HERIOT
WATT

% UNIVERSITY

Heriot-Watt University
Research Gateway

Cache Modelling in a Performance Evaluator of Parallel Database
Systems

Citation for published version:

Zhou, S, Tomov, N, Burger, AG & Taylor, H 1997, 'Cache Modelling in a Performance Evaluator of Parallel
Database Systems', Paper presented at Proceedings of the Fifth International Symposium on Modeling,
Analysis and Simulation of Computer and Telecommunication Systems , IEEE Computer Society Press.,
1/01/97 pp. 46-50.

Link:
Link to publication record in Heriot-Watt Research Portal

Document Version: _
Early version, also known as pre-print

General rights

Copyright for the publications made accessible via Heriot-Watt Research Portal is retained by the author(s) and /
or other copyright owners and it is a condition of accessing these publications that users recognise and abide by
the legal requirements associated with these rights.

Take down policy

Heriot-Watt University has made every reasonable effort to ensure that the content in Heriot-Watt Research
Portal complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact open.access@hw.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 20. Jun. 2025

https://researchportal.hw.ac.uk/en/publications/bb9d30a6-8b5c-4351-9bfe-057bb5bdb181

MASCOTS’97 0

Cache Modelling in a Performance Evaluator

of Paralle]l Database Systems

S Zhou, N Tomov, M H Williams, A Burger and H Taylor

July 12, 1996 DRAFT

MASCOTS’97 1

Modelling Cache Memory in a Parallel Database
Performance Evaluator

Keywords: parallel DBMS, cache behaviour prediction, throughput estimation.

I. INTRODUCTION

Parallel database management systems (DBMS) are generally recognised as one of the
most important application areas for commercial parallel systems today. However, the
task of understanding, managing and especially predicting the performance of a parallel
database system is complex. Performance depends on many factors, such as the character-
istics of the DBMS, the architecture of the system, the pattern of queries, the way in which
queries are optimised and the way in which items of data are distributed across the nodes
of the system (data placement). A small change in configuration, data placement or work-
load can have a significant effect on performance. Consequently, prediction of the effect on
performance of changes to various system parameters relies heavily on having an accurate
model of performance measures such as throughput, response time and utilisation for given
system configurations, data placement and workloads. For such a model to be realistic it
must take into consideration a number of factors, among them DBMS concurrency control
strategy, logging policy, background activity and cache coherency protocol.

DBMSs running on current commercial parallel machines are based either on shared
data (or shared disk) model or on partitioned data (or shared nothing) model. In the case
of shared data, each of the nodes of the parallel machine may access and modify data
residing on the disks of any of the nodes of the configuration. In the case of partitioned
data, each node owns the portion of the database that resides on its disks, and it cannot
directly read or modify data owned by other nodes. In both cases the nodes maintain
caches which store copies of database pages, recently accessed by transactions running on
the node. This reduces 1/0 activity at the node, as well as remote data access. However,
for parallel database systems utilising the shared data model it introduces the cache co-
herency problem [5]: since the same database page(s) may be cached at more than one
node at any one time, cache coherency policies must be used to ensure that transactions

only see current data. There are a number of cache coherency policies developed in the

July 12, 1996 DRAFT

MASCOTS’97 2

literature, and a number of studies comparing their performance. In this paper we de-
scribe the Oracle7 Parallel Database Server cache coherency policy as implemented in
the GoldRush MegaServer [7] and develop an analytical cache memory model for it. The
model is developed in the context of a parallel database performance evaluation tool, called
STEADY.

The rest of the paper is organised as follows. Section 2 describes STEADY and shows
how the cache memory model relates to other modules of the tool. Section 3 briefly reviews
several types of cache coherency policies, and discusses Oracle7 parallel cache management
in detail. In section 4 we develop an analytical model of this policy. Finally, in Section 5

we present some preliminary results from our model.

II. AN ANALYTICAL PARALLEL DBMS PERFORMANCE EVALUATOR

STEADY (System Throughput Estimator for Advanced Database sYstems) [10], [9] is
an analytical tool for performance estimation of shared-nothing parallel database systems.
Apart from a graphical user interface, it consists of four major modules:

1. DPtool is used to generate various data placement schemes for a parallel database

using different strategies;

2. The Profiler is a statistical tool primarily responsible for generating base relation

profiles and estimating the number of tuples resulting from data operations;

3. The Modeller is responsible for producing the workload profile for a particular bench-

mark or application with assistance from the Profiler;

4. The Evaluator takes in workload profiles and predicts the utilisation of each resource

and from it the maximum system throughput values and system bottlenecks.

Relations are partitioned into fragments by DPtool using declustering methods such
as hash and range. These fragments are then allocated to processing elements (PEs)
in such a way as to achieve a balance of disk access frequencies or data size across the
PEs or to minimise the network traffic for transferring data. Based on the generated
data placement and the chosen DBMS architecture, a workload profile for a particular
benchmark or application can be generated by the Modeller, which includes an estimation
of disk 1/O requirements in terms of the number of pages read and written to each disk in

the system. This estimation is derived on the basis of the estimated cache hit ratios for the

July 12, 1996 DRAFT

MASCOTS’97 3

particular relation fragments in the cache memory of each PE. The workload profiles are
then converted by the Evaluator into resource utilisation profiles to determine the system
bottlenecks. From this the maximum throughput rate is determined. Thus gives users an

indication on the upper limit of system capacity in terms of throughput.

ITI. CacHE COHERENCY POLICIES
A. Overview

Cache coherency policies are studied in two somewhat different multi-system database
environments. In the case of a client/server database architecture, the database resides on
the server, while applications programs run on client workstations and access the database
by communicating with the server. The number of messages between client and server may
be reduced by caching a portion of the database on the client. A cache coherency protocol
is used to ensure that each client’s cache remains consistent with the shared database.
Wilkinson and Neimat [8], and Wang and Rowe [6] address this problem, and detail several
cache coherency policies. Common to them is the fact that they are integrated with the
concurrency control policy of the DBMS.

In the case of a parallel database architecture using the shared data model, the database
is accessible from each node in the system. The nodes maintain caches that store recently
accessed database pages. A cache coherency policy must ensure that database pages in
several caches are up to date. This means that a page updated by a transaction on a given
node must either be propagated to all other nodes, or all nodes that have copies of the
page in their caches must invalidate them.

In [3] six coherency policies are examined and compared. They fall into three categories.
Under the notification of invalidated pages category, the updating node sends the identity
of the updated pages to remote nodes at transaction commit time, so that they may
invalidate old copies of the pages, if they are present in their caches. Under the detection
of invalidated pages category no messages are sent, but the validity of a page is established
by the accessing node at page access time. Under the propagation of invalidated pages
category, the updated pages themselves are propagated to the remote nodes at transaction

commit time. Common to these policies is the assumption that the DBMS operates under

July 12, 1996 DRAFT

MASCOTS’97 4

the force scheme: at the transaction commit point all updates are propagated to disk and
all associated locks are released.

Several cache coherency policies have been proposed that support a no-force or deferred
write scheme. Under this scheme the propagation of updated database pages to disk is
delayed beyond the transaction commit point and locks on the pages are retained. While
increasing the recovery complexity, this has the advantage of reducing the number of
disk writes. However, care must be taken to guarantee cache coherency in cases when an
updated page which has not yet been written to disk (referred to as a dirty page) is needed
by another node. Mohan and Narang [5] propose several coherency policies based on the
no-force scheme and exclusive lock retention. Similarly, in [2] Dan and Yu give details of
five coherency policies and compare their performance through analytical models. Two
of the policies are based on the force scheme, while the remaining three retain locks on
cached database pages. The policies differ in the degree of database recovery complexity

that they impose; however, common to all is their integration with the concurrency control

mechanism of the DBMS [4].

B. Oracle7 Parallel Cache Management

The Oracle7 Parallel Database Server [1] architecture is given in Figure 1. The system
consists of a number of loosely coupled nodes on which instances of the Oracle7 Parallel
Server are running, sharing a common database at the disk level. There is a fast inter-
connecting network joining the nodes and a Distributed Lock Manager. The distributed
lock manager (DLM) of the loosely coupled system maintains the status of distributed
locks, thereby coordinating access to resources such as rollback segments, dictionary en-
tries and database pages, required by the instances of the Parallel Server. Here, we are
only concerned with database pages. The locks obtained through the DLM are only used
for the purpose of cache coherency management. For the purpose of concurrency control,
conventional transaction locks are used. The owners of DLLM locks are OracleT instances,
while transaction locks are owned by individual transactions.

The Oracle7 instance on each node maintains a local buffer (or cache) under the Least
Recently Used (LRU) buffer replacement scheme, used to cache database pages. When

a transaction on a particular instance requires access to a page, the instance acquires a

July 12, 1996 DRAFT

MASCOTS’97 5

DLM lock on the page on behalf of the transaction and reads the page into the cache.
The DLM locks associated with each database page in the cache are retained after the
transaction that requested the page has committed, provided no transactions in other
nodes are waiting for the same lock. A retained DLM lock is released or downgraded, and
the associated cache copy of the database page may be purged (depending on the lock
conflict — see below), if a DLLM lock on the same page is subsequently requested on behalf
of another transaction executing on a different node. A DLM lock may be requested on
behalf of a remote transaction many times during the lifetime of a local transaction. A
DLM lock may, therefore, be acquired and released many times if the database page it
covers is needed by transactions on other instances. For example:

o instance A becomes the owner of the DLLM lock covering the data page containing row

R1 and updates the row;

o instance B requests the page from instance A to update row R2;

o instance A releases the DLM lock;

o instance B becomes the owner of the page and the DLM lock and does its update of

row R2;

o instance A requests the page from instance B to update row R3;

o instance B releases the page and the DLLM lock;

o instance A becomes the owner of the page and DLM lock and updates row R3;

o instance A commits its transaction and still owns the PCM lock and the page until

another instance requests the page.

The retained DLM lock is also released if the buffer copy of the page is pushed out of
the cache. This happens when an instance must read in a new database page and the
LRU buffer is full. In this situation one or more database pages from the bottom of the
LRU buffer are written to disk to free the space required. This is also called a foreground
write.

The DLM locks are of two types: shared (S) and exclusive (X). With shared DLM
locks only the shared read requests can be granted to a local transaction, and the share-
locked page may be present in the LRU buffers of other instances. Exclusive DLM locks

ensure that no other instance has a copy of the page and update requests can be granted

July 12, 1996 DRAFT

MASCOTS’97 6

DISTRIBUTED LOCK MANAGER

Node 1 Node 2 Node N
LRU LRU e & LRU
— buffer buffer buffer
INTERCONNECT
| Cdisk |
@ ! SHARED
- * * * ' DATABASE

Fig. 1. The Oracle7 Parallel Database Server architecture to be modeled.

locally. At transaction commit time, redo-log entries are written to disk to guarantee
that the updates are permanently reflected in the database. The updated database pages,
however, are not immediately propagated to the disk (exclusive DLM locks are retained
on these pages). If subsequent transactions under the same instance update the same
blocks, only the final versions need to be propagated to disk, before releasing the DLLM
X locks, thereby saving write I/O and improving overall system throughput. A DLM X
lock is either downgraded to a DLM S lock or released, only if a DLLM lock on the same
database block is requested by a remote node either in S or X mode. When a DLM X
lock is about to be released or downgraded, the (dirty) data block is written to disk. The
updated database page can then be read by the requesting node, after the propagation to
disk is completed.

The cache coherency policy as used in Oracle which we want to capture in the model, 1s
as follows. Depending on the current status of the requested page and the requested lock
mode, the following cases arise:

1. An instance requests a database page (for read only or update access) on behalf of a

transaction and discovers that it is not present in any of the other instances’ caches.

July 12, 1996 DRAFT

MASCOTS’97 7

In this case the page is read in from disk and the appropriate DLM lock is set (S or
X).

2. An instance requests a database page for read only access on behalf of a transaction.
The required page may be:

(a) Held locally under DLM X lock. In this case no action is taken.

(b) Held locally under DLLM S lock. In this case no action is taken.

(c¢) Held by a remote instance under DLM X lock. In this case the remote instance
writes to disk the (dirty) page and downgrades its lock on this page from X to S.
The requesting node’s request for an S lock is granted after it reads the copy of the
page from disk.

(d) Held by one or more remote instances under DLM S lock. In this case the instance
reads the page from disk and locks it in S mode.

3. An instance requires a database page for update access. Again, the required page
may be:

(a) Held locally under DLM X lock. In this case no action is taken.

(b) Held locally under DLM S lock. In this case, if one or more remote instances hold
a copy of the page under DLM S lock, their locks are revoked. Then the requesting
instance upgrades its lock on the page from S to X.

(c) Held by a remote instance under DLM X lock. In this case, the remote instance
first writes the dirty database page to disk. The remote instance then releases its
lock and the requesting instance acquires it.

(d) Held by one or more remote instances under DLM S lock. In this case all the S
locks on the remote instances are revoked. The instance reads the page from disk
and places a DLM X lock on the page.

Writes are also propagated to disk, if an updated page is pushed out of the buffer (buffer
flushing) due to the buffer filling up. When a page is pushed out of the LRU buffer, its
associated DLM lock (S or X) is also released.

IV. A PARALLEL CACHE MEMORY MODEL

This section presents an analytical model of the cache coherency policy from the previous

section. Our model is derived following the approach originally developed by Dan and Yu

July 12, 1996 DRAFT

MASCOTS’97 8

in [2]. The Oracle7 parallel cache management as described above is similar to the Deferred
until Transfer or Flushing policy detailed in [2]. The model allows one to estimate the
number of DLM X and S locks held on pages in a particular node’s cache. This, in turn,

allows one to obtain an estimation of local and remote buffer hit probabilities.

Suppose
Gin’md’f: the number of reads required on the data of node n, disk d,
fragment f by a local transaction running on node m
0, inas= the number of reads required on the data of node n, disk d,
fragment f by a remote (to m) transaction running on node ¢
(i #)
0, .4s= the number of reads required on the data of node n, disk d,
fragment f by remote (to m) transactions
Let

¢ Ymmd.r(k) be the probability that the k' buffer location from the top of the LRU
buffer at node m contains a page of data from node n, disk d, fragment f;

o Tyndf(k) be the probability that the page is from node n, disk d, fragment f and is
holding an X lock;

o Yuna (k) denote the average number of pages of data from node n, disk d, fragment
f present in the top k buffer locations of node m;

o Xonnd (k) and Sy, na4(k) denote the average number of pages from node n, disk d,
fragment f holding X and S locks, respectively, in the top k locations of the LRU

buffer at node m.

Then
k
Vind (k) = D Ymma (1) (1)
=1
k
Xonas(k) = > tmnas(k) (2)
(=1
Smmd (k) = Younas(k) — Xpnar(k) (3)

A recursive formula is used to determine y,, . q¢(k + 1) and 2,4 5(k + 1) for & > 1

July 12, 1996 DRAFT

MASCOTS’97 9

given Y na (1) and x,n4.¢(1) for [= 1,...; k. Consider a smaller buffer consisting of the
top k locations only. The buffer location (k + 1) receives the block that is pushed down
from location k.

Suppose
Ommd,f(k)= the number of pages from node n, disk d, fragment f that are

pushed down from location &k in the LRU buffer at node m in a
transaction running on node m

O na. (k)= the number of pages from node n, disk d, fragment f holding X
locks that are pushed down from location k£ in the LRU buffer
at node m in a transaction running on node m

Dy = the size (in pages) of data on node n, disk d, fragment f

Vi, f = The probability that a page on node n, disk d, fragment f ac-

cessed by a transaction running on node m is also updated

The next two equations are based on the following assumption. Under steady-state
conditions, in the long term the number of pages that get pushed down from the top &
locations of the buffer equals the number of pages that are brought into the top & locations.

Hence

N
s 8) = Bl = PPN (52 0 a0
The first term on the RHS of the equation denotes the number of pages required by a
local transaction and not found in the buffer. Such pages are brought into the buffer from
disk and placed under DLM X or S locks. The second term is the number of pages that are
required by remote transactions for update and are found in instance m’s buffer (under
an X or S lock). Such pages are taken out of the buffer (after being written to disk).

Xm,n,d,f(k) r Xm7n7d7f(k)
G-T)rg,n,d,f(k‘) = 957%7n7d7f’)/m7n7d7f[1 - Td‘f] - 9m7n,d,f Dn if (5)

The first term on the RHS of the last equation denotes the number of pages required for
update by a local transaction and not found in the buffer. Such pages are brought into the

buffer from disk and placed under a DLM X lock. The second term is the number of pages

July 12, 1996 DRAFT

MASCOTS’97 10

that are requested by remote transactions and are found to be under a DLM X lock in
instance m’s buffer. Such pages must have their DLM X lock revoked: either downgraded
to S or set to “null”.

The next two equations follow from another assumption: the expected value of finding
a page from node n, disk d, fragment f in the (k4 1)th position of the LRU buffer of node
m, Ymndf(k+ 1), is approximately the same as the probability of finding a page from
node n, disk d, fragment f in the (k + 1)th position of the LRU buffer of node m in the
event that a page is pushed down from location k to location (k + 1).

Therefore, the probability ., ».4,¢(k + 1) can be approximated as

Omnd,f(F)

Ympndg(k+1) ~ 6
f() Zie{1..N},je{1..D},ze{1..F}Um,z’,j,l(k) ()

and

Ji,n,d,f(k)
Omn.d.f(K)
Given that the next page accessed by a transaction at node m is from node n, disk d,

xm,n,d,f(k + 1) ~ ym,n,d,f(k + 1) (7)

fragment f let

o byt . be the probability that the page is found in the local buffer of node m under
a DLM X lock;

. h;§b7d7f be the probability that the page is found in one of the remote buffers under a
DLM X lock;

o h% 4+ be the probability that the page is found in the local buffer of node m under
a DLM S lock;

. h:fde be the probability that the page is found in one of the remote buffers under a
DLM S lock, and it is not found locally.

The first two probabilities are easy to obtain, since a page under a DLM X lock can be

in at most one instance’s buffer. Thus

Xnnd f(B)

l,X m7n7d7f

hm7n7d7f = D df (8)
prX 2 Ximas(B) + YK, 400 Xinas(B) 9
myn,d,f T ()

Dy

July 12, 1996 DRAFT

MASCOTS’97 11

The sets of pages with DLM S and X locks are mutually exclusive, and therefore:

S (B)
LS m7n7d7.f
’ = 10
m7n7d7f Dn7d7‘f ()
Also,
S (B)
T,S Z,X T,X m7n7d7.f
hm,n,dd‘ = [1 - (hm,n,dJ + hm,n,dJ)][l - D i — Z]\il X, df(B)]
N
(B
R | L (1)
=1 im Drap — ity Xina,r(B)

Here, the first term is the probability that the page does not lie in the set of pages under
an X lock. The second term is the conditional probability that the page is not present in
the local buffer, given the first condition. The third term is the conditional probability
that the page appears in one of the remote buffers, given the first condition (the second
condition has no effect on this term since the effects are independent).

Finally, the overall buffer hit probability for a page of the data from node n, disk d,

fragment f, Ay, p.4.f, can be written as:

1L,X X S S
Pommdf = Pormdf + Pomdg T Pa g+ P a g (12)

V. SOME PRELIMINARY RESULTS OF THE APPROACH

This section presents some results of a study of cache hit ratios under varying database
size and varying number of participating processing elements using the Oracle7 Parallel
Server cache memory model described in the previous section. In this study, the number
of relation fragments assigned to each PE was varied from 20 to 90, with each fragment
having 400 pages. The size of the cache memory on each PE was set as 10K pages and
each page was 2K bytes. The number of participating PEs was varied among 4, 14, 24,
34, 44, 54 and 64. There are four disks attached to each PE. The database fragments
were distributed across disks in a round-robin fashion. The number of page read/write
operations required in a transaction on each fragment were generated randomly.

Fig. 2 illustrates the mean values of the four cache hit ratios for a PE - the mean values

of hi;fn’dj (local X), h:%);z,d,f (remote X), hﬁmdj (local S) and h;’fmd’f (remote S) over all

July 12, 1996 DRAFT

MASCOTS’97 12

cache hit cache-hit

ratio 4 Nodes ratio 24 Nodes
060 . 060 .
050 : CCTeax Yo 050 . : C%eax . e s
N o o o o :" o o o o E',;',;’,:,”‘ - - - " o . o o o :" o o o o ':' E',;',;’,:,”‘ - - -
: : remote X . remote S : : : remote X remote S
040 b 040 i\
030 ... % 030 .. h
020 %.B-g .\ 020 . T
: ; . :
010 % 010 R B e
a Sy : :
0.00 000 G B & & &
' ' ' ' fragments ' ' ' ' fragments
20.00 40.00 60.00 80.00 pér node 20.00 40.00 60.00 80.00 pér node
cache hit cache-hit
ratio 44 Nodes ratio 64 Nodes
060 . . 060 .
050 : : : local X <>IocaIS N 050 : : :
: : remote X remote S : :
040 i N il 040 - f N
030 A 030 . N
020 B TNETIN 020 O
0.00 _ & B NP PN NN, - 000 _&-—-& . 5 NN P
' ' ' ' fragments ' ' ' ' fragments
20.00 40.00 60.00 80.00 pér node 20.00 40.00 60.00 80.00 pér node

Fig. 2. The four cache hit ratios.

PEs and all fragments - estimated by the cache memory model when the number of PEs
were 4, 24, 44 and 64 and the number of fragments per PE was varied from 20 to 90 in
steps of 5. Fig. 3 shows the mean values of the overall cache hit ratios for a particular
PE, the mean values of h,, , 4 over all PEs and all fragments, when the number of PEs
were varied among 4, 14, 24, 34, 44, 54 and 64 and the number of fragments per PE was
varied from 20 to 90.

It can be seen from Fig. 2 that when the number of PEs is fixed and the number of
fragments per PE increases, all four cache hit ratios decrease. This is due to the fact that
the size of data on each PE increases while the cache size on each PE remains unchanged
and therefore the probability of a page being in the cache decreases. It can also be observed
that when the number of PEs increases, the probabilities that a page is found in the local
buffer of a PE holding either X lock or S lock (hi;fn’dj or h;€n7d7f) decreases. The reason

for this behaviour is that as the number of DBMS instances increases, the probability of

July 12, 1996 DRAFT

MASCOTS’97 13

overall . overall .
cache-hit cache-hit
ratio ratio
080 N 080 . B
070 5 AN 070 ...
0.60 0.60
0.50 0.50
0.40 0.40
0.30 0.30
020 . : : : 020 . : : :
20.00 40.00 60.00 80.00 fragments 20.00 40.00 60.00 80.00 fragments
per node per node
overall . overall .
cache-hit cache-hit
ratio ratio
]] Lo ‘ Lo
080 8 i 080 ...
070 ... 0.70 i AN e
0.60 0.60
0.50 0.50
0.40 0.40
0.30 0.30
020 : : : 020 . : : :
20.00 40.00 60.00 80.00 fragments 20.00 40.00 60.00 80.00 fragments
per node per node

Fig. 3. Overall cache hit ratio.

a page being held by other instances also increases which means the probability of a page
being held locally decreases. This is also evident in the increase of the probability that a
page is found in one of the remote buffers holding an S lock, h;fmdj, when the number of
PEs increases. The probability that a page is found in one of the remote buffers holding
an X lock is stable with increasing number of PEs since only one instance can hold an X
lock on a page at any time no matter how many PEs are used.

In Fig. 3, the overall cache hit ratio generally decreases as the number of fragments per

PE increases, although there are some irregularities in the process. The cache hit ratio

curve becomes smoother as the number of PEs increases. However, the value of the overall

July 12, 1996 DRAFT

MASCOTS’97 14

Runtime

runtime (seconds)

24 nodes
" 44nodes

64 nodes

’ ‘ ' fragments
20.00 40.00 60.00 80.00 Pernode

Fig. 4. The run times of the algorithm.

cache hit ratio is relatively stable as the number of PEs is varied. This is due to the fact
that when the number of fragments per PE is fixed, the ratio between the overall data
size (i.e. the amount of data over all PEs) and the overall cache memory size (i.e. the
sum of the sizes of cache memories over all PEs) remains unchanged as the number of PEs
changes.

Fig. 4 shows the run times of the cache memory model algorithm implemented in GNU
C++ and executed on a Pentium 133 with 16MB RAM. The execution time increases
linearly as the number of fragments increases. The larger the number of PEs, the faster
the increase in the execution time. The longest time obtained in our experiment is just

over 200 seconds for 60 PEs with 90 fragments per PE.

VI. CONCLUSIONS

Methods for estimating the performance of DBMSs can aid the sizing and tuning of
database applications by identifying potential performance bottlenecks or by predicting
the relative performance of different designs. Performance estimation is critical in parallel
database systems with distributed memory where an effective overall performance depends

on a good choice among a wide range of ways of placing data. To develop an analytical

July 12, 1996 DRAFT

MASCOTS’97 15

performance evaluator to perform performance estimations for applications running on
parallel DBMSs, a cache model for predicting cache hit ratios is critical in producing ac-
curate estimations. This paper described a cache model used in an analytical performance
estimation tool STEADY, which was developed for the cache management in Oracle7
Parallel Server. A prototype of this cache model has been developed for estimating the
overall cache hit ratios for applications executed by OracleT Parallel Server running on the
ICL. GoldRush MegaServer. Some preliminary results have been obtained by using the
cache model to predict cache hit ratios under varying database size and varying number
of participating processing elements in a parallel DBMS.

Work is currently being extended to use the cache model for estimating the number of
lock requests made by an Oracle instance through the GoldRush Distributed Lock Manager
for buffer pages held by remote instances. This will be coupled with other models currently
being developed within STEADY to produce an analytical performance evaluation tool
capable of estimating maximum throughput values for applications running on GoldRush

Oracle? Parallel Server.

ACKNOWLEDGEMENTS

The authors acknowledge the support received from the Commission of the European
Union under the Framework IV programme for the Mercury project (ESPRIT IV 20089)
and from the Engineering and Physical Sciences Research Council under the PSTPA pro-
gramme. They also wish to thank Mr Phil Broughton, Mr Arthur Fitzjohn, Mr John
Hayley and Mr Ben Thornton of ICL for their assistance and support.

REFERENCES

[1] Oracle Corporation. Oracle 7 parallel server administrator’s guide, December 1992.

[2] A.Dan and P. S. Yu. Performance analysis of coherency control policies through lock retention. In Proceedings
of ACM SIGMOD Conference, pages 114-123, California, U.S.A, June 1992.

[3] A. Dan and P. S. Yu. Performance analysis of buffer coherency policies in a multisystem data sharing
environment. IEEE Trans. on Parallel and Distributed Systems, 4(3):289-305, March 1993.

[4] D. M. Dias, B. R. Iyer, J. T. Robinson, and P. S. Yu. Integrated concurrency-coherency controls for multi-
system data sharing. IEEE Trans. on Software Engineering, 15(4):437-448, April 1989.

[5] C.Mohan and I. Narang. Recovery and coherency-control protocols for fast intersystem page transfer and fine-
granularity locking in a shared disks transaction environment. In Proceedings of the 17th VLDB Conference,

pages 193-207, Barcelona, Spain, September 1991.

July 12, 1996 DRAFT

MASCOTS’97 16

[6] Y. Wang and L. A. Rowe. Cache consistency and concurrency control in a client/server DBMS architecture.
In Proceedings of ACM SIGMOD Conference, pages 367-376, Denver, Colorado, U.S.A; May 1991.

[7] P. Watson and G. Catlow. The architecture of the ICT, GoldRush MegaSERVER. In Proceedings of the 13th
British National Conference on Databases (BNCOD 13), pages 250-262, Manchester, UK., July 1995.

[8] K. Wilkinson and M. A. Neimat. Maintaining consistency of client-cached data. In Proceedings of the 16th
VLDB Conference, pages 122-133, Brisbane, Australia, August 1990.

[9] M. H. Williams, S. Zhou, H. Taylor, and N. Tomov. Decision support for management of parallel database
systems. In Proceedings of HPCN Furope-96, Brussels, April 1996.

[10] S. Zhou, M. H. Williams, and H. Taylor. Practical throughput estimation for parallel databases. To appear
in the July 1996 Issue of Software Engineering Journal, 1996.

July 12, 1996 DRAFT

