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A new family of infinitely braided Thompson’s groups

Julio Aroca and Maŕıa Cumplido

July 31, 2020

Abstract

We present a generalization of the Dehornoy-Brin braided Thompson group BV2 that
uses recursive braids. Our new groups are denoted by BVn,r(H), for all n ≥ 2, r ≥ 1 and
H ≤ Bn, where Bn is the braid group on n strands. We give a new approach to deal with
braided Thompson groups by using strand diagrams. We show that BVn,r(H) is finitely
generated if H is finitely generated.

2000 Mathematics Subject Classification. 20F65, 20F05, 20F36.

Key words. Thompson groups, braid groups, strand diagrams, rewriting systems.

1 Introduction

The aim of this article is to define new families of Thompson-like groups that generalize the
ones defined independently by (Dehornoy, 2006) and (Brin, 2006, 2007). Thompson-like groups
are based on the notion of cloning system, firstly defined by (Witzel & Zaremsky, 2018). A
cloning system on a family of groups (Gn)n∈N is a set of axioms and maps acting on Gn which
allows to get a group T (G∗), called the generalized Thompson group for the cloning system or
Thompson-like group (see Zaremsky, 2018 and Witzel & Zaremsky, 2018 for more details). The
motivation for defining these new families is that Thompson-like groups have proven to be new
examples of interesting groups. Richard Thompson used the celebrated groups F, T and V in
1965 to construct finitely presented groups with unsolvable word problems (see Cannon et al.,
1996, Higman, 1974 for the definitions of F, T and V ). Other interesting families of Thompson-
like groups (constructed in a different way) are branch groups (Bartholdi et al., 2003) and
self-similar groups (L. Bartholdi & Nekrashevych, 2003), which contain the first examples of
groups of intermediate growth, like Grigorchuk’s group (Grigorchuk, 1980).

We will focus our attention on the Thompson-like groups coming from a cloning system
on the family of groups (Bn)n∈N, the Artin braid groups (Artin, 1947). In (Brin, 2006, 2007),
Brin uses this family to define a braided Thompson group Vbr, that we denote in our article as
BV2; one of the first examples of Thompson-like groups with no torsion, apart from the family
of Higman-Thompson groups Fn, where n ≥ 2 (Higman, 1974). The usual way to understand
BV2 is as the group of affine and orientation-preserving isotopies from the binary Cantor set
C2 to itself, using finite covers consisting of dyadic intervals. Brin proves that BV2 is finitely
presented by using a purely algebraic argument based on Zappa-Szép products.

Using a similar approach, we present in this article new families of Thompson-like groups
based on the previous ones. In the first place, we give the natural generalization of BV2 by using
r copies of n-ary Cantor sets Cn for all r ≥ 1 and n ≥ 2, obtaining all braided Thompson-like
versions BVn,r of the well-known Higman-Thompson groups Vn,r, defined on (Higman, 1974).
Next, we apply a recursive definition of braid (inspired by the definition of self-similar group) to
construct a family of infinitely braided Thompson-like groups BVn,r(H), where H ≤ Bn. These
families arise also from cloning systems, but we prefer to use a more ‘geometric’ definition for
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the groups, as this allow us to prove also finite generation. Therefore, we leave the formal
definition of cloning system for the interested reader, see (?), (Witzel & Zaremsky, 2018) and
(Zaremsky, 2018).

Moreover, it is also possible to define the infinitely braided versions of BVn,r and BVn,r(H):

B̂Vn and B̂Vn(H). Note that all these families can be compiled on only two: BVn,r(H)

and B̂Vn(H), as we can consider H = Id.

The first part of the article is devoted to prove that all these families are groups. For this
aim we use a generalization of the Belk-Matucci theory of strand diagrams (Aroca, 2018, Belk
& Matucci, 2014) and rewriting systems (Newman, 1942) to give a bijection between elements
of BVn,r(H) and braided strand diagrams, a family of oriented graphs with labelled vertices
(see Section 3.2 for all the details). As it is easier to prove that braided strand diagrams form
a group, we obtain the desired result. Finally, we prove the main theorem of this article:

Theorem 1. If H ≤ Bn is finitely generated, the groups BVn,r(H) are finitely generated for
every r ≥ 1, n ≥ 2.

For this purpose, we use a different and simpler approach than the one used by Brin.
With the help of Higman-Thompson’s groups Fn,r and the properties of braids and diagrams,
we generalize the idea of (Higman, 1974) to give explicit generators for all these groups (see
Theorem 24, Section 4.1.1 and Section 4.3).

To summarize, in Section 2 we define BVn,r(H) and B̂Vn(H) for every r ≥ 1, n ≥ 2 and
H ≤ Bn. In Section 3 we prove they are in fact, groups, by defining braided strand diagrams
and applying the theory of rewriting systems to them. Finally, the aim of Section 4 is to prove
that BVn,r(H) is finitely generated (if H is finitely generated). We give explicit set of generators
for r = 1 and H = Id, Bn and when H is a standard parabolic subgroup of Bn.

2 The infinitely braided groups BVn(H)

In this section we define the main objects of this article: the braided versions of Higman-
Thompson’s groups Vn,r, BVn,r; and its generalization, the family of infinitely braided groups
BVn,r(H). The fact that these are indeed groups, is proved in Section 3.

2.1 Descriptions of Vn,r, BVn,r and B̂Vn

Let Cn be the n-adic Cantor set, which is constructed inductively as follows: C1
n corresponds to

first subdividing C0
n = [0, 1] into 2n− 1 intervals of equal length, numbered 1, . . . , 2n− 1 from

left to right, and then taking the collection of odd-numbered subintervals. We will renumber
these intervals from left to right and denote them C1

1 , . . . , C
1
n. Next, C2

n is obtained from C1
n by

applying the same procedure to each interval C1
i to obtain C2

(i−1)n+1, C
2
(i−1)n+2, . . . , C

2
(i−1)n+n.

We recursively define every Cjn with j > 1 and its intervals. Let Cn be the intersection of
all Cin. The elements of the Thompson’s group Vn are defined using covers of Cn by pairwise
disjoint intervals of the form Cji chosen from any Cjn. For any pair of covers C and C ′ with the
same number of intervals, we define an affine and orientation preserving map from the elements
of C to the elements of C ′. Then we restrict the map to Cn. This restriction is a homeomorphism
of Cn. Finally, we define Vn as the set of all maps of this kind, which turns to be a group under
composition.

The elements of Vn are coded by pairs of finite full n-ary trees together with a bijection τ
between their leaves. An example of such a pair is depicted on Figure 1, where the left (resp. the
right) tree indicates how the first (resp. the second) cover is split. These trees are respectively
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called domain tree T and range tree T ′. Therefore, any element v ∈ Vn is represented as a triple
(T, τ, T ′). Notice that this representative is not unique. A well known subgroup of Vn, that
will be used in the last section, is Fn, consisting of all elements represented by triples (T, τ, T ′)
where τ is trivial.

The set of leaves of all possible n-ary trees is in bijection with the set of finite words on the
alphabet An = {0, . . . , n− 1}, denoted by A∗n. The word assigned to each leaf depends on the
path taken from the root to reach the leaf. For example, observe that in Figure 1 the set of
leaves of the first tree is {00, 01, 020, 021, 022, 1, 2}. This labelling induces a natural order on
the set of leaves of a tree. By abuse of notation, we will say that a word in A∗n is its represented
leaf.

Let v ∈ Vn be represented by a tree pair (T, τ, T ′) such that T and T ′ have l leaves. Note
that there are two numbers assigned on each leaf: one of them is the coordinate of the leaf,
that is, a finite word on the alphabet {0, . . . , n − 1}. The other one is a number in {1, . . . , l}
depending on the bijection τ .

Definition 2. Let T be finite full n-ary tree. We define a caret as a subtree of T consisting of
a set of leaves of the form {w0, w1, . . . , w(n− 1)}, the vertex w and the set of edges linking w
with wi for all i ∈ {0, . . . , n− 1}, for any finite word w ∈ A∗n. We say that a caret is final if its
set of leaves is also a set of leaves of T . We represent a caret by using its set of leaves, so we
may omit {w}.

As example, in Figure 1 the set of leaves {00, 01, 02} of T is a caret, and {020, 021, 022} of T is
a final caret.

Definition 3. Let T be a full finite n-ary tree. Let w ∈ A∗n be a leaf of T . We denote by T [w]
the tree obtained from T by appending a final caret to w. Similarly, we define T [c]−1 as the
tree obtained from T by removing a specific final caret c = {w0, . . . , w(n− 1)} from it. We say
that T [w] (resp. T [c]−1) is an expansion (resp. reduction) of T .

Keep in mind that, in a composition of expansions T [w][w′], w′ must always be a leaf of T [w],
although it does not need to be a leaf of T .

There exist infinitely many triples (T, τ, T ′) which define the same element of Vn. Let
v = (T, τ, T ′) be a homeomorphism of Cn where a cover c ∈ C is mapped to a cover c′ ∈ C ′. We
can consider the subdivision of both c and c′ into n pieces c1, . . . , cn and c′1, . . . , c

′
n such that

the affine map takes ci to c′i for all i ∈ {1, . . . , n}. The corresponding tree-pair representative of
the subdivided coverings leads to the same element v, previously defined in terms of C and C ′.
In terms of trees, we add a final caret on the leaves w and w′ representing the intervals c and
c′ respectively. Thus we obtain a new triple v = (T [w], τ ′, T ′[w′]) where τ ′ is the corresponding
bijection including the new set of leaves.

We say that a tree-pair representative of an element is reduced if the number of covers of both C
and C ′ (that is, the number of leaves of T and T ′) is minimal. A simple way to distinguish
non-reduced elements is by checking if there exists a final caret {w0, w1, . . . , w(n− 1)} which is
mapped to another final caret {w′0, w′1, . . . , w′(n− 1)} such that wi is mapped to w′i for every
i ∈ {0, . . . , n− 1}.

Finally, the way to compose elements of Vn is as follows: given two elements v = (T, τ, T ′)
and w = (T ′, τ ′, T ′′) the composition is the element vw = (T, ττ ′, T ′′). Note that the range tree
of v and the domain tree of w must be equal. If not, it is possible to expand the trees of both v
and w until we get tree-pair representatives which can be composed.

In a similar way, we can consider r copies of Cn instead of only one, obtaining the group Vn,r.
In that case, elements are represented as a pair of forests of r finite full n-ary trees together with
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Figure 1: An element of V3.

a bijection τ between their leaves. As before, if τ = Id, we obtain groups Fn,r. See (Cannon
et al., 1996, Higman, 1974) for an introduction on these groups.

The previous description of Vn can be easily extended to obtain the braided Thompson’s
groups BVn. Braided Thompson’s group BV2 was introduced in (Brin, 2006, 2007) and (De-
hornoy, 2006). As before, given any pair of covers C and C ′ of Cn with the same number m of
elements, we embed them in R×{1} and R×{0} respectively. Then, we define an orientation-
preserving isotopy with compact support from the elements of C to the elements of C ′. In this
case, the isotopy is represented by a braid β with m strands.

Definition 4. A braid is a collection of m disjoint paths in a cylinder connecting m points of
its upper disk to m points of its lower disk and running monotonically in the vertical direction
(see Figure 2). Two braids β, β′ are equivalent if we can continuously deform β into β′ without
intersecting the paths. The equivalence classes of these objects (that will be called braids by
an abuse of notation) are the elements of the braid group with m strands, Bm, introduced in
(Artin, 1947), which is presented as follows:

Bm = {σ1, . . . , σm−1 |σiσj = σjσi if |i− j| > 1, σiσjσi = σjσiσj if |i− j| = 1.}

Here σi (resp. σ−1
i ) is the braid in which the strand in the i-th position passes over (resp.

under) the strand in the (i+ 1)-th position. The set of σi’s is called the set of Artin generators.

A representative of an element v ∈ BVn is a pair of finite full n-ary trees together with a
braid β between their leaves, that is, v = (T, β, T ′). This triple is called braided tree-pair. The
composition of these elements works as before. In order to better understand braided tree-pairs,
we will use braided diagrams in which the range tree is pictured upside down below the domain
tree, as pictured in Figure 2. These diagrams will be thoroughly used in this paper.

In a similar manner, by considering a finite number r of copies of Cn and using the same
definition as above, we get the group BVn,r.

The group B̂Vn is built by embedding a countable number of copies of Cn, one on each
interval [2i, 2i + 1] × {1} and [2i, 2i + 1] × {0} of R × {1} and R × {0} respectively. Consider
two infinite covers C and C ′ such that the intervals are pairwise disjoint, as before, and all but
finitely many of them are of the form [2i, 2i+ 1]×{1} for C (resp. of the form [2i, 2i+ 1]×{0}
for C ′). Finally, we map C to C ′ by an isotopy of R2, such that the images of the chosen
intervals are parallel to the x-axis. Since the number of intervals is infinite, the isotopy could be
a “shift” taking place for large values of x. We impose that a shift must be done by an isotopy
of the form

(x, y)→ (x+ td(1− |y|), y)

4



1 2 3 4 5

σ3

σ2

σ−1
1

σ−1
4

σ−1
3

Figure 2: An element of BV3 with its braid β = σ3σ2σ
−1
1 σ−1

4 σ−1
3 .

Figure 3: An element of B̂V3.

outside a compact, for |y| < 1, x > K for some positive constant K; and by the identity
otherwise. The integer d is the total amount of shift and t is the parameter of the isotopy, see
(Brin, 2007). An example of such an element is depicted on Figure 3.

The proof of the fact that BV2 and B̂V2 are groups can be found in (Brin, 2007). In Section 3,
we will prove the same for our groups, as well as for the ones defined hereunder. Finally, the
infinite versions V̂n and F̂n are defined in the same way as before, see (Brown, 1987).

2.2 Descriptions of BVn(H) and B̂Vn(H)

Let H be a subgroup of the group of braids on n strands Bn. The aim of this paper is to define
new groups BVn(H) as a generalization of BVn.

Let C and C ′ be two covers of Cn with the same number of elements. Let c ∈ C, c′ ∈ C ′, and
h ∈ H ≤ Bn. A recursive braid of type h between c and c′ is a braid with infinitely many strands
obtained by the following process: Replace c and c′ by two subcovers c1, . . . , cn and c′1, . . . , c

′
n

respectively, such that h is an isotopy from ci to c′j , (that is, c1, . . . , cn and c′1, . . . , c
′
n are braided

by h). We repeat this process on every ci and c′j by subdividing them and applying h again,

5



and so on. In Figure 4, we can see graphically how to construct a recursive braid. We define
the composition of a recursive braid of type h1 between c and c′ with a recursive braid of type
h2 between c′ and c′′ as the recursive braid of type h1h2 between c and c′′.

σ1

σ1 σ1

Figure 4: An example of recursive braid where h = σ1.

The group BVn(H) is the group of elements in BVn together with (possibly) recursive
braids between covers of Cn. The way to represent an element v ∈ BVn(H) is as a triple
(T, β, T ′) ∈ BVn together with a set λ = {hi}mi=1, hi ∈ H ≤ Bn, where m is the number of
leaves of both T and T ′. This set corresponds to the set of recursive braids on the m strands
of β. Each label indicates that there is a recursive braid of type hi between the β(i)−1-th and
i-th intervals linked by the corresponding strand of β. Therefore, we write v = (T, β, λ, T ′).
As before, there are infinitely many tree pair representations of the same element v ∈ BVn(H).
In this case, final carets are mapped by elements of H: if some c ∈ C is mapped to c′ ∈ C ′
with a recursive braid h, then the same isotopy maps the subcovering ci to h(ci) = c′j(h) with a

recursive braid h for all i ∈ {1, . . . , n}, where j is the permutation on n elements induced by h.
In terms of tree-pair representations, v maps a final caret to another one following the rules
of h. Finally, note that elements of BVn can be expressed in terms of recursive braids, where
λ = {Id, . . . , Id}. Therefore, BVn = BVn(Id).

The group B̂Vn(H) is defined in the same way as B̂Vn, by adding recursive braids. Similarly, if
we consider a finite number r of copies of Cn, we obtain BVn,r(H).

3 Braided diagrams and rewriting systems

In this section we prove that all the previously defined groups are in fact groups. In order
to do that, we use a generalization of the theory of strand diagrams (Aroca, 2018, Belk &
Matucci, 2014) and rewriting systems (Newman, 1942). This section is heavily inspired on the
aforementioned work.

3.1 Basics about graphs

Consider a directed graph Γ. Let V (Γ) be its set of (possibly labelled) vertices, and let
E(Γ) = {e1, e2, . . . , es} ⊂ V (Γ) × V (Γ) be the set of oriented edges, which have the form
e = (v, v′) or (v′, v) depending on the orientation. An oriented path is a sequence of oriented
edges {e1, ..., et} = {(vi(1), vj(1)), . . . , (vi(t), vj(t))} such that vj(k) = vi(k+1) ∀k ∈ {1, . . . , t − 1}.
If vj(t) = vi(1), we have an oriented loop.

6



Definition 5. The degree of a vertex v ∈ V (Γ) is the number of edges which have v as endpoint,
that is, those which have the form (v, v′) or (v′, v) for some v′ ∈ V (Γ). If an edge has the form
(v, v), v has degree 2.

Definition 6. A vertex v is a source (resp. a sink) for a finite set of directed edges if they
have v as starting point (resp. ending point). A vertex v is a main source (resp. a main sink)
if it is a source (resp. a sink) of degree one.

Let n ≥ 2. A split (resp. a merge) is a vertex v of degree n+ 1 which is a sink for one edge
and a source for the others (resp. a source for one edge and a sink for the others). A white
vertex vh is a vertex of degree 2 with a label h ∈ H ≤ Bn.

Definition 7. We say that Γ is acyclic if the graph has no oriented loops. From now on, Γ will
be a directed acyclic graph.

Definition 8. A pitchfork graph is a graph whose vertices are only main sources, main sinks,
white vertices, splits or merges for a fixed n ≥ 2.

3.2 Braided diagrams

Let g ∈ BVn(H) for some n ≥ 2, H ≤ Bn and (T, β, λ, T ′) a braided tree-pair representative
of g. We recall that we can construct a braided diagram representation Γ′ from an element
(T, β, T ′) of BVn by picturing T ′ upside down below T and joining the leaves of both trees
with the braid β (see again Figure 2). The aim if this subsection is to construct a well-defined
braided diagram for g.

Notice that Γ′ may not be planar, but 3-dimensional. However, we can consider the obvious
planar projection, depicted in Figure 2, that will be called, by abuse of notation, braided
diagram.

Definition 9. We say that an oriented path of an acyclic graph is a strand if it only contains
white vertices (excluding its endpoints).

Definition 10. A braided diagram is a planar projection Γ := p(Γ′) of a finite directed acyclic
pitchfork graph Γ′ satisfying the following properties:

• Two vertices of Γ′ never have the same image;

• No vertex is mapped onto an edge that it is not an endpoint of;

• The images of the edges of Γ′ intersect in a finite set of points;

• The image of a strand cannot intersect itself.

The set of edge intersections that are not endpoints is the set of crossings C(Γ) of Γ.

To distinguish isomorphic planar graphs with different crossings, we impose a rotation and
a crossing system:

Definition 11. Let Γ be a braided diagram. A rotation system of Γ is a map ρΓ : E(Γ) −→
{0, . . . , n}2 which gives an order to every edge of Γ around its endpoints as follows:

1. A counter-clockwise order to the directed edges of a split v, where the 0-th edge is the
edge which has v as sink.

2. A clockwise order to the directed edges of a merge v, where the 0-th edge is the edge
which has v as source.

7



3. A 0 to the edge which has a white vertex vh as sink, and a 1 to the one which has vh as
source.

Definition 12. Let Γ be a braided diagram. A crossing system of Γ is a map κΓ : C(Γ) −→
{1,−1} which gives a label to every crossing of Γ. Geometrically, the crossings are depicted as
in Figure 5.

Figure 5: The positive and negative crossings.

Observe that ρΓ and κΓ completely determine the crossings of Γ and will represent the Artin
generators composing a braid and their inverses. From now on, we will always consider that a
braided diagram is endowed with a crossing and a rotation system.

Remark 13. Note that these systems provide a natural injection f : Γ ∪ C(Γ)→ R3. By abuse
of notation, we will denote f(Γ ∪ C(Γ)) by f(Γ). Γ will be called a natural projection of f(Γ).

Definition 14. Two braided diagrams Γ1 and Γ2 are equal if there exists an isomorphism
φ : Γ1 → Γ2 such that:

1. φ(ρΓ1) = ρΓ2 ,

2. φ(κΓ1) = κΓ2 , and

3. φ(vh) = φ(v)h, ∀v ∈ V (Γ1).

for every white vertex vh.

It is possible to compose two braided diagrams Γ′ and Γ′′ if the number of main sinks of Γ′ is
equal to the number of main sources of Γ′′. We then identify from left to right the main sinks
of Γ′ with the main sources of Γ′′ without creating any new crossing. The composition is again
a braided diagram.

We now explain how to construct the braided diagram for an element g ∈ BVn(H), with
tree-pair representative (T, β, λ, T ′). Take the braided diagram of (T, β, T ′) and then append to
the β(i)-th leaf of T the corresponding white vertex vhi . Next, append to the roots of both T
and T ′ an edge and a vertex. Give the orientation from the vertex appended in T to the leaves
of T , from the leaves of T to the leaves of T ′ and finally from the leaves of T ′ to the appended
vertex of T ′. The resulting directed acyclic pitchfork graph is the braided diagram of g. The
process is similar for elements of BVn,r(H) and B̂Vn(H), but using forests instead of trees. Note
that not all braided diagrams are obtained as a consequence of this process.

3.3 Rewriting systems and confluence

As said on the beginning of this section, we use the theory of rewriting systems (Newman, 1942)
in order to prove that there exists a bijection between equivalence classes of braided diagrams
and elements of BVn(H).

Definition 15. Let Γ′ be a finite directed acyclic pitchfork graph. Suppose that Γ′ has a
collection of strands S that has a neighbourhood isotopic to a cylinder which does not contain
other edges. If, up to isotopy, this cylinder defines a braid α, we say that S is a sub-braid α
of Γ′. For example, in Figure 2, the collection of the second and third strands of β defines a
trivial sub-braid.

8



Definition 16. Let Γ′ = f(Γ) be the natural injection of a braided diagram Γ in R3. We define
the following moves on Γ:

(1) Consider a split v1 and a merge v2 of Γ (and Γ′). Suppose that Γ′ has a sub-braid h on
n strands connecting every i-th edge of v1 with the h(i)-th edge of v2. Also suppose that
each strand of h contains a (possibly empty) sequence of white vertices {vh1 , . . . , vht(i)}
with h1 ◦ · · · ◦ ht(i) = h, where each t(i) depends on the strand.

Take the connected subgraphs Γ0 of Γ and Γ′0 of Γ′ formed by v1, v2, h, the edges starting
at v1 and the edges arriving at v2. Replace a neighbourhood of Γ′0 by the neighbourhood
of a single strand Γ′′0 containing a white vertex vh if h 6= Id; or a single strand with no
white vertices, if h = Id. Let Γ′′ be the new pitchfork graph. A 1-move replaces Γ by a
natural projection p(Γ′′) such that p(Γ′′ \ Γ′′0) = Γ \ Γ0. See Figure 6.

(2) Consider a merge v1 and a split v2 of Γ (and Γ′). Suppose that v1 and v2 are connected
by a strand d. Let {vh1 , . . . , vht} be a (possibly empty) sequence of white vertices on this
strand with h1 ◦ · · · ◦ ht = h.

Take the connected subgraphs Γ0 of Γ and Γ′0 of Γ′ formed by v1, v2 and d. Replace Γ′0
with the neighbourhood of the subgraph Γ′′0 obtained by adding a white vertex vh to every
strand of h. This braid connects the i-th edge of v1 with the h(i)-th edge of v2, for all
i ∈ {1, . . . , n}. If h = Id, then we replace the neighbourhood of Γ0 with the neighbourhood
of n edges connecting the i-th edge of v1 and the i-th edge of v2, with no crossings between
them. Let Γ′′ be the new pitchfork graph. A 2-move replaces Γ by a natural projection
p(Γ′′) such that p(Γ′′ \ Γ′′0) = Γ \ Γ0. See Figure 6.

h h h h h h

h1 h1

h2 h2

hn hn

h1

h2

hn

h h h

Figure 6: Examples of 1-moves and 2-moves, where h1 ◦ h2 ◦ · · · ◦ hn = h.

(3) Let Γ0 be the subgraph of Γ consisting of a crossing between two edges, such that one of
them contains a white vertex. Then a 3-move moves the white vertex along the crossing,
as Figure 7 shows.

(4) Let Γ0 be the subgraph of Γ consisting of one edge whose endpoints are two white ver-
tices vh1 and vh2 . A 4-move replaces the neighbourhood of Γ0 with the neighbourhood
of a strand containing a single white vertex vh2◦h1 . If h2 ◦ h1 = Id, it replaces the neigh-
bourhood of Γ0 with a strand with no white vertices. See Figure 7.
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(5) Suppose that in Γ we have a crossing between two strands such that one of them ends on a
split. Then a 5-move pushes the crossing along the split, such that the strand without the
split crosses the n strands of the split as in Figure 8. The same occurs for the symmetric
case involving two strands and one merge.

(6) Let Γ0 be the neighbourhood of the subgraph of Γ consisting of an edge e whose endpoints
are a merge and a white vertex vh, where e is the 0-th edge of the merge. Consider Γ1,
obtained from Γ0 by performing the inverse of a type 1-move on e. Let Γ2 be obtained
from Γ1 by performing a 2-move on the merge and the new split created by the previous
reduction. A 6-move replaces Γ0 with Γ2 (see Figure 8). The symmetric case (a split
whose 0-th edge has a white vertex as endpoint) is analogously treated. There are several
cases contained here, as the inverse of a 1-move is not unique.

h h

h h

h

h′
h′′

Figure 7: Examples of 3-moves and 4-moves, where h′ ◦ h = h′′.

h
h h

h

h h

Figure 8: Examples of 5-moves and 6-moves.

Definition 17. For two braided diagrams Γ, Γ′, we say that Γ′ is a reduction of Γ if there
exists a sequence of moves which takes Γ to Γ′. Two braided diagrams are equivalent if one is
a reduction of the other.

Definition 18. A braided diagram is reduced if no moves can be performed on it.

We construct a directed graph R from the set of all braided diagrams as follows: the vertex
set of R consists of the set of all braided diagrams. The vertices are called states. We have an
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oriented edge from a state s to a state s′ if we obtain s′ from s by performing a move. The
graph R is called a rewriting system.

Definition 19. A rewriting system R is terminating if every oriented path of R has finite
length. A state s is reduced if no oriented paths start from s.

Note that if a rewriting system is terminating, then every state has a reduced form.

Definition 20. We say that a rewriting system is locally confluent if for all triples of states
s0, s1, s2 such that s1 and s2 are reductions of s0, there exists a state s3 which is a reduction of
both s1 and s2.

Proposition 21. Every braided diagram is equivalent to a unique reduced braided diagram.

Proof. As it is explained in (Newman, 1942), we only need to show that the rewriting system
of braided diagrams is terminating and locally confluent.

Firstly, we claim that the rewriting system of a braided diagram is terminating. Let s be a
state representing a braided diagram, and consider a path starting from it. This path cannot
be infinite as:

• The number of 1-moves and 2-moves in the path is finite, as there is a finite number of
splits and merges on s. Both 1-moves and 2-moves reduce them, whereas the other moves
do not increase it.

• The number of 5-moves and 6-moves in the path is finite, as there is a finite number of
crossings followed by splits, merges followed by crossings, merges followed by white vertices
or white vertices followed by splits. The other moves do not increase these numbers.

• Finally, the number of 3-moves and 4-moves in the path is finite, as there is a finite number
of white vertices and white vertices followed by crossings. In this case, these numbers can
be increased by performing 5-moves and 6-moves, but they can be performed a finite
number of times, as we have seen.

Note that the previous facts are true because there are not oriented loops on any braided
diagram, by definition. Therefore, the process of reducing is finite, so the rewriting system is
terminating.

On the other hand, it is easy to check the local confluence for all moves, that is, if we
perform two different moves to the same braided diagram, there exists a braided diagram which
is a reduction of both. For this purpose, it is enough to check all possibilities: given a fixed
braided diagram Γ, let Γ′ (resp. Γ′′) be the braided diagram obtained from Γ by performing one
i-move (resp. one j-move). One needs to prove that there exists a braided diagram Γ′′′ which
is a reduction of both Γ′ and Γ′′, for all i, j ∈ {1, . . . , 6}. This is a laborious exercise left to the
reader.

Corollary 22. There is a bijection between classes of equivalent braided diagrams and classes
of equivalent elements of BVn(H).

Proof. We only need to prove that there is a bijection between reduced braided diagrams and
reduced elements of BVn(H), as performing reductions and expansions of an element in BVn(H)
corresponds to performing 1-moves and their inverses on the corresponding braided diagrams.

On the one hand, it is easy to see that a reduced element of BVn(H) produces a reduced
braided diagram when doing the construction described at the beginning of this section. On
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the other hand, given a reduced braided diagram, we obtain the corresponding reduced element
of BVn(H) by taking into account the following facts: every oriented path from a main source
to a main sink has the following form:

vmso → vs1 → · · · → vsi → vh → vm1 → · · · → vmj → vmsi

where vmso (resp. vmsi) is the main source (resp. the main sink), vs1 , . . . , vsi (resp. vm1 , . . . , vmj )
are splits (resp. merges) and vh is a white vertex.

• If there were a merge followed by a split we could perform a 2-move.

• If there were a white vertex before a split or after a merge, then we could perform a
6-move.

• If there were more than one white vertex on an oriented path, then we could perform a
4-move.

• Regarding the crossings, note that all strands must cross after the set of splits and before
the set of white vertices. Otherwise, we could perform a 5-move and a 3-move respectively.

Finally, consider making two cuts on every oriented path of the braided diagram as follows: one
cut between the last split and before any crossing of the corresponding strand; and the second
cut after the last crossing of the strand and before the white vertex (if exists). The result is a
division of the braided diagram into three pieces. The first one is the domain tree T , the second
one the braid β and the third one the range tree T ′ with a set of labels λ on its leaves. That is
the tree-pair representation of the element.

Note that this bijection turns out to be a homomorphism of groups: composing two elements
of BVn(H) corresponds to composing their corresponding braided diagrams by appending an
edge between the main sink of the former and the main source of the latter. Performing a 1-
move on a braided diagram corresponds to performing a reduction on the corresponding element
of BVn(H). 2-moves are used in order to compose braided diagrams, and they do not change
the equivalence class of the composition, as the reader can check. The same argument can be
applied to 3-moves and 5-moves. Finally, 4-moves allow us to compose recursive braids, and
6-moves do not properly appear on a composition of braided diagrams (they are compositions
of inverses of 1-moves with 2-moves), but they are needed in order to obtain locally confluence
on the rewriting systems.

Therefore, we have that B̂Vn(H) and BVn,r(H) are groups for every n, r ≥ 2 and H ≤ Bn,
as the definitions of moves and all proofs given in this section do not depend on the number of
main sources or main sinks of the braided diagrams.

4 Finite generation

In this section we show that the groups BVn(H) are finitely generated for every n ≥ 2 and
finitely generated H ≤ Bn. The proof is inspired by the one of (Higman, 1974, Chapter 4) for
Vn, based on the depth of the elements; and it is different from the one used in (Brin, 2006,
2007) for the braided Thompson group BV2.

The forthcoming proofs can seem very technical at a first sight, but they are very intuitive
when one draws the corresponding braided diagrams. We have pictured the diagrams with the
details that we believe can be more difficult to understand by only reading. However, before
going ahead, we advise to have in mind a clear picture of how the braided diagram of a tree-pair
looks like.
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Definition 23. We say that a tree T has depth d ≥ 1 if it contains exactly d different carets.
The depth of an element v = (T, β, λ, T ′) ∈ BVn(H) is the depth of both T and T ′.

For simplicity, we will sometimes refer to an element v ∈ BVn(H) as one of its tree-pair
representations (T, β, λ, T ′). We want to prove the following theorem.

Theorem 24. Let R be the n-ary tree of depth 1 and let R′ := R[1] if n = 2 and R′ := R[2]
otherwise. Then BVn(Bn), for n > 1 can be generated using the 2n following elements:

• The n generators of Fn (Brown, 1987), that is, the elements
(
R[n− 1], Id,

−→
Id,R[i]

)
, for

i = 0, . . . , n− 2 and
(
R[n− 1][(n− 1)(n− 1)], Id,

−→
Id,R[n− 1][(n− 1)0]

)
,

• the element
(
R′, σ2n−2,

−→
Id,R′

)
, and

• the n− 1 elements (R, Id, {σj , Id, . . . , Id}, R), for j = 1, . . . , n− 1.

σ1 σ2

Figure 9: The six generators of BV3(B3).

We depict in Figure 9 the six generators of BV3(B3). As we will see in Section 4.1.1, we can
adapt this theorem for each H ≤ Bn.

4.1 Proof of Theorem 24

Our strategy uses a special type of braid, called ribbon. The following definition is a particular
case of the ribbons defined in (Fenn et al., 1996). We say that a braid β is positive if it can be
written by using only positive powers of the Artin generators. Moreover, we say that a braid β
is simple if it is positive and every pair of strands crosses at most once.

Definition 25. Consider T and T ′ to be two finite full n-ary trees with the same number l of
leaves. Let c and c′ be final carets of T and T ′ respectively. Let R be the set of all simple braids
β ∈ Bl such that the natural injection in R3 of the braided diagram of (T, β, T ′) contains a
trivial sub-braid connecting the leaves of c to the leaves of c′. We define the ribbon r connecting
c to c′ as the braid in R having minimal length (as a word with respect to the positive Artin
generators).

We include here Figure 10 in order to help the reader. A ribbon is called like that because the
neighbourhood of the trivial sub-braid connecting the carets can be seen as a ‘ribbon’ or a ‘tube’
that the other strands cannot touch. This allows us to reduce a braided diagram associated to

(T, β,
−→
Id, T ′) by performing a 1-move, as shown in Section 3.

Definition 26. Let T and T ′ be two full finite n-ary trees. The least common multiple of T
and T ′ is the minimal full finite n-ary tree T ′′ with respect of expansions such that T ⊆ T ′′ and
T ′ ⊆ T ′′ as rooted full finite n-ary trees. See Figure 11.
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c

c′

Figure 10: A diagram containing a ribbon connecting c to c′, and its reduction.

Figure 11: The third tree is the least common multiple of the first two.

Let R be the tree of depth 1. Define the ‘spine’ tree Sd of depth d as the full finite n-ary
tree constructed inductively from R by expanding its last leaf, that is:

Sd = R[n− 1][(n− 1)(n− 1)] . . . [

d−1︷ ︸︸ ︷
(n− 1) . . . (n− 1)].

The proof of the following proposition gives a way to decompose elements of BVn(H).

Proposition 27. Let v = (T1, β, λ, T2) be an element of BVn(H) such that T1 (and T2) has
depth d > 4. Then we can express v as a product of elements in BVn(Bn) having depth less
than d. Let T3 be a tree of depth d with exactly 3 final carets. Then, each factor (T ′1, β

′, λ′, T ′2)
satisfies one of the following properties:

• T ′2 = T3, β′ is a ribbon and λ′ =
−→
Id.

• T ′1 = T3, β′ is a ribbon and λ′ =
−→
Id.

• T ′1 = T ′2 = T3, β′ = σ±1
i , where σi is an Artin generator and λ′ =

−→
Id.

• T ′1 = T ′2 has depth 1, β′ is trivial and λ′ = {σ±1
i , Id, . . . , Id}, where σi is an Artin

generator.

The moral of the proof, as well as in (Higman, 1974), is to decompose any element v ∈ BVn(H)
of depth d ≥ 4 into a product of elements which have less depth than v. We firstly do it for
elements of BVn, and then we deal recursive braids.

Proof. Let c1 be a final caret of T1 and let c2 be a final caret of T2. Let also c3 and c4 be
two different final carets of T3. Consider the ribbon r1 connecting c1 to c3 and the ribbon r2

connecting c4 to c2. Then(
T1, β,

−→
Id, T2

)
≡
(
T1, r1r

−1
1 βr−1

2 r2,
−→
Id, T2

)
≡
(
T1, r1,

−→
Id, T3

)(
T3, r

−1
1 βr−1

2 ,
−→
Id, T3

)(
T3, r2,

−→
Id, T2

)
,
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where≡means that all tuples (or compositions of tuples) represent the same element of BVn(H).

The diagram constructed from (T1, r1,
−→
Id, T3) is not reduced, because there is a ribbon r1 con-

necting c1 to c3 and one can perform a 1-move. Hence, the corresponding element has depth
less than d. Using the same argument, the element represented by (T3, Id, r2, T2) has depth less

than d. Also notice that (T3, r
−1
1 βr−1

2 ,
−→
Id, T3) is equivalent to a product of elements of the form

(T3, σ
±1
i ,
−→
Id, T3). Since T3 has 3 final carets and σ±1

i is a crossing of two consecutive strands,
we can always reduce its diagram. This means that it has depth less than d.

Let T4 be the spine tree Sd. Let also T5 be the full finite n-ary tree of depth 1 and notice that
the least common multiple of T4 and T5 is T4, as T5 ⊂ T4. Suppose that we have (T1, β, λ1, T2),
where λ1 = {`1, . . . , `j , . . . , `m}. We show that is possible to obtain an element (T1, β, λ

′
1, T2)

from the previous one such that λ′1 = {`1, . . . , `jσ±1
i , . . . , `m} for some σi. Let γ be any braid

performing the permutation γ(j) = 1, and λi,j = {`k}mk=1 such that `j = σ±1
i and `k = Id if

k 6= j. Then, we have

(T1, β, λ1, T2)
(
T2, γ,

−→
Id, T4

)
(T5, Id, λi,1, T5)

(
T4, γ

−1,
−→
Id, T2

)
≡ (T1, β, λ1, T2) (T2, Id, λi,j , T2)

≡ (T1, β, λ2, T2) .

Since we have already shown that we can express (T2, γ
±1,
−→
Id, T4) using the desired generators,

this finishes the proof.

Note that the previous proof works for depth d ≥ 5 because 5 is the minimal depth that T3

can have for n = 2. Also notice that the previous proposition can be refined to obtain a set
of generators for BVn(H) if H is finitely generated, by using recursive braids (labels) that
correspond to the generators of H.

Let T be the depth 1 tree. We define

T (n) =

{
T [0][1][00][01], if n = 2,

T [0][1][2], if n > 2.

Let m(n) be the number of leaves of T (n).

Corollary 28. For every n ≥ 2, BVn(Bn) is finitely generated. In addition, every generator
has depth at most 5 (4 if n ≥ 3), and has a tree pair representative (T, β, λ, T ′) satisfying one
of the following conditions.

• T ′ = T (n), β = Id and λ =
−→
Id. This generator is denoted by eT , regarding the domain

tree T of (T, β, λ, T ′).

• T = T ′ = T (n), β = σi, where σi is an Artin generator of Bm(n) and λ =
−→
Id. This

generator is denoted by hi.

• T = T ′ has depth 1, β is trivial and λ = {σj , Id, . . . , Id}, where σj is an Artin generator
of Bn. This generator is denoted by gj.

Proof. As one can always perform the inverse of a 1-move to a diagram, we can always apply
Proposition 27 (performing the inverse of a 1-move corresponds to expanding the domain and
the range trees of the corresponding tree pair). Then, by applying induction on the depth of
elements, it follows that we can use as generators the elements described in Proposition 27 by
replacing T3 with T (n). All these elements have depth less than 4 (or 3 if n ≥ 3).

15



Notice that (T (n), σi,
−→
Id, T (n)) is the inverse of (T (n), σ−1

i ,
−→
Id, T (n)), so we can consider only

the first one as a generator. Analogously, we can discard the (T, Id, λ, T ) containing λ =
{σ−1

j , Id, . . . , Id}. On the other hand, if β is a ribbon, we have that(
T, β,

−→
Id, T (n)

)
≡
(
T, Id,

−→
Id, T (n)

)(
T (n), β,

−→
Id, T (n)

)
.

Observe that (T (n), β,
−→
Id, T (n)) can be written as a product of elements with representatives

(T (n), σ±1
i ,
−→
Id, T (n)). Then use (T, Id,

−→
Id, T (n)) as a generator and get rid of (T, β,

−→
Id, T (n)).

Similarly, we can replace the generators of the form (T (n), β,
−→
Id, T ) by (T (n), Id,

−→
Id, T ). Finally,

notice that (T (n), Id,
−→
Id, T ) is the inverse of (T, Id,

−→
Id, T (n)), hence we can discard it.

Remark 29. Notice that the set of generators {eT , h1, . . . , hm(n)−1}, for all trees T of depth less
than 5 (or 4 if n > 2), generate all elements in BVn. Also, if SH is a generating set for H ≤ Bn
and T is the n-ary tree of depth 1, we can substitute the set of generators gj by the set of
generators (T, Id, {s, Id, . . . , Id}, T ) for every s ∈ SH .

Example. Figure 12 is a visual example of how to decompose an element of BV3(B3), repre-
sented by (T, σ2, {σi, Id, . . . , Id}, T ′), using the generators of Corollary 28. Let Td(3) be a n-ary
tree of depth d with exactly 3 final carets. The reader will notice that, to make this example
simpler, we always choose Td(3) such that we already have the necessary (trivial) ribbons to
reduce the depth of elements. We describe now the decomposition process.

The element (T, σ2, {σi, Id, . . . , Id}, T ′) has depth 5 and is decomposed as(
T, Id,

−→
Id, T5(3)

)(
T5(3), σ2,

−→
Id, T5(3)

)(
T5(3), Id,

−→
Id, T ′

)(
T ′, Id,

−→
Id, S5

)
gi

(
S5, Id,

−→
Id, T ′

)
1. The element (T, Id,

−→
Id, T5(3)) has a ribbon connecting the leftmost final carets of T and

T5(3). Then, there is an equivalent representative (T1, Id,
−→
Id, T ′1) of depth 4 obtained by

performing a 1-move that removes the previous final carets. This new representative is

decomposed as the product (T1, Id,
−→
Id, T (3))(T (3), Id,

−→
Id, T ′1), where T1 (resp. T ′1 is a

reduction of T (resp. T5(3)).

2. The element (T5(3), σ2,
−→
Id, T5(3)) has a ribbon connecting the second final carets of both

T5(3)’s. Then, there is an equivalent representative (T2, σ2,
−→
Id, T2) of depth 4 obtained by

removing the previous final carets. This new representative is decomposed as the product

(T2, Id,
−→
Id, T (3))(T (3), σ2,

−→
Id, T (3))(T (3), Id,

−→
Id, T2).

3. The element (T5(3), Id,
−→
Id, T ′) has a ribbon connecting the second final carets of T ′ and

T5(3). Then there is an equivalent representative (T3, Id,
−→
Id, T ′3) of depth 4 obtained by

removing the previous final carets. This new representative is decomposed as the product

(T3, Id,
−→
Id, T (3))(T (3), Id,

−→
Id, T ′3).

4. The element (T ′, Id,
−→
Id, S5) is decomposed as (T ′, Id,

−→
Id, T5(3))(T5(3), Id,

−→
Id, S5). In this

case, one can redefine T5(3) such that:

(a) The element (T ′, Id,
−→
Id, T5(3)) has a ribbon connecting the leftmost final carets of T ′

and T5(3). Then there is an equivalent representative (T4, Id,
−→
Id, T ′4) of depth 4 ob-

tained by removing the previous final carets. This new representative is decomposed

as the product (T4, Id,
−→
Id, T (3))(T (3), Id,

−→
Id, T ′4).
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(1)

(2)

(3)

(1)

(2)

(3)

Figure 12: How to decompose v ∈ BV3(B3) in generators of depth less than 5.
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(b) (T5(3), Id,
−→
Id, S5) has a ribbon connecting the rightmost final carets of T ′ and T5(3).

Then there is an equivalent representative (T5, Id,
−→
Id, T ′5) of depth 4 obtained by

removing the previous final carets. This new representative is decomposed as the

product (T5, Id,
−→
Id, T (3))(T (3), Id,

−→
Id, T ′5).

Therefore, the element (T, σ2, {σi, Id, . . . , Id}, T ′) is also represented by the word

eT1e
−1
T ′
1
eT2h2e

−1
T2
eT3e

−1
T ′
3
eT4e

−1
T ′
4
eT5e

−1
T ′
5
gieT ′

5
e−1
T5
eT ′

4
e−1
T4
.

The set of generators in Corollary 28 can be further reduced. The following two lemmas will
prove that we just need only one generator of type hi, namely hm(n)−1.

Lemma 30. The generators hi, for 1 ≤ i ≤ n− 1, of Corollary 28 can be expressed with words
containing only generators of type e and g.

Note that, once this lemma will be proved, the generators hi for i ∈ {n, . . . ,m(n) − 1} will
remain. They will be treated in the next lemma, proving that only hm(n)−1 is needed.

Proof. First of all, notice that vi := (T (n), σi, λi, T (n)), where λi = {
n︷ ︸︸ ︷

σi, . . . , σi, Id, . . . , Id} is
equivalent to the generator gi.

Define

w
(k)
i :=

(
T (n), Id, {µj}m(n)−1

j=0 , T (n)
)

where

{
µj = σi, if j = k,

µj = Id, otherwise.

zi :=
(
T (n), σi, {ξj}m(n)−1

j=0 , T (n)
)

where

{
ξj = σi, if j ∈ {i+ 1, . . . , n− 1},
ξj = Id, otherwise.

for i ∈ {1, . . . , n− 1}.

Claim. For any i ∈ {1, . . . , n− 1}, the elements zi and w
(k)
i , with 0 ≤ k ≤ i, can be generated

by using only type e and type g generators.

We prove it by induction. For k = 0, w
(0)
i ≡ e−1

Sd
gieSd

, where Sd is a spine tree and d is the
depth of T (n) depending on whether n = 2 or not. Suppose that the claim holds for j < k < i.

We need to prove that we can generate w
(k)
i . Denote by rp the braid σpσp−1 · · ·σ1 for p > 1 and

consider the element represented by r(k) := zkzk−1 · · · z1 for 0 ≤ k < i. A representative of this
element is (T (n), rk, ρk, T (n)), where

ρk = {Id, Id, r1, r2, . . . , rk,

n−k−2︷ ︸︸ ︷
rk+1, . . . , rk+1, Id, . . . , Id}.

Then we have that w
(k)
i ≡ r(k)e−1

S gieSr(k)−1, for 0 ≤ k < i (see Figure 13).

Now define xi := vi

(
w

(i−1)
i

)−1
, so w

(i)
i ≡ vix

−1
i (see Figure 14). To finish the proof of the

claim, notice that zi ≡ vi
(
w

(0)
i

)−1 (
w

(1)
i

)−1
· · ·
(
w

(i)
i

)−1
.

To prove the statement of the lemma, we also proceed by induction. For i = n− 1, hn−1 =
zn−1. Now suppose that the statement holds for i + 1, we prove it for i. By Claim 1, we have
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seen that w
(i−1)
i can be expressed using generators of type e and g. We prove that hi is equal

to the following product:

hi+1w
(i−1)
i zihi+1z

−1
i

(
w

(i−1)
i

)−1
h−1
i+1.

σ2σ1σi

σ−1
2σ−1

1

w
(2)
i

≡≡

r(2)

e−1
S

gi

eS

r(2)−1

Figure 13: w
(2)
i ≡ r(2)e−1

S gieSr(2)−1 for n = 4. Consider the diagrams up to equivalence to
match the labels.

σ−1
1

σ1

v1

x−1
1

≡ ≡ σ1
w

(1)
1

Figure 14: w
(1)
1 ≡ v1x

−1
1 for n = 3. Consider the diagrams up to equivalence to match the

labels.
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Notice that zihi+1z
−1
i ≡

(
T (n), σiσi+1σ

−1
i , {νj}m(n)−1

j=0 , T (n)
)

, where νi−1 = σi, νi+1 = σ−1
i

and νj = Id if j 6= i, i + 2 (see Figure 15). By the braid relation σiσi+1σ
−1
i (i) = i + 2, the

conjugate of
(
T (n), σiσi+1σ

−1
i , {νj}m(n)−1

j=0 , T (n)
)

by w
(i−1)
i has trivial labels. Hence we obtain

hi+1

(
T (n), σiσi+1σ

−1
i ,
−→
Id, T (n)

)
h−1
i+1 ≡

(
T (n), σi+1σiσi+1σ

−1
i σ−1

i+1,
−→
Id, T (n)

)
.

By using braid relations we know that σi+1σiσi+1σ
−1
i σ−1

i+1 = σi, so the expression is equivalent
to hi, as we wanted to prove.

σ2 σ−1
2z2

h3

z−1
2

≡≡

Figure 15: z2h3z
−1
2 ≡ (T (4), σ2σ3σ

−1
2 , ν2, T (4)) for n = 4. Consider the diagrams up to equiva-

lence to match the labels.

Lemma 31. All generators hi, for i ≥ n, can be expressed in terms of generators hi for i < n
and hm(n)−1.

Proof. We proceed by induction. Let c be the right-most final caret of T (n):

c =

{
{10, 11} if n = 2,
{20, . . . , 2(n− 1)} otherwise.

Let also

T1 =

{
T (n)[c]−1[000] if n = 2,

T (n)[c]−1[00] otherwise;
and T2 =

{
T (n)[c]−1[001] if n = 2,

T (n)[c]−1[01] otherwise.

Note that h1 ≡
(
T1, σnσn−1 . . . σ1,

−→
Id, T2

)
. Hence we have the product (see Figure 16):

hn ≡
(
T (n), Id,

−→
Id, T1

)
h1

(
T2, Id,

−→
Id, T (n)

)
h−1

1 h−1
2 · · ·h

−1
n−1.

Suppose that the statement of the lemma is true for every j < i when i > n, and let
T ′(n) := T (n)[c]−1[n − 1] for n > 3, that is, the tree obtained from T (n) by attaching a final
caret to its last leaf and erasing the final caret c. If n = 2, 3, we set T ′(n) = T (n). Also let
T ′′(n) := T ′(n)[{(n− 1)0, . . . , (n− 1)(n− 1)}]−1[0]. Notice that, for 1 < i < m(n)− n, we have(

T ′(n), σi,
−→
Id, T ′(n)

)
≡
(
T ′′(n), σi+n−1,

−→
Id, T ′′(n)

)
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Then we obtain hi using the following product (see Figure 17):

hi ≡
(
T (n), Id,

−→
Id, T ′′(n)

)(
T ′(n), Id,

−→
Id, T (n)

)
hi−n+1

(
T (n), Id,

−→
Id, T ′(n)

)(
T ′′(n), Id,

−→
Id, T (n)

)
.

h−1
2

h−1
1

h1

(T (3), Id, T1)

(T2, Id, T (3)) h1≡

Figure 16: h3 ≡ (T (3), Id, T1)h1(T2, Id, T (n))h−1
1 h−1

2 for n = 3.

≡ h11
(T ′(4), σ8, T

′(4))

(T (4), Id, T ′′(4))

(T ′′(4), Id, T (4))

Figure 17: How to shift a crossing to the right using conjugation when n = 4. Consider the
diagrams up to equivalence to match the labels.
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The generators of type e belong to the well studied Thompson’s group Fn, consisting of all
elements represented by triples (T, τ, T ′) where τ is trivial. This group is finitely generated:

Lemma 32 (Brown, 1987, Cannon et al., 1996). The generators of type e in Corollary 28 can
be generated by using the n elements x0, . . . , xn−1 depicted in Figure 18.

Therefore, we have proved that the 2n elements in Theorem 24, which are precisely x0, . . . , xn−1,
hm(n)−1, g1, . . . , gn−1, generate BVn(Bn).

xi i

i ∈ {0, . . . , n− 2}

xn−1

Figure 18: Generators of Fn.

4.1.1 Other generating systems for specific subgroups H

The reader must have noticed that in most of the cases, the set of generators given in Theorem 24
is not contained in BVn(H).

If H is trivial, Remark 29 together with Lemma 31 and Lemma 32 provide another set of 2n gen-
erators for BVn that is contained in BVn. These elements are x1, . . . , xn, h1, . . . , hn−1, hm(n)−1.
In particular, BV2 is generated by x1, x2, h1 and h5. The generators of BV2 given by (Brin,
2006) are also four: x1, x2, h1 and (R, σ1, R), where R is the tree of depth 1.

In general, if there is a known generating system SH for H, one can use the three mentioned
results to obtain a generating system

{(R, Id, {s, Id, . . . , Id}, R) | s ∈ SH} ∪ {x1, . . . , xn, h1, . . . , hn−1, hm(n)−1}.

4.2 The specific case when H is a parabolic subgroup.

Important types of subgroups H are parabolic subgroups. If Σ is the set of Artin generators of
Bn, a standard parabolic subgroup AX is the subgroup of Bn generated by a subset X ⊂ S. A
parabolic subgroup is defined as any conjugate of a standard parabolic subgroup. To obtain a
set of 2n generators in BVn(AX), one shall slightly modify the proof of Lemma 30:

Lemma 33. Let X be a subset of the Artin generators Σ of Bn. The generators hi in Corol-
lary 28 such that σi ∈ X can be expressed as a word using generators of type e, hj such that
σj ∈ Σ \X and gi such that σi ∈ X.

Proof. As for Lemma 30, let

w
(k)
i :=

(
T (n), Id, {µj}m(n)−1

j=0 , T (n)
)

where

{
µj = σi, if j = k,

µj = Id, otherwise.

zi :=
(
T (n), σi, {ξj}m(n)−1

j=0 , T (n)
)

where

{
ξj = σi, if j ∈ {i+ 1, . . . , n− 1},
ξj = Id, otherwise.
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for i ∈ {1, . . . , n− 1}. Let also I := {i |σi ∈ X}.

Claim. For any i ∈ I, the elements zi and w
(k)
i , with 0 ≤ k ≤ i, can be expressed by using

generators of type e, hj such that j 6∈ I and gi′ such that i′ ∈ I.

For k = 0, w
(0)
i ≡ e

−1
S gieS , where S is the spine tree of same depth as T (n). We have also seen

that if xi := gi

(
w

(i−1)
i

)−1
, then w

(i)
i ≡ gix

−1
i . Since zi ≡ gi

(
w

(0)
i

)−1 (
w

(1)
i

)−1
· · ·
(
w

(i)
i

)−1
, we

have to prove that w
(k)
i is generated as desired, for 1 < k < i.

Suppose that the claim holds for j < k < i. Denote by rp the element σpσp−1 · · ·σ1 for p > 1
and let r′p := σ′pσ

′
p−1 · · ·σ′1 where σ′q = σq if q ∈ I and σ′q = Id, if q 6∈ I. Consider the element

represented by r(k) := z′kz
′
k−1 · · · z′1 for 0 ≤ k < i, where z′q = zq if q ∈ I and z′q = hq, if q 6∈ I.

A representative of this element is (T (n), rk, ρk, T (n)) where

ρk = {Id, Id, r′1, r′2 . . . , r′k,
n−k−1︷ ︸︸ ︷

r′k+1, . . . , r
′
k+1, Id, . . . , Id}.

Then we have that w
(k)
i ≡ r(k)e−1

S gieSr(k)−1, for 0 ≤ k < i. This finishes the proof of the
claim.

Finally, as hn−1 = zn−1, the result follows by induction using the product:

hi+1w
(i−1)
i zihi+1z

−1
i w

(i−1)
i

−1
h−1
i+1.

Proposition 34. Let X be a subset of the Artin generators Σ of Bn. Then BVn(AX) is
generated by 2n elements in BVn(AX), namely the set

{x0, . . . , xn−1} ∪ {hi |σi ∈ Σ \X} ∪ {hm(n)−1} ∪ {gi |σi ∈ X}.

Similarly, BVn(α−1AXα), α ∈ Bn , is generated by the following set of 2n elements:

{h−1
α x0hα, . . . , h

−1
α xn−1hα}∪{h−1

α hihα |σi ∈ Σ\X}∪{h−1
α hm(n)−1hα}∪{h−1

α g−1
α gigαhα |σi ∈ X},

where hα :=
(
T (n), α,

−→
Id, T (n)

)
, gα := (R, Id, {α, Id, . . . , Id}, R) and R is the n-ary tree of

depth 1.

Proof. For AX , this a direct consequence of Remark 29, Lemma 31, Lemma 32 and Lemma 33.
As conjugacy defines a group isomorphism, it is easy to proof (see Remark 29) that

h−1
α {x0, . . . , xn−1, h1, . . . , hm(n)−1}hα ∪ h−1

α g−1
α {gi |σi ∈ X}gαhα

generates BVn(α−1AXα). This set can be reduced to

h−1
α {x0, . . . , xn−1, h1, . . . , hn−1, hm(n)−1}hα ∪ h−1

α g−1
α {gi |σi ∈ X}gαhα

by reproducing the proof of Lemma 31 with all elements conjugated by hα. We need to show
that one does not need hi such that σi ∈ X in this generating system. To prove that, we
encourage the reader to rewrite the proof of Lemma 33, doing the following conjugacy changes:

• Redefine w
(k)
i := h−1

α

(
T (n), Id, {µj}m(n)−1

j=0 , T (n)
)
hα with µk = α−1σiα and µj = Id

when j 6= k.
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• Redefine zi := h−1
α

(
T (n), σi, {ξj}m(n)−1

j=0 , T (n)
)
hα with ξj = α−1σiα when j = i +

1, . . . , n− 1 and ξj = Id otherwise.

• Conjugate generators of type e and h by hα and conjugate generators of type g by gαhα.

• Conjugate all σq by α.

4.3 Finite generation for BVn,r(H)

It is straightforward to prove that the groups BVn,r(H) are finitely generated by using the meth-
ods of Section 4.1 together with a result of (Brown, 1987), whose proof is included hereunder
for completeness.

Theorem 35. Let n ≥ 2. Then Fn,r ' F̂n for every r ≥ 1.

Proof. Every Vn,r contains an isomorphic copy of V̂n in the following way: consider the set of
r roots of Vn,r and expand the last one by adding a final caret to the r-th root. We continue
this process expanding the rightmost leaf of the resulting tree, and so on. The final result is an
infinite right spine appended to the last root. This tree is invariant by any element of Fn,r, so

the restriction map Fn,r → F̂n is an isomorphism.

Theorem 36. If H ≤ Bn is finitely generated, the groups BVn,r(H) are finitely generated for
all n ≥ 2, r ≥ 1.

Proof. All the ideas applied in this section can be adapted to any BVn,r(H), getting similar
generators of type g, h and e. This is an easy but laborious exercise. In particular, the generators
of type e are elements in Fn,r, so we can replace them by the generators of Fn,r, which can be
obtained via the isomorphism of Theorem 35.

1 r − 1

r
r + 1
r + 2

r + n

1 2 3 4

Figure 19: The isomorphism between Fn,r and F̂n.

The next step on the study of these groups is to ask whether they are finitely presented.

Conjecture. BVn,r(H) is finitely presented when H is finitely presented.

Our guess is that this conjecture should be true, because it is likely that Brin and Dehornoy
methods to find presentations for BV2 can be extended to BVn,r (or at least to BVn). Once a
presentation for BVn,r is found, it should be possible to deal with white vertices. We have tried
to find a presentation for BVn,r(H) using braided diagrams but we have not succeeded so far.

Acknowledgments
We thank the referee of this paper for a careful reading and a thoughtful report.

24



The first author wants to acknowledge financial support from the Spanish Ministry of Sci-
ence and Innovation, through the “Severo Ochoa Programme for Centres of Excellence in R&D”
(SEV-2015-0554) and from the Spanish National Research Council, through the “Ayuda extraor-
dinaria a Centros de Excelencia Severo Ochoa” (20205CEX001). He is also grateful to Javier
Aramayona for conversations around the material in this note.

The second author was supported by the research grants MTM2016-76453-C2-1-P (financed
by the Spanish Ministry of Economy and FEDER), US-1263032 (financed by the Andalusian
Ministry of Economy and Knowledge and the Operational Program FEDER 2014–2020) and
EP/S010963/1 (financed by the Engineering and Physical Sciences Research Council in UK).
She wants to thank Heriot-Watt University and University of Burgundy, especially Alexandre
Martin and Luis Paris, for the postdoc contracts that have allowed her to continue working on
research, and in particular on this paper. She is always grateful to Juan González-Meneses for
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