 

This implies that, under the assumed model,  

𝑧𝑖𝑗𝑘  =  𝑦𝑖𝑗𝑘𝑢1  +  (1 − 𝑦𝑖𝑗𝑘)𝑢2 

where 𝑢1  ∼  𝑈(0, 𝑝𝑖𝑗𝑘) and 𝑢2  ∼  𝑈(𝑝𝑖𝑗𝑘 , 1). Therefore, 

if the model is adequate, 𝑧𝑖𝑗𝑘  ∼  𝑈(0, 1) and a 𝑝-value 

for testing the hypothesis of this uniform distribution can 

be obtained. To implement this method, 10,000 MCMC 

iterations were run for this model and obtained the latent 

residual, 𝑧𝑖𝑗𝑘, for each subject such that 



 Mathematics and Statistics 8(5): 583-589, 2020 585 

 

 

If {
 𝑦𝑖𝑗𝑘   = 1, 𝑧𝑖𝑗𝑘

(1)
~𝑈(0, �̂�𝑖𝑗𝑘)

  𝑦𝑖𝑗𝑘  = 0,     𝑧𝑖𝑗𝑘
(0)

~𝑈(�̂�𝑖𝑗𝑘 , 1)
 

where �̂�𝑖𝑗𝑘  is the estimated probability of patient 𝑖 

reporting symptom 𝑗  at episode 𝑘  at each iteration. 

Therefore, if the tested hypothesis is correct, 

𝑧𝑖𝑗𝑘  =  (𝑧𝑖𝑗𝑘
(1)

, 𝑧𝑖𝑗𝑘
(0)

)  ∼  𝑈(0, 1). 

A Kolmogorov-Smirnov goodness-of-fit test was 

conducted on each posterior sample of residuals obtained 

in each MCMC iteration, resulting in a corresponding 𝑝-

value, 𝜋𝛾, where 𝛾 =  1, 2, 3, . . . , 10, 000 iterations. This 

will give a posterior distribution 𝑓(𝜋|𝑦𝑖𝑗𝑘)  where 𝑦𝑖𝑗𝑘 

denotes the observation data. 

2.3. Posterior Predictive Checking 

This approach is commonly used for checking the 

model’s suitability, and is based on work that was 

elaborated in [16] and later expanded in [17]. The purpose 

of the analysis is to compare the observed data with values 

predicted from the model. 

The observations, 𝑌𝑖𝑗𝑘 are binary data that take value 1 

if patient 𝑖 reported symptom 𝑗 in episode 𝑘 value zero 

otherwise. 𝑌𝑖𝑗𝑘
(𝑝)

 is defined as the predicted data, such that 

these are the data that will be obtained if we use the same 

model to do prediction. 10% of the total number of 

observations are randomly selected, which are then used as 

the validation sample. Then, the examined model is fitted 

to the remaining data. The fitted model is subsequently 

used to do prediction on symptom reporting for the sampled 

patients episodes, 𝑌𝑖𝑗𝑘
(𝑝)

 for 𝑖, 𝑗, 𝑘 in the sample. Recall that, 

𝑌𝑖𝑗𝑘  is Bernoulli distributed with probability, 𝑝𝑖𝑗𝑘 . The 

posterior probability, 𝑝𝑖𝑗𝑘 , is sampled from the fitted 

model and is used to obtain the reporting prediction, 𝑌𝑖𝑗𝑘
(𝑝)

. 

Consequently, we compare the total number of predicted 

reportings, 𝑁𝑝 to the total number of observed reportings, 

𝑁𝑜𝑏𝑠. Accordingly, the distributions of 𝑌𝑖𝑗𝑘 and 𝑌𝑖𝑗𝑘
(𝑝)

 were 

compared.  

Four other measures are used to assess and describe the 

usefulness of the model’s predictions [18]. The measures 

are related to sensitivity, specificity and predictive values. 

Here, sensitivity is defined as the proportion of experienced 

symptoms that are correctly predicted as being reported by 

the models whereas specificity is the proportion of 

symptoms that have not been experienced which are 

correctly predicted as not reported by the model. Ideally, a 

good predictive model should have high sensitivity and 

specificity. However, these two measures are often 

inversely proportional, meaning as sensitivity increases 

specificity decreases and vice versa. The probability of the 

model giving correct prediction were evaluated by using 

the positive predictive value (PPV) and negative predictive 

value (NPV). These four measures were calculated using 

𝑌𝑖𝑗𝑘 and 𝑌𝑖𝑗𝑘
(𝑝)

 in the validation sample and are defined as 

follows 

a) PPV=
∑ 𝑌𝑖𝑗𝑘𝑌𝑖𝑗𝑘

(𝑝)
𝑖𝑗𝑘

∑ 𝑌
𝑖𝑗𝑘
(𝑝)

𝑖𝑗𝑘

 for 𝑖, 𝑗, 𝑘 in the sample 

PPV is the proportion of symptoms with positive 

prediction that was correctly classified as reported. PPV 

measures the probability of patient 𝑖  truly experiencing 

symptom 𝑗 at episode 𝑘 given that the model predicts the 

symptom is likely to be experienced. 

b) NPV=
∑ (1−𝑌𝑖𝑗𝑘)(1−𝑌𝑖𝑗𝑘

(𝑝)
)𝑖𝑗𝑘

∑ (1−𝑌
𝑖𝑗𝑘
(𝑝)

)𝑖𝑗𝑘

  for 𝑖, 𝑗, 𝑘 in the sample. 

NPV is the proportion of symptoms with negative 

reporting prediction that was correctly classified as absent. 

NPV measures the chance of patient 𝑖 having symptom 𝑗 

not present at episode 𝑘 given that the model predicts that 

it is not likely to be reported. 

c) TPR=
∑ 𝑌𝑖𝑗𝑘𝑌𝑖𝑗𝑘

(𝑝)
𝑖𝑗𝑘

∑ 𝑌𝑖𝑗𝑘𝑖𝑗𝑘
 for 𝑖, 𝑗, 𝑘 in the sample. 

True Positive Rate (TPR), also known as the sensitivity 

of the predictive model, measures the ability of the model 

to correctly predict if symptom 𝑗 occurs at episode 𝑘. 

d) TNR=
∑ (1−𝑌𝑖𝑗𝑘)(1−𝑌𝑖𝑗𝑘

(𝑝)
)𝑖𝑗𝑘

∑ (1−𝑌𝑖𝑗𝑘)𝑖𝑗𝑘
 for 𝑖, 𝑗, 𝑘 in the sample. 

True Negative Rate (TNR), or also called specificity, 

represents the capacity of the model to predict that 

symptom 𝑗  is not reported at episode 𝑘  when the 

symptom is truly absent. 

3. Results and Discussion 

3.1. Model Assessment 

As preliminary checking, we observe the histogram of 

the residuals 𝒛 for each patient 𝑖  for grouped symptom 

model with threshold ℎ(𝛼𝑖𝑗 , 𝛽𝑖𝑘) =  𝛼𝑖𝑗𝛽𝑖𝑘 . Recall that 

patient 𝑖  reports symptom 𝑗  at episode k when 𝜏 𝑖𝑗𝑘 ≤

 𝛼𝑖𝑗𝛽𝑖𝑘. Thus, the observed variable, 𝑌𝑖𝑗𝑘 is equal to 1 when 

symptom 𝑗  is reported at episode 𝑘  by patient 𝑖 . 

Otherwise, 𝑌𝑖𝑗𝑘  takes value zero. Figure 1 presents the 

histogram for one patient, Subject 4028. The distribution 

pattern suggests that the residuals do follow a Uniform (0,1) 

distribution. To further confirm the distribution of 𝒛 we 

also check on the histogram of 𝑝-values for this patient, 

𝜋(4028) (Figure 2). From this histogram, we can say there 

is no evidence against the adequacy of fit of the model.
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Figure 1.  Histogram of stochastic latent residuals for model with 

grouped symptoms using threshold (𝛼𝑖𝑗 , 𝛽𝑖𝑘)  =  𝛼𝑖𝑗𝛽𝑖𝑘 for patient 4028. 

 

Figure 2.  Posterior distribution of 𝑝-values, 𝜋, for fit of model with 

grouped symptoms using thresholdℎ(𝛼𝑖𝑗 , 𝛽𝑖𝑘) =  𝛼𝑖𝑗𝛽𝑖𝑘 for patient 4028 

For comparison purposes, Figure 3 presents histograms 

of 𝑝 -values, 𝜋𝛾 , representing another patient, Subject 

5088 when using the two thresholds, ℎ(𝛼𝑖𝑗 , 𝛽𝑖𝑘)  =  𝛼𝑖𝑗𝛽𝑖𝑘 

and ℎ(𝛼𝑖𝑗 , 𝛽𝑖𝑘) =  𝛼𝑖𝑗 + 𝛽𝑖𝑘. Observing the posterior 

distributions of 𝜋𝛾  for subject 5088 it can be seen that 

there is no strong evidence against the models tested, 

although it appears that there is more evidence against the 

model when the model with threshold ℎ(𝛼𝑖𝑗 , 𝛽𝑖𝑘) =  𝛼𝑖𝑗 +

𝛽𝑖𝑘  is fitted. This is evidenced from the higher 

concentration of 𝑝-values close to zero. 

As implied earlier, to have strong evidence against a 

tested model, i.e. to reject the hypothesis that the model is 

adequate, the posterior 𝑝-values, 𝜋𝛾, should be very small. 

Therefore as a measure of model goodness of fit, the 

proportion of 𝜋𝛾 less than 0.05, Pr(𝜋𝛾<0.05) is calculated 

for each subject. For comparison purposes, cases with 

greater Pr(𝜋𝛾 <0.05) show stronger evidence against the 

model fit. 

For 67% of the 66 subjects the proportions of 𝜋𝛾 <0.05 

suggest that better fit of the model with threshold 

ℎ(𝛼𝑖𝑗 , 𝛽𝑖𝑘)  =  𝛼𝑖𝑗𝛽𝑖𝑘 . Bar plots in Figure 4 display the 

Pr(𝜋𝛾<0.05) obtained from the grouped symptoms model 

when using different thresholds for Subjects 3022, 4028, 

5088, 4045, 4023 and 2013. For these patients, their 

Pr( 𝜋𝛾 <0.05) when using threshold ℎ(𝛼𝑖𝑗 , 𝛽𝑖𝑘)  =

 𝛼𝑖𝑗  + 𝛽𝑖𝑘  (yellow bars) are higher than when using 

ℎ(𝛼𝑖𝑗 , 𝛽𝑖𝑘)  = 𝛼𝑖𝑗𝛽𝑖𝑘 which is indicated by the red bars. 

The same procedure was repeated for comparing the 

models with and without grouped symptoms. For both 

models the ℎ(𝛼𝑖𝑗 , 𝛽𝑖𝑘)  =  𝛼𝑖𝑗𝛽𝑖𝑘  threshold is used, and 

the proportion Pr( 𝜋𝛾 <0.05) is calculated. Only seven 

patients show higher Pr( 𝜋𝛾 <0.05) when the grouped 

symptoms model is used compared to the model without 

grouped symptoms. This suggests that the model with 

grouped symptoms fits the data better. 

 
 

Figure 3.  Posterior distribution of 𝑝-values, 𝜋, for fit of model with thresholds ℎ(𝛼𝑖𝑗 , 𝛽𝑖𝑘) =  𝛼𝑖𝑗𝛽𝑖𝑘 (left) and ℎ(𝛼𝑖𝑗 , 𝛽𝑖𝑘) =  𝛼𝑖𝑗 + 𝛽𝑖𝑘  (right) for 

patient 5088 in grouped symptoms model. 
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Figure 4.  Bar plots comparing the proportion of 𝑝-values, 𝜋 <0.05 

between different thresholds when using the grouped symptoms model 

3.2. Model Verification 

The posterior predictive checking approach was applied 

to study the predictive ability of the core model (without 

grouped symptoms) and the grouped symptoms model, 

using threshold ℎ(𝛼𝑖𝑗 , 𝛽𝑖𝑘) =  𝛼𝑖𝑗𝛽𝑖𝑘 . Graphical plots in 

Figure 5 show the posterior distributions of the total 

predictednumber of reporting symptoms, with blue (dotted) 

lines marking the total number of predicted reportings, 𝑁𝑝, 

whereas the red (solid) lines refer to the total observed 

value, 𝑁𝑜𝑏𝑠 for subjects 4045. 

The reporting symptoms for patient 4045 are very well 

predicted by the grouped symptoms model as indicated by 

the blue and red lines that almost overlap. The prediction 

made was 𝑁𝑝 =15.26 with 95% CI (9,22) and the symptom 

reportings i.e. the total observed value, 𝑁𝑜𝑏𝑠 , is 15. 

However, the nongrouped symptoms model also made a 

good prediction, although it is slightly over estimated (𝑁𝑝 

= 17.63).  

We also test the performance of different thresholds with 

the core model. Figure 6 gives the posterior distributions of 

the total predicted number of symptom reportings for 

subjects 5009. With each threshold, the predicted 

distributions comfortably contain the total number of 

observation, 𝑁𝑜𝑏𝑠  (represented by red solid lines). This 

indicates that for this patient, we cannot distinguish 

between the three threshold models in terms of their 

predictive ability. Note that graphs for all patients exhibit 

similar trend. 

  

Figure 5.  Posterior density plots of number of reportings, 𝑁𝑝, for patients 4045 under non-grouped symptoms model (left) and grouped symptoms 

model (right) using threshold ℎ(𝛼𝑖𝑗 , 𝛽𝑖𝑘) =  𝛼𝑖𝑗𝛽𝑖𝑘. Blue dotted lines show the number of predicted symptoms reportings of each model, and red lines 

represent the true number of reported symptoms, 𝑁𝑜𝑏𝑠. 
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Figure 6.  Posterior density plots of number of reportings, 𝑁𝑝, for patients 5009 under non-grouped symptoms model using thresholds 𝛼𝑖𝑗𝛽𝑖𝑘 (left), 

and 𝛼𝑖𝑗+ 𝛽𝑖𝑘 (right). Blue dotted lines show the number of predicted symptoms reportings of each model, and red lines represent the true number of 

reported symptoms, 𝑁𝑜𝑏𝑠. 

Finally, the performance of prediction for different 

models when using data from all patients in the analysis is 

compared, i.e. the models with and without grouped 

symptoms using thresholds ℎ(𝛼𝑖𝑗 , 𝛽𝑖𝑘) =  𝛼𝑖𝑗𝛽𝑖𝑘  and 

ℎ(𝛼𝑖𝑗 , 𝛽𝑖𝑘) =  𝛼𝑖𝑗 + 𝛽𝑖𝑘. The results are provided in Table 

1. Among the four models, the model with grouped 

symptoms with threshold ℎ(𝛼𝑖𝑗 , 𝛽𝑖𝑘) =  𝛼𝑖𝑗𝛽𝑖𝑘  gives the 

closest predicted value, 𝑁𝑝 , to the observed number of 

symptoms reported. Figure 7 shows the posterior 

distributions of the predicted number of symptoms reported. 

The total number of symptoms predicted to be reported, is 

754.3, with a 95% credible interval of (713,797), which 

contains the observed number of reported symptoms, 771. 

The other three models considered here do not perform well 

in terms of this prediction, with the corresponding posterior 

predictive distributions failing to contain the true value. 

Table 1.  Model predictions for validation sample for all subjects (The 
number of reported symptoms, 𝑁𝑜𝑏𝑠 = 771). 

 𝛼𝑖𝑗𝛽𝑖𝑘 𝛼𝑖𝑗 +  𝛽𝑖𝑘 

 mean 95% CI mean 95% CI 

PPV 0.413 (0.390,0.436) 0.330 (0.310,0.348) 

NPV 0.933 (0.930,0.936) 0.931 (0.928,0.935) 

TPR 0.464 (0.435,0.489) 0.469 (0.437,0.498) 

TNR 0.919 (0.913,0.925) 0.883 (0.876,0.890) 

𝑁𝑝 866.63 (820,908) 1095.22 (1044,1142) 

(a) Non-grouped symptoms model 

 𝛼𝑖𝑗𝛽𝑖𝑘 𝛼𝑖𝑗 +  𝛽𝑖𝑘 

 mean 95% CI mean 95% CI 

PPV 0.408 (0.383,0.432) 0.380 (0.359,0.402) 

NPV 0.926 (0.923,0.930) 0.931 (0.928,0.935) 

TPR 0.399 (0.435,0.489) 0.457 (0.431,0.492) 

TNR 0.929 (0.913,0.925) 0.908 (0.902,0.914) 

𝑁𝑝 754.3 (713,797) 928.084 (876,969) 

(b) Grouped symptoms model 

 

Figure 7.  Posterior density plots of number of reportings, 𝑁𝑝, for all 

patients under grouped symptoms model with threshold ℎ(𝛼𝑖𝑗 , 𝛽𝑖𝑘) =

 𝛼𝑖𝑗𝛽𝑖𝑘 . Blue dotted lines show the number of predicted symptom 

reportings of the model, and red lines represent the true number of 

reported symptoms, 𝑁𝑜𝑏𝑠.  

Regarding the other four predictive measures presented 

in Table 1, the models explored here do not display 

substantial differences. It is also obvious that prediction 

referring to symptoms not being experienced (NPV, TNR) 

is much more successful, as compared to prediction for 

reported symptoms (PPV, TPR). The fact that the 

developed models perform better in predicting that 

symptoms will not be reported, may be explained by the 

nature of the data, where the frequency of reporting 

symptoms is relatively low (771/7033). The proportion of 

symptoms with positive prediction that was correctly 

classified as reported is highest when using the core model 

with threshold ℎ(𝛼𝑖𝑗 , 𝛽𝑖𝑘) =  𝛼𝑖𝑗𝛽𝑖𝑘 , i.e. PPV = 0.413, 

whereas the chance of a symptom not present in an episode 

given that the model predict it will not be reported is also 
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highest with this model (NPV = 0.933).  

4. Conclusions 

This paper discusses the assessment of models with 

different thresholds using the concept of stochastic latent 

residuals. It was found that the grouped symptoms model 

with threshold ℎ(𝛼𝑖𝑗 , 𝛽𝑖𝑘) =  𝛼𝑖𝑗𝛽𝑖𝑘  fits the data better. 

Performing the model verification and posterior predictive 

checking to verify which model is best in predicting 

symptom reporting, it is concluded that the grouped 

symptoms model with threshold ℎ(𝛼𝑖𝑗 , 𝛽𝑖𝑘) =  𝛼𝑖𝑗𝛽𝑖𝑘 has 

more reliable predictive ability as compared to other 

models. 
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