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Abstract

As the frequency and intensity of storms increase, a growing need exists for re-

silient shore protection techniques that have both environmental and economic

bene�ts. In addition to producing seafood, aquaculture farms may also provide

coastal protection bene�ts either alone or with other nature-based structures.

In this paper, a generalized three-layer frequency dependent theoretical model is

derived for random wave attenuation due to presence of biomass within the water

column. The biomass can be characterized as submerged, emerged, suspended

and 
oating canopies that can consist of natural aquatic vegetation with po-

tential aquaculture systems of kelp or mussels. The present analytical solutions

can reduce to the solutions by Mendez & Losada (2004), Chen & Zhao (2012)

and Jacobsen et al. (2019) for submerged rigid aquatic vegetation. The present

theoretical model incorporates the motion of these canopies using a cantilever-

beam model for slender components and a buoy-on-rope model for elements

with concentrated mass and buoyancy. Analytical results are compared with

existing laboratory and �eld datasets for submerged and suspended canopies.
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The theoretical model was then used (in a case study at a �eld site in Northeast-

ern US) to investigate the capacity of suspended mussel farms with submerged

aquatic vegetation (SAV) to dissipate wave energy during a recent storm event.

Compared to a dense SAV meadow in shallower water, the suspended aquacul-

ture farms more e�ectively attenuate random waves with a smaller peak period

and the higher frequency components of wave spectrum. The performance of

suspended aquaculture farms is less a�ected by water level changes due to tides,

surge and sea level rise, while the wave attenuation performance of SAV de-

creases with increasing water level due to decreased wave motion near the sea

bed. Incorporating suspended aquaculture farms o�shore signi�cantly enhance

the coastal protection e�ectiveness of SAV-based living shorelines and extend

the wave attenuation capacity over a wider wave period and water level range.

The combination of suspended aquaculture farms and traditional living shore-

lines provides a more e�ective nature-based coastal defense strategy than the

traditional living shorelines alone.

Keywords: Wave attenuation, Random waves, Suspended canopy, Vegetation,

Aquaculture farm, Natural coastal defense

1. Introduction1

Approximately 40% of the world’s population lives within 100 kilometers of2

the coast (MEA, 2005; Ferrario et al., 2014), and 71% of the coastal population3

lives within 50 kilometers of an estuary (UNEP, 2006). While coastal commu-4

nities bene�t from proximity to seascapes, they are more vulnerable to natural5

coastal hazards and extreme events from the sea. For example, from 1900 to6

2017, 197 hurricanes with 206 landfalls in the USA caused about 2 trillion USD7

damage (normalized to 2018 value by considering the e�ects of in
ation, wealth,8

and population), or annually about 17 billion USD (Weinkle et al., 2018). Due9

to climate change, more frequent and severe storms and rising sea level are likely10

to occur (Izaguirre et al., 2011; Tebaldi et al., 2012; Ondiviela et al., 2014).11

To mitigate storm damage, hard structures such as seawalls, breakwaters,12
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and bulkheads have been used as coastal defenses. These structures, however,13

may aggravate land subsidence due to soil drainage, inhibit natural accumula-14

tion of sediments by tides and waves, adversely impact water quality, and cause15

coastal habitat loss (Syvitski et al., 2009; Currin et al., 2010; Pace, 2011; Tem-16

merman et al., 2013; Sutton-Grier et al., 2015). Additionally, these conventional17

hard engineering defenses are also seriously challenged due to their continual and18

costly maintenance, as well as their reconstruction and reinforcement to keep19

up with increasing 
ood risk are becoming unsustainable (Temmerman et al.,20

2013). Natural and nature-based infrastructure may be a viable alternative to21

hardened shoreline protection system with added economic and ecological bene-22

�ts and ability to adapt to sea level rise and climate change (Borsje et al., 2011;23

Gedan et al., 2011; Temmerman et al., 2013).24

As an example of nature-based infrastructure, living shorelines including a25

variety of wetland plants, aquatic vegetation, kelp beds and oyster reefs have be-26

come a complement to hardened shoreline stabilization. Unlike many hardened27

coastal protection techniques, living shorelines can mitigate storm damage and28

erosion while enhancing productive habitat, improving water quality, producing29

food and adapting to rising sea level (Currin et al., 2010; Scyphers et al., 2011;30

Davis et al., 2015; Bilkovic et al., 2016; Gittman et al., 2016; Saleh & Weinstein,31

2016; Vuik et al., 2016; Moosavi, 2017; Leonardi et al., 2018; M�oller, 2019). The32

protection of coastal ecosystems by wave attenuation is more e�ective in areas33

with relatively small tidal ranges (Bouma et al., 2014). Living shorelines at34

exposed, high-energy sites require structure such as breakwater or sill o�shore35

to damp incident wave energy to sustain health growth of the living organisms36

(McGehee, 2016).37

Aquaculture systems may also act as nature-based infrastructure to attenu-38

ate wave energy and produce food at the same time. For example, Plew et al.39

(2005) observed that a 650 m � 2450 m mussel farm reduced wave energy by40

approximately 5%, 10%, and 17% at wave frequencies of 0.1, 0.2, and 0.25 Hz,41

respectively at low sea state. It was found that densely grown kelp may have ad-42

vantageous wave attenuation characteristics (Mork, 1996). For instance, Mork43
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(1996) observed a 70% to 85% wave energy reduction across a 258 m long kelp44

bed (dominated by Laminaria hyperborea) with the highest wave attenuation45

observed during low tide. Unlike the natural kelp beds rooted at the seabed,46

cultivated kelp is suspended near the surface from a longline (Peteiro & Freire,47

2013; Peteiro et al., 2016; Walls et al., 2017; Campbell et al., 2019; Grebe et al.,48

2019; Zhu et al., 2019), as shown on Fig. 1. Near surface cultivated kelp may

Figure 1: Canopy classi�cation (from left to right): suspended aquaculture farms, 
oating

wetlands, submerged plants, and emergent plants (�gure credit: Yu-Ying Chen).

49

damp more wave energy than bottom-rooted kelp since the wave motion de-50

creases towards the bottom. Kelp can also absorb carbon to mitigate climate51

change impacts and reduce nutrients to improve water quality, therefore, in-52

crease the growth rate of marine species (Duarte et al., 2017; Campbell et al.,53

2019). Other environmental bene�ts of kelp and seaweed farming include recy-54

cling inorganic nutrients and preventing eutrophication conditions (Yang et al.,55

2015; St�evant et al., 2017; Xiao et al., 2017; Campbell et al., 2019).56

Both mussels and kelp are often farmed near the surface on a horizontal type57

mooring system (Fig. 1). The wave attenuation characteristics of these aquacul-58

ture farms can be modeled in a similar way as natural, bottom-rooted submerged59

and emergent canopies such as kelp forests, seagrasses and salt marshes. In this60
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study, the aquaculture structures are treated as suspended canopies according61

to the classi�cation shown on Fig. 1. The classi�cation is based on the vertical62

position in the water column and the \plant" height relative to the water depth63

(e.g., Plew, 2011; Huai et al., 2012; Chen et al., 2016; Zhu & Zou, 2017). The64

horizontal mussel and kelp farms shown on Fig. 1 are placed at an elevation with65

optimum light, temperature and nutrient conditions within the water column66

to achieve maximum growth. Fig. 1 also shows a row of nature-based 
oating67

wetlands and natural submerged and emergent plants.68

Extensive studies have been dedicated to better understanding and predict-69

ing wave attenuation by submerged and emergent vegetation as reviewed later in70

section 2.1. To model the wave attenuation by suspended canopies, Plew et al.71

(2005) developed a two-layer analytical solution for a 
oating longline mussel72

farm based on energy conservation equation with linear wave theory (Dalrymple73

et al., 1984). They represented random wave conditions using root-mean square74

wave height and peak wave period. Zhu & Zou (2017) extended the two-layer75

solution by Kobayashi et al. (1993) for submerged vegetation to a generalized76

three-layer theoretical solution for suspended and submerged vegetation. Zhu &77

Zou (2017) found that the wave attenuation by a submerged canopy decreases78

while the wave attenuation by a 
oating canopy increases with increasing wave79

frequency. The wave attenuation by a suspended canopy �rst increases and then80

decreases with increasing wave frequency. Combining an OpenFOAM (Higuera81

et al., 2013) hydrodynamics model with an immersed element vegetation model,82

Chen & Zou (2019) observed a strong jet formed at the top of a submerged 
ex-83

ible canopy in the opposite direction as the wave. Using a SWASH (Simulating84

WAves till SHore, Zijlema et al., 2011) model, Chen et al. (2019) investigated85

the wave-driven circulation cell induced by suspended canopies and found that86

the vertical position of the canopy also has signi�cant e�ects on the wave-driven87

current in the canopy. Recently, SWASH was improved by Suzuki et al. (2019)88

to consider the drag of horizontal vegetation stems, vegetation canopy porosity89

and vegetation inertia, which can in
uence the wave dissipation. The e�ects of90

vegetation porosity on wave dissipation is of importance for dense vegetation. As91
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time domain numerical models, OpenFOAM and SWASH are able to simulate92

waves with arbitrary frequency shape. However, the existing analytical models93

developed for suspended canopies in single characteristic frequency waves still94

need to be extended to frequency dependent models for random waves, which95

are a better representation of �eld conditions.96

The objective of this study is to develop a generalized three-layer frequency97

dependent theoretical model for random wave attenuation by submerged and98

suspended canopies. The analytical wave attenuation model is coupled with99

cantilever-beam and buoy-on-rope vegetation models to consider the motion100

of canopies with di�erent type components. The coupled 
ow and vegeta-101

tion model is validated with laboratory experimental datasets for submerged102

canopies (Jacobsen et al., 2019) and laboratory and �eld datasets for suspended103

canopies (Seymour & Hanes, 1979). The validated coupled model is then ap-104

plied in the �eld near Saco, Maine in the Northeastern USA to investigate the105

potential of a mussel farm to damp storm during the January 2015 North Amer-106

ican blizzard. The e�ectiveness of using a suspended aquaculture farm alone107

and in combination with submerged aquatic vegetation (SAV) close to shore for108

wave attenuation is also investigated.109

2. Theory110

2.1. Background on analytical wave attenuation models111

Theoretical models have been developed to study the wave attenuation char-112

acteristics of submerged and emergent canopies by Dalrymple et al. (1984) and113

Kobayashi et al. (1993). Both studies represented the canopy as arrays of rigid,114

homogeneous cylinders subject to monochromatic wave action. Assuming the115

wave energy loss as the work performed by the drag of vegetation, Dalrymple116

et al. (1984) obtained the wave decay coe�cient by solving the energy conserva-117

tion equation using linear wave theory. By solving the linearized incompressible118

Euler equations with assumptions of exponentially decayed wave height along119

the canopy and linearized drag, Kobayashi et al. (1993) obtained the same wave120
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decay coe�cient as Dalrymple et al. (1984). The wave decay coe�cient is an121

explicit function of hydrodynamic conditions and canopy characteristics includ-122

ing blade length, width, and canopy density (de�ned as blade number per unit123

area).124

Both these analytical solutions have been widely used for calculating wave125

attenuation by submerged vegetation. The solution by Dalrymple et al. (1984)126

was modi�ed by Mendez & Losada (2004) to consider random non-breaking and127

breaking waves propagating over a mildly sloped vegetation seabed by using the128

unmodi�ed Raleigh distribution method and assuming a narrow-banded wave129

spectrum. The modi�cation developed by Mendez & Losada (2004) has been im-130

plemented in the SWAN (Simulating WAves Nearshore) model by Suzuki et al.131

(2012), and the MDO (Mellor-Donelan-Oey) wave model for wind-generated132

waves and swells in deep and shallow waters by Marsooli et al. (2017). Recently,133

Losada et al. (2016) extended Mendez & Losada (2004) solution for combined134

wave and currents. The solution by Mendez & Losada (2004) was also used by135

Garzon et al. (2019) to analyze the wave attenuation by Spartina Saltmarshes136

in the Chesapeake Bay under storm surge conditions. These models based137

on the Mendez & Losada (2004) approach are limited to ideal narrow-banded138

waves. If applied to wide-banded waves, the Mendez & Losada (2004) based139

models would overestimate the dissipation for the wave components with higher140

frequency than the characteristic peak frequency and underestimate the dissi-141

pation for the wave components with lower frequency than the characteristic142

peak frequency (Jacobsen et al., 2019).143

To investigate the spectral distribution of energy dissipation, Chen & Zhao144

(2012) developed two analytical frequency dependent wave attenuation models145

for random waves and rigid vegetation by implementing the energy dissipation of146

random waves in Hasselmann & Collins (1968) and the joint distribution of wave147

heights and wave periods proposed by Longuet-Higgins (1983). To derive the148

wave attenuation solution based on the random waves in Hasselmann & Collins149

(1968), Chen & Zhao (2012) used the root mean square velocity to linearize150

the drag force following Madsen et al. (1988) such that juj �
p

2� u , where u is151
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the horizontal wave velocity and � u is the standard deviation of u. Recently,152

Jacobsen et al. (2019) obtained a frequency distributed wave dissipation model153

by linearizing the drag force such that juj �
p

8=�� u estimated from 270,000154

numerical cases under JONSWAP spectrum so the linearization-induced mean155

error
�
�
� juj=

� p
8=�� u

�
� 1

�
�
� is less than 0.01%. Borgman (1967) obtained the156

same result juj �
p

8=�� u by minimizing the mean square of the di�erence157

between the nonlinear drag and linearized drag for u in normal distribution.158

The Borgman (1967) method for the drag linearization can also be used for159

other probability distributions of u.160

Since most vegetation are 
exible, the wave-induced motion of vegetation161

would reduce the relative velocity between wave-induced 
ow and vegetation162

and therefore the drag force, yielding less wave attenuation than rigid vegeta-163

tion (Mullarney & Henderson, 2010; van Veelen et al., 2020). To consider the164

e�ects of vegetation motion, one common practice is using a reduced bulk drag165

coe�cient (e.g., Paul & Amos, 2011; Jadhav et al., 2013; Pinsky et al., 2013;166

Anderson & Smith, 2014; Hu et al., 2014; Zeller et al., 2014; M�oller et al., 2014;167

Losada et al., 2016; Wu et al., 2016; Marsooli et al., 2017; Nowacki et al., 2017;168

Garzon et al., 2019; van Veelen et al., 2020). The bulk drag coe�cient should be169

dependent on the Cauchy number (Ca) incorporating the blade 
exural rigidity170

related to vegetation motion. However, most of the empirical formulae in liter-171

ature for the bulk drag coe�cient of 
exible vegetation are expressed as a func-172

tion of Reynolds number (Re) or Keulegan{Carpenter number (KC ) without173

incorporating the blade 
exural rigidity. Consequently, the empirical formulae174

of bulk drag coe�cient have di�erent expressions for vegetation with di�erent175


exural rigidities for the same set of Re and KC numbers. This introduces176

uncertainty in modelling wave attenuation by 
exible vegetation. To apply the177

original (unreduced) drag coe�cient as previous studies and incorporate the ef-178

fects of blade motion at the same time, Luhar et al. (2017) proposed a reduced,179

e�ective blade length instead of a reduced drag coe�cient to incorporate the180

e�ects of blade motion. The empirical formula for the e�ective blade length is181

dependent on blade 
exural rigidity, therefore, can be readily applied to vege-182
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tation of various 
exural rigidities. The formula for the e�ective blade length183

was recently modi�ed by considering the e�ects of rigid sheath of seagrass (Lei184

& Nepf, 2019b) and applied to combined waves and currents conditions (Lei &185

Nepf, 2019a). These empirical approaches do not need to resolve blade motion186

and therefore improve the computational e�ciency by reducing the iterative187

computation for coupling wave and vegetation motion. These approaches, how-188

ever, require numerous datasets to derive the formulae for bulk drag coe�cient189

and e�ective blade length. If the blade motion is directly resolved by the model,190

then the original unreduced drag coe�cient and blade length can be used di-191

rectly without modi�cation. Therefore, the number of experiments and model192

runs to calibrate the bulk drag coe�cient and the uncertainty associate with193

the bulk drag coe�cient are reduced.194

To resolve the blade motion, Asano et al. (1992) simpli�ed the blade mo-195

tion as an oscillator with one degree of freedom by assuming blade de
ection196

is linearly distributed along the length and also averaging de
ection along the197

length. This method was then extended to consider irregular waves, wave re
ec-198

tion, and evanescent modes by M�endez et al. (1999) for submerged vegetation.199

To analyze the depth dependence of the blade de
ection as well as its e�ects on200

wave dissipation, Mullarney & Henderson (2010) modeled the blade as a contin-201

uous beam with Euler-Bernoulli techniques, where the governing equation for202

the blade motion is simpli�ed as a balance between the 
exural rigidity-induced203

restoring force and the drag force, assuming the inertia force and buoyancy204

are negligible. Recently, Henderson (2019) extended this model by including205

buoyancy but still neglected the inertia force, therefore the model is valid only206

for blades with small cross sectional area. In addition, the mass of vegeta-207

tion in
uences the natural frequency of the vegetation and further impacts the208

blade motion as well as the resonant conditions. To fully consider the grav-209

ity, buoyancy, structural damping, bending sti�ness, virtual buoyancy, friction,210

drag and inertia forces, numerical models are often used to simulate the blade211

dynamics (e.g., Zeller et al., 2014; Zhu & Chen, 2015; Luhar & Nepf, 2016;212

Leclercq & de Langre, 2018; Zhu et al., 2018; Chen & Zou, 2019; Zhu et al.,213
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2020). Recently, Zhu et al. (2020) used a cable model to capture the asym-214

metric \whip-like" blade motion and proposed mechanisms for the asymmetric215

blade motion in symmetric waves.216

To derive a generalized wave attenuation model for suspended and sub-217

merged canopies, the water column is divided into 3 layers with model set-up218

in section 2.2. The e�ects of canopy motion are incorporated by resolving the219

motion of individual canopy component using a cantilever-beam model or a220

buoy-on-rope model based on the type of the canopy component in section 2.3.221

These two structural dynamics models consider inertia force and are therefore222

applicable for large diameter structure such as mussel droppers. The frequency223

dependent theoretical wave attenuation model incorporating canopy motion is224

developed in section 2.4.225

2.2. Model set-up226

The mathematical approach is based on the three-layer model set-up shown227

on Fig. 2. As shown on Fig. 2, the horizontal coordinate, x, is positive in228

the direction of wave propagation (assumed to be perpendicular to the coast),229

with x = 0 at the leading edge of the canopy. The horizontal length of the230

canopy is de�ned as L v such that x = L v at the end of the canopy. The vertical231

coordinate, z, is positive upward with z = 0 at the still water level (SWL).232

The water column is divided into three layers with Layer 1 above the canopy,233

Layer 2 within the canopy, and Layer 3 below the canopy. The initial static234

thicknesses for each layer are denoted by d1, d2, d3, respectively. The thickness235

of Layer 2 (d2) also named the canopy height, is de�ned as the average sub-236

merged length of the canopy components. The water depth from the SWL is237

de�ned as h = d1 +d2 +d3, where the sea
oor is located at z = �h and assumed238

to be horizontal. This generalized three-layer model can be used to analyze the239

wave attenuation characteristics of the following four types of canopy con�gu-240

rations: (1) submerged (d1 6= 0 and d3 = 0), (2) emergent (d1 = 0 and d3 = 0),241

(3) suspended in the water column (d1 6= 0 and d3 6= 0), and (4) 
oating on the242

surface (d1 = 0 and d3 6= 0).243
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Figure 2: De�nition sketch of variables and coordinate system for the three-layer theoretical

model of waves propagating over a canopy. The coordinate system (x; z ) with the origin at

the leading edge of the canopy (x = 0) and the still water level (SWL, z = 0), where x is

positive in the wave propagation direction from left to right and z is positive upward. The

water column is divided into three layers by the canopy. The thicknesses of layer 1, 2, and 3

are denoted as d1 , d2 , and d3 , respectively. The canopy length is L v . The water depth from

the SWL is de�ned as h = d1 + d2 + d3 .

At many sites, sea surface pro�les are better represented by random waves,244

which can be formulated as a superposition of monochromatic waves with a set245

of random phases. Thus, the water elevation can be expressed as246

� =

1X

i =1

ai cos (ki x � ! i t +  i ) ; (1)

where t is time, ai is the wave amplitude, ki is the wave number, ! i is the247

angular frequency and  i is the random phase of the i th monochromatic wave248

component. As a sum of in�nite independent random variables, the water eleva-249

tion tends toward a normal distribution according to the central limit theorem.250

Assuming that the random phase is distributed uniformly on (0; 2� ), the water251

elevation is normally distributed with a zero mean (h� i = 0, where h i indicates252

expected value) and a variance of � 2
� =



� 2

�
=

P 1
i =1 a2

i =2 =
R1

0
S�� (!; x )d! ,253

where S�� (!; x ) is the wave spectrum. For the convenience of expression, the254

index of summation i is omitted and ! is used to indicate the summation such255
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that256

� =
X

!

a(kx � !t +  ): (2)

According to linear wave theory (Dean & Dalrymple, 1991), the wave number257

and angular frequency satisfy the dispersion relation, ! 2 = gk tanh kh, where g258

is the gravitational acceleration. The wave orbital velocity (u) at a given level259

z is then written as260

u =
X

!

a! � cos(kx � !t +  ); (3)

where � = cosh k(h + z)=sinh kh when z � � and � = 0 when z > � .261

2.3. Models for the motion of canopy components262

The wave-induced motion of a canopy component is simulated by di�erent263

models depending on the morphology and physical properties of the species.264

In this paper, we introduce cantilever-beam and buoy-on-rope models. The265

cantilever-beam model is applicable for slender species such as vegetation blades,266

kelp blades, and mussel droppers (Fig. 3). The buoy-on-rope model is applicable

Figure 3: Sketch for the cantilever-beam model and buoy-on-rope model for di�erent species.

267

for species with concentrated mass and buoyancy supported by a tethered stipe268

whose mass and sti�ness can be ignored, e.g., the bull kelp, Nereocystis luetkeana269

(Fig. 3).270
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2.3.1. Cantilever-beam model271

The individual component of the canopies such as seagrass meadow, kelp for-272

est and mussel farms is modeled as a slender cantilever beam (Fig. 3), referred273

as a blade hereinafter. A typical blade having the averaged geometrical and274

physical properties of the canopy components is used to represent the canopy275

components. To simulate the large-amplitude de
ection of a 
exible blade, Zhu276

et al. (2020) introduced a cable model that can capture the asymmetric \whip277

like" motion of a 
exible blade (Luhar & Nepf, 2016). To obtain the analytical278

solution for the horizontal displacement (� ) of the blade, the governing equa-279

tions in Zhu et al. (2020) are linearized by assuming a small-amplitude motion280

such that the vertical displacement of the blade is negligible. The horizontal281

displacement, � (s; t) is a function of time t and the distance s along the blade282

length from the �xed end. The relation between the local coordinate s and the283

global coordinate z is given by284

z =

8
<

:

� d1 � d2 + s; blade �xed at the bottom end,

� d1 � s; blade �xed at the tip end.
(4)

Neglecting tension and buoyancy, the linearized governing equation is given by285

� v Ac
�� + EI� 0000 = � w Ac _u +

1

2
Cd � w bju � _� j(u � _� ) + Cm � w Ac( _u � �� ); (5)

where the dot ( _ ) indicates derivative with respect to t, the prime (0) indicates286

derivative with respect to s, � w is the water density, � v is the blade mass density,287

b is the projected blade width, Ac is the blade cross sectional area, E is the288

Young’s modulus of the blade, I is second moment of the blade cross sectional289

area, Cd is the drag coe�cient and Cm is the added mass coe�cient. The terms290

on the right-hand side of (5) are virtual buoyancy, drag and added mass force291

per unit length modi�ed from the Morison formula (Morison et al., 1950). To292

obtain an analytical solution to (5), the nonlinear drag 1=2Cd � w bju� _� j(u� _� ) is293

linearized as c(u � _� ), where the linearization coe�cient (c) is calculated using294

the Borgman (1967) method. Substituting (3) into (5) yields295

m �� + c _� + EI� 0000 =
X

!

a! � [ccos(kx � !t +  ) + !m I sin(kx � !t +  )] ; (6)

13



where m = (� v + Cm � w ) Ac and mI = (1 + Cm ) � w Ac. The boundary condi-296

tions for a cantilever beam are given by � (0; t) = 0, � 0(0; t) = 0; � 00(l; t ) = 0 and297

� 000(l; t ) = 0. Using a normal mode approach (Rao, 2007), the solution for the298

blade displacement is obtained in Appendix A as299

� =
X

!

a� [
 s sin(kx � !t +  ) + 
 c cos(kx � !t +  )] ; (7)

where 
 s and 
 c are the transfer functions given by300


 s =
!
�

1X

n =1

� n
!I n

�
� 2

n � ! 2
�
� Dn 2� n � n !

(� 2
n � ! 2)

2
+ (2� n � n ! )

2 (8)

and301


 c =
!
�

1X

n =1

� n
Dn

�
� 2

n � ! 2
�

+ !I n 2� n � n !

(� 2
n � ! 2)

2
+ (2� n � n ! )

2 ; (9)

where � n = (cos � n l + cosh � n l) (sin � n s� sinh � n s)+(sin � n l + sinh � n l) (cosh � n s� cos � n s)302

is the nth normal mode of the cantilever beam with � n being the nth solution303

of 1 + cos �l cosh �l = 0, � n = � 2
n

q Rl
0

EI� 2
n ds=

Rl
0

m� 2
n ds is the nth natural fre-304

quency of the blade, 2� n � n =
Rl

0
c� 2

n ds=
Rl

0
m� 2

n ds, Dn =
Rl

0
c�� n ds=

Rl
0

m� 2
n ds305

and I n =
Rl

0
mI �� n ds=

Rl
0

m� 2
n ds. Since � is expressed in terms of z and � n306

is expressed in terms of s, the relation between s and z in (4) is required to307

calculate the integral
Rl

0
�� n ds.308

The relative velocity of 
ow to blade ur = u � � is given by309

ur =
X

!

a! � [(1 + 
 s) cos(kx � !t +  ) + 
 c sin(kx � !t +  )] : (10)

According to the central limit theorem, the relative velocity also asymptotically310

approaches a normal distribution with zero mean (hur i = 0) and the variance311

� 2
u r

=


u2

r

�
=

Z 1

0

! 2�2
h
(1 + 
 s)

2
+ 
 2

c

i
S�� (!; x )d!: (11)

Hence, the probability density function of ur is given by312

p(ur ) =
1

� u r
p

2�
e
� u 2

r
2 � 2

ur : (12)

Using the Borgman (1967) method, the linearization coe�cient (c) is obtained313

by minimizing the mean square di�erence between the nonlinear and linearized314
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drag so that @
R1
�1 (1=2Cd � w bjur jur � cur )

2 p(ur ) dur =@c= 0, yielding315

c =
1

2
Cd � w b

R1
�1 jur ju2

r p(ur ) dur
R1
�1 u2

r p(ur ) dur
=

1

2
Cd � w b

r
8

�
� u r : (13)

The linearization coe�cient can be obtained iteratively through the following316

procedure. Starting from a static blade, an initial c is calculated from equation317

(13) with (11) by assuming 
 s = 0 and 
 c = 0. Once the blade displacement318

is obtained, c can be recalculated from (13) and (11) with (8)and (9). Using319

the new value of c, the blade displacement can be updated. The procedure is320

repeated until a convergent solution is achieved.321

2.3.2. Buoy-on-rope model322

The bull kelp (Nereocystis luetkeana) is used as an example to describe the323

buoy-on-rope model (Denny et al., 1997), which is also used for other species324

such as Macrocystis pyrifera (Utter & Denny, 1996). The pneumatocyst (the325

ball-shape \
oat" structure) of Nereocystis luetkeana is modeled as a buoy and326

the stipe is modeled as a rope (Fig. 3). Therefore, the canopy component is327

modeled as a buoy attached to seabed by a thin, straight, non-buoyant rope.328

The inertia, drag and buoyancy act at the buoy center, zc = �d1� d2=2, where329

the canopy height d2 is the diameter of the buoy. The horizontal displacement330

of the buoy and the 
uid velocity at the buoy center is used to calculate the331

forces. The governing equation for buoy-on-rope model is given by332

� v V �� +
(� w � � v ) V g

R
� = � w V _u (zc)+

1

2
Cd � w Ap

�
�
�u (zc)� _�

�
�
�
h
u (zc)� _�

i
+Cm � w V

h
_u (zc)� ��

i
;

(14)

where R is the length of the tethered rope, V is the volume of the buoy with pro-333

jected area of Ap. Similarly, the nonlinear drag force 1=2Cd � w Ap

�
�
�u (zc)� _�

�
�
�
h
u (zc)� _�

i
334

is linearized as C
h
u (zc)� _�

i
, where C is obtained using the Borgman (1967)335

method. Substituting (3)into (14)yields336

M �� + C _� + K� =
X

!

a! � (zc) [C cos(kx � !t +  ) + !M I sin(kx � !t +  )] ;

(15)
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where M = (� v + Cm � w )V , K = (� w � � v )V g=R, and M I = (1 + Cm )� w V . The337

solution for (15) is338

� =
X

!

a� [
 s sin(kx � !t +  ) + 
 c cos(kx � !t +  )] ; (16)

where 
 s and 
 c are the transfer functions given by339


 s =
� (zc) !

�M
!M I

�
� 2 � ! 2

�
� C(2��! )

(� 2 � ! 2)
2

+ (2��! )2
(17)

and340


 c =
� (zc) !

�M
C

�
� 2 � ! 2

�
+ !M I (2��! )

(� 2 � ! 2)
2

+ (2��! )2
; (18)

where � =
p

K=M and 2�� = C=M . Similarly, the relative velocity ur =341

u� _� asymptotically approaches a normal distribution with zero mean and the342

variance � 2
u r

in a similar expression as (11) except for the transfer functions343


 s and 
 c, which are calculated using (17) and (18). Thus, the linearization344

coe�cient (C) is given by345

C =
1

2
Cd � w Ap

r
8

�
� u r ; (19)

which is obtained iteratively using the same procedure for the cantilever-beam346

model.347

2.4. Solutions for random wave attenuation348

Following Dalrymple et al. (1984), Kobayashi et al. (1993), and Mendez &349

Losada (2004), the wave attenuation is assumed to come from the work of the350

canopy-induced drag force. The inertia force has a negligible contribution to351

wave attenuation since the mathematical expectation of the work due to the352

inertia force is zero because the relative acceleration and the relative velocity353

are out of phase in linear waves. The vertical frictional force is assumed negli-354

gible when compared with the horizontal drag force. The wave re
ection from355

the canopy is also assumed negligible since the wave re
ection has limited con-356

tributions to the wave attenuation for both submerged vegetation (Mendez &357

Losada, 2004) and suspended canopies (Seymour & Hanes, 1979). Some wave358
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energy is converted into the kinematic and potential energy of the canopy at359

the beginning. However, once the canopy motion becomes steady, the energy360

needed to maintain the steady motion can be assumed negligible because the361

structural damping of the canopy components is negligible (Asano et al., 1992;362

M�endez et al., 1999). Lacking data, the velocity reduction in the canopy (Lowe,363

2005), the sheltering e�ects (Raupach & Thom, 1981; Abdelrhman, 2007; Et-364

minan et al., 2019), and the porosity e�ects (Mei et al., 2011; Nepf, 2011; Liu365

et al., 2015; Arnaud et al., 2017; Suzuki et al., 2019) are not considered. Using366

the linearized drag force, the energy conservation equation can be written as367

@
@x

Z 1

0

� w gS�� (!; x )cgd! = �
Z �d1

�d1�d2

*

N
1

2
Cd � w b

r
8

�
� u r u2

r

+

dz; (20)

where cg = (!=k )(1+2kh= sinh 2kh)=2 is the group velocity and N is the number368

of canopy components per unit horizontal area (also referred to as the canopy369

density). Substituting (11) into (20) yields the transmitted wave spectrum at370

distance x in relation to the incident wave spectrum at x = 0,371

S�� (!; x ) = S�� (!; 0)e�2� (! )x ; (21)

where the frequency dependent decay coe�cient (� ) is given by372

� (! ) =
2
p

2Nk 2 sinh2 kh
p

�! (2kh + sinh 2kh)

Z �d1

�d1�d2

Cdb� u r �2
h
(1 + 
 s)

2
+ 
 2

c

i
dz: (22)

The transfer functions 
 s and 
 c are selected based on the structural dynamics373

model used for the canopy motion. To evaluate the e�ect of the canopies on374

wave attenuation, the wave spectral dissipation ratio (SDR) and wave energy375

dissipation ratio (EDR ) are used and de�ned as376

SDR = 1�
S�� (!; L v )

S�� (!; 0)
(23)

and377

EDR = 1�
R1

0
S�� (!; L v ) d!

R1
0

S�� (!; 0)d!
; (24)

respectively.378
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3. Model-Data comparison379

3.1. Submerged canopy380

The model results were �rst compared with the laboratory experiments by381

Jacobsen et al. (2019) for a submerged canopy consisting of arti�cial vegetation.382

The wave conditions were based on a single peaked JONSWAP spectrum with383

a peak enhancement factor 
 = 3:3 and peak wave period Tp = 1:15 s. The384

incident signi�cant wave height at the leading edge of the canopy was H s0 = 3:7385

cm. The water depth was h = 0:685 m.386

The arti�cial vegetation was made of 4 mm-wide polypropylene blades with387

� v � 920 kg/m
3

and E � 0:3 GPa (Ghisalberti & Nepf, 2002). Four blades were388

taped to a 6 mm-diameter PVC dowel and 60 mm above the bed. The canopy389

was 7.5 m long with a density of 566 dowels/m
2

therefore 2264 blades/m
2
. The390

blade length was 20, 40, and 60 cm such that d2=h = f0:38; 0:67; 0:96g. The391

blade thickness was 0.12, 0.2, 0.5 and 1.0 mm for the 20 cm-long blade and392

0.5 mm for the other blades. More details of the experiments can be found in393

Jacobsen et al. (2019).394

Based on the datasets for rigid 
at plates in oscillatory 
ows (Keulegan &395

Carpenter, 1958; Sarpkaya & O’Keefe, 1996) with 1:7 � KC � 118:2, Luhar &396

Nepf (2016) derived the drag coe�cient and added mass coe�cient,397

Cd = max(10KC �1=3; 1:95) (25)

and398

Cm = min(Cm 1; Cm 2); (26)

where Cm 1 =

8
<

:
1 + 0:35KC 2=3; KC < 20;

1 + 0:15KC 2=3; KC � 20
and Cm 2 = 1 + (KC � 18)2=49 as399

described in Luhar (2012). Equations (25) and (26) are robust in calculating400

the hydrodynamic forces acting on 
exible blades in regular waves (Zhu et al.,401

2020). To apply (25) and (26) to random waves, the KC number is calculated402

using the signi�cant relative velocity (2� u r ) as KC = 2� u r Tp=b.403

The vegetation blade is modeled as a cantilever beam so that the wave404

attenuation model incorporating the cantilever beam model is used to calculate405
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the wave decay coe�cient, � . The model results using frequency dependent406

Cd and Cm in (25) and (26) as well as constant Cd = 1:95 and Cm = 1 are407

compared with the datasets of Jacobsen et al. (2019) on Fig. 4. It is noted that

Figure 4: Comparisons of calculated frequency (f ) dependent wave decay coe�cient (� ) by the

present model and the data (black dotted lines) from Jacobsen et al. (2019). The model results

using frequency dependent and constant drag coe�cient (Cd ) and added mass coe�cient (Cm )

are denoted by red solid and blue dashed lines, respectively. The submerged canopies with

blade lengths (l) of 20, 40 and 60 cm and thicknesses (d) of 0.12, 0.20, 0.5 and 1.0 mm are

subjected to random waves of JONSWAP spectrum with peak enhancement factor 
 = 3:3,

peak wave period Tp = 1:15 s (vertical dashed black line) and incident signi�cant wave height

of 3.7 cm at a water depth h = 0:685 m with normalized blade length (l=h) of 0.38 (a-d), 0.67

(e) and 0.96 (f). The canopy density is 566 shoots/m2(2264 blades/m2).

408
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Cd = 1:95 is the minimum drag coe�cient for (25).409

The model results are in a good agreement with the data with the root-mean-410

square-error (RMSE) of about 0.002 for the 20 cm-long blades (l=h = 0:38)411

with thickness d � 0:5 mm (Fig. 4a-c). For the thickest blades with d = 1412

mm, the decay coe�cient is slightly overestimated for the lower frequency wave413

components (f < 0:8 Hz) resulting in a larger RMSE of 0.0032 (Fig. 4d). One414

possible reason is that the drag coe�cient calculated using equation (25) might415

be overestimated for the thicker blades whose thickness-width ratio has reached416

0.25 and much larger than the thickness-width ratio (< 0:1) of the experimental417

plates for the formula (25). The thicker blades are expected to have a smaller418

drag coe�cient due to increased Reynolds number. Thus, the model results can419

be improved by using a smaller drag coe�cient. For instance, the RMSE for420

the 1 mm-thick blades is reduced to 0.0016 by using Cd = 1:95 (Fig. 4d).421

For the longer blades that are nearly emergent (l=h � 0:67), the model results422

calculated with frequency dependent hydrodynamic coe�cients underestimate423

the observation with RMSE=0.0046 and 0.0073 for l = 40 cm (l=h = 0:67) and424

60 cm (l=h = 0:96), respectively, as shown on Fig. 4(e and f) possibly due to425

the simpli�cation of the cantilever beam model. Neglecting the large de
ection-426

induced geometrical non-linearity, net buoyancy, and the net buoyancy-induced427

tension would underestimate the restoring capacity of the blades. Thus, the428

simpli�ed model may overestimate the blade motion resulting in a smaller wave429

attenuation. This underestimation of wave attenuation is more obvious for430

longer blades because the e�ects of the large de
ection-induced geometrical431

non-linearity, the net buoyancy and the net buoyancy-induced tension are more432

signi�cant for longer blades. Compared to the shorter blade (l = 20 cm), the433

longer blade (l � 40 cm) is more 
exible, therefore, the blade motion follows434

the 
ow more closely so that the relative velocity between the longer blade and435


ow is smaller, resulting in a larger Cd. Therefore, using a smaller Cd = 1:95436

enhances the underestimation as indicated by RMSE=0.0055 and 0.0177 for437

the l = 40 cm (l=h = 0:67) and 60 cm (l=h = 0:96), respectively on Fig. 4(e438

and f). A more precise formula for the hydrodynamic coe�cients in random439
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waves is desired for the nearly emergent canopies with l=h � 0:67. However, the440

hydrodynamic coe�cients in (25) and (26) as well as the constant hydrodynamic441

coe�cients work well for the submerged vegetation (l=h � 0:38) with a small442

RMSE of about 0.002.443

3.2. Suspended canopy444

The model results were also compared with the laboratory and �eld ex-445

periments by Seymour & Hanes (1979) for a suspended canopy consisting of446

spherical buoys. The �eld experiments for a suspended canopy consisting of447

arrays of tethered sphere buoys (Fig. 5) were conducted in San Diego Bay,

Figure 5: Sketch of the suspended canopy consisting of sphere components according to the

description of Seymour & Hanes (1979).

448

California, USA. The half-scale model tests for the �eld experiments were con-449

ducted in the 40-m long Wind Wave Channel at the Hydraulics Laboratory of450

Scripps Institution of Oceanography (Seymour & Hanes, 1979). The properties451

of the canopies in the laboratory and �eld experiments are shown in Table 1.452

For the laboratory experiments, the incident signi�cant wave height was453

0:069 � 0:176 m and the peak frequency was 0:19 � 0:883 Hz. For the �eld454

experiments, two storms were observed on Jan 22, 1976 and Feb 9, 1976. The455

measured signi�cant wave height was 0:17 � 0:44 m. The drag coe�cient and456
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Table 1: Properties for the suspended canopies consisting of sphere components in the labo-

ratory and �eld experiments (Seymour & Hanes, 1979).

In the lab In the �eld

(half scale) (full scale)

Sphere mass density [kg/m
3
] 40 85

Sphere diameter [cm] 15.8 29.2

Depth of sphere center [cm] 7:36� 15:24 21.9

E�ective tether length [cm] 83.8 168.0

Sphere spacing (along canopy length) [cm] 31.6 58.41

Sphere spacing (along canopy width) [cm] 31.6 58.41

Canopy width (perpendicular to wave direction) [m] 2.39 46

Canopy length (along wave direction) [m] 23 6

Water depth [m] 1.78 8

added mass coe�cient for the tethered spheres are assumed as Cd = 0:5 and457

Cm = 0:5, respectively.458

The calculated transmitted wave spectrum and spectral dissipation ratio459

(SDR) are shown on Fig. 6. The calculated transmitted wave spectrum follows460

the shape of the incident wave spectrum. The SDR for the suspended canopy461

�rst increases and then decreases with increasing wave spectrum as expected.462

The comparison between the calculated and measured energy dissipation463

ratio (EDR ) is shown on Fig. 7. Good agreement (RMSE=0.073) between464

model and data indicates that the present generalized analytical solutions are465

also applicable to suspended aquaculture farms with simple structures in other466

forms, such as cylinders, as long as the appropriate hydrodynamic coe�cients467

are available.468

4. Case study at the �eld site469

The present frequency dependent theoretical model is now applied to analyze470

the wave attenuation capacity of suspended aquaculture farms at a �eld site and471

compared with that of submerged aquatic vegetation, as well as a combination472

of these two nature-based shore protection schemes.473
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Figure 6: Comparisons between calculated and measured transmitted wave spectrum (S�� )

as well as spectral dissipation ratio (SDR ) versus wave frequency (f ) for suspended canopies

with spheres in (a) laboratory and (b) �eld experiments by Seymour & Hanes (1979). The

incident signi�cant wave height is H s0 and the peak period is Tp .

Figure 7: Comparisons between the calculated and measured wave energy dissipation ratio

(EDR ) for laboratory (blue +) and �eld experiments (red � ) by Seymour & Hanes (1979).
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The study site (42�280200N; 70�210200W) is located at Saco Bay, Maine, USA474

as shown on Fig. 8 with a water depth of about 10.6 m. The January 2015

Figure 8: The study site at Saco Bay, Maine, USA (Sources: Esri, GEBCO, NOAA, National

Geographic, DeLorme, HERE, Geonames.org, and other contributors).

475

North American blizzard was a powerful and destructive extratropical storm476

that swept across the Saco Bay and along the coast of the Northeastern United477

States in January of 2015. To assess coastal 
ood risk and sea level rise e�ects478

during this storm event, Xie et al. (2019) constructed an integrated atmosphere-479

ocean-coast and overtopping-drainage modeling framework based on the coupled480

tide, surge and wave model, SWAN+ADCIRC. The wave spectrum and water481

level conditions output from the SWAN+ADCIRC model (Xie et al., 2019) are482

used to drive the present theoretical model. The canopies are oriented to be483

parallel to the dominant wave direction so that the present 1-D solutions can484

be applied.485

4.1. Properties for the mussel farm and submerged aquatic vegetation486

The mussel farm is simpli�ed as arrays of cylinders which represent the487

mussel droppers. The cylinders have similar mechanical and hydrodynamic488

performances to the actual droppers. In this study, the geometric and physical489

properties of the cylinders are based on the measurements of the live droppers490

at the University of New Hampshire nearshore multi-trophic aquaculture site in491

the Gulf of Maine, USA (Knysh et al., 2020). The measured dropper diameter492
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was 0.13 m, mass per unit length was 7.53 kg/m, and 
exural rigidity was 0.79493

N/m
2

on July 3 (Knysh et al., 2020), which was about 160 days (years are not494

considered) after the January 2015 North American blizzard arrived at the study495

site. The geometrical properties of the droppers in January were estimated by496

assuming a growth rate of 7.5% per 40 days (Lauzon-Guay et al., 2006; Gagnon497

& Bergeron, 2017), which indicates that the diameter of the mussel dropper in498

January was about 75% of that in July. Therefore, the cylinder diameter was499

taken as b = 0:10 m, the mass per unit length was assumed as � v Ac = 4:46 kg/m,500

and the 
exural rigidity was assumed as EI = 0:28 N/m
2
. The cylinders are501

assumed to be submerged half meter below the water surface so that d1 = 0:5502

m. The length of the mussel dropper is assumed as l = 8 m following Plew503

et al. (2005) and Stevens et al. (2007) for a similar water depth. A sparse504

con�guration with 0.06 droppers/m
2

(Plew et al., 2005; Gagnon & Bergeron,505

2017) and a dense con�guration with 0.125 droppers/m
2

(e.g., mussel droppers506

are 0.5 m apart and the longline interval is about 16 m) are compared. Following507

Plew et al. (2009), Dewhurst (2016) and Knysh et al. (2020), the drag coe�cient508

and added mass coe�cient are assumed as Cd = 1:3 and Cm = 1, respectively,509

which are also comparable to the values in Raman-Nair & Colbourne (2003),510

Raman-Nair et al. (2008), Stevens et al. (2008),Plew et al. (2009), Gagnon &511

Bergeron (2017) and Landmann et al. (2019).512

The SAV is modeled as a rectangular plate based on the properties of Zostera513

marina, which is a common SAV in the Gulf of Maine, USA (Mattila et al., 1999;514

Gaeckle & Short, 2002; Beal et al., 2004; Neckles et al., 2005; Beem & Short,515

2009; Newell et al., 2010). The length of Zostera marina ranges from 10 to 150516

cm and the shoot density is about 50 � 1100 shoots/m
2

with 3 � 7 blades per517

shoot (Abdelrhman, 2007; Beem & Short, 2009; Bostr�om & Bonsdor�, 1997;518

Gaeckle & Short, 2002; Mattila et al., 1999; Ondiviela et al., 2014). In January,519

however, the averaged blade length of Zostera marina is about 16 cm (Gaeckle520

& Short, 2002; Ondiviela et al., 2014). Thus, the SAV blade length is assumed as521

16 cm. The corresponding blade width and thickness as well as the sheath length522

and width are estimated using the empirical formula provided by Abdelrhman523
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(2007), which yields a blade width of 3.7 mm, blade thickness of 0.11 mm, sheath524

length of 8 cm and sheath width of 3.4 mm. Following Abdelrhman (2007), the525

mass density is assumed � v = 700 kg/m
3
. The Young’s modulus is assumed526

E = 0:26 GPa for the blades based on the measurements by Fonseca et al.527

(2007). The sheath is considered rigid following Lei & Nepf (2019b). A sparse528

SAV meadow with 200 shoots/m
2

and a dense meadow with 400 shoots/m
2

529

are used in the study to investigate the variation of wave attenuation with530

vegetation density. The number of blades per shoot is assumed to be 5 so that531

there are 1000 blades/m
2

for the sparse con�guration and 2000 blades/m
2

for532

the dense con�guration. Due to small blade width and large signi�cant wave533

height and peak period in a storm event, the calculated KC number is greater534

than 135, yielding a constant drag coe�cient of 1.95 based on equation (25).535

The data comparison in section 3.1 has shown that Cd = 1:95 and Cm = 1536

work well for submerged vegetation with l=h < 0:38 (Fig. 4). Therefore, the537

drag coe�cient and added mass coe�cient are assumed Cd = 1:95 and Cm = 1,538

respectively, for this case study. The properties of the mussel farm and SAV539

meadow are summarized in Table 2. In this study, both mussel droppers and

Table 2: Properties of the mussel farm and submerged aquatic vegetation (SAV) meadow.

Mussel farm SAV

Canopy component Mussel dropper Zostera marina

Component properties Length: 8 m Blade length: 0.16 m

Diameter: 0.10 m Blade width: 3.7 mm

EI = 0:28 N/m
2

Blade thickness: 0.11 mm

� v Ac = 4:46 kg/m Young’s modulus: 0.26 GPa

Mass density: 700 kg/m
3

Sheath length: 8 cm

Sheath width: 3.4 mm

Canopy density Sparse: 0.060 droppers/m
2

Sparse: 200 shoots/m
2

(1000 blades/m
2
)

Dense: 0.125 droppers/m
2

Sparse: 400 shoots/m
2

(2000 blades/m
2
)

Drag coe�cient (Cd) 1.3 1.95

Added mass coe�cient (Cm ) 1 1

540

SAV are modeled as cantilever beams.541
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4.2. Mussel farm and SAV at the same water depth542

The time evolution of tide, storm tide, storm surge at the study site during543

the January 2015 North American blizzard is given by the SWAN+ADCIRC544

model (Xie et al., 2019) and shown on Fig. 9(a). The tidal range is around 3.3

Figure 9: Time evolution of (a) tide, storm tide and storm surge during the January 2015

North American blizzard, (b) signi�cant wave height H s0 and the corresponding peak wave

period Tp , (c) and (d) calculated wave energy dissipation ratio (EDR ) by the suspended

mussel farm (blue lines) and submerged aquatic vegetation (SAV, red lines) using the wave

spectrum data. The canopy lengths are L v = 100 m in (c) and L v = 200 m in (d). The

canopy densities are shown in the legend.

545

m and the largest storm surge is about 0.8 m at the study site. The incident546

signi�cant wave height (H s0) and corresponding peak wave period (Tp) for every547
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30 minutes are shown on Fig. 9(b). At the study site during the storm, the548

signi�cant wave height reached 3.6 m with peak wave periods ranging from 5.2549

s to 13.5 s.550

The wave attenuation by the mussel farm and SAV at the same still water551

depth of 10.6 m during the storm is calculated with the wave spectral data552

from the SWAN+ADCIRC model. The calculated wave energy dissipation ratio553

(EDR ) is shown on Fig. 9(c and d). The EDR of both SAV and mussels554

increases with incident signi�cant wave height. However, the EDR decreases555

with water level resulting in an oscillating wave attenuation with the same period556

of the tidal cycle. This periodic behavior is more obvious for SAV because the557

mussels are less in
uenced by the tidal change since the mussels can move up558

and down with the buoys. The largest wave attenuation value occurs at the559

highest wave height during low tide. The larger (L v = 200 m) and denser (0.125560

droppers/m
2
) mussel farm provides a more pronounced wave attenuation with561

EDR up to 0.32 (Fig. 9d), which is a bit more than that of the same size562

(L v = 200 m) but sparse (200 shoots/m
2
) SAV with EDR up to 0.26. However,563

for the denser (400 shoots/m
2
) SAV with the same size (L v = 200 m), the EDR564

can reach to 0.45. For the shorter period waves with Tp < 9 s as shown on Fig.565

9(c and d), the mussel farm can damp more wave energy than the same size566

SAV since SAV at the ocean bottom has little e�ect on wave attenuation for567

short period waves whose energy is concentrated near the ocean surface.568

The comparisons for the selected wave spectrum as well as the associated569

spectral dissipation ratio (SDR) at 10:00 UTC (high tide with H s0 = 2:9 m570

and Tp = 9:2 s), 16:00 UTC (low tide with H s0 = 3:5 m and Tp = 13:5 s),571

and 22:00 UTC (high tide with H s0 = 3:5 m and Tp = 13:5 s) on Jan 27 are572

shown on Fig. 10. The SDR of the suspended mussel farm increases with wave573

frequency until reaching the maximum value, while the SDR of SAV decreases574

with wave frequency. As a result, the suspended mussel farm shows the ad-575

vantage of reducing higher frequency (shorter period) wave components over576

SAV. For example on Fig. 10(a2) with smaller H s0 and Tp, the SDR of the577

dense suspended mussel farm (0.125 droppers/m
2
) is larger than that of dense578
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Figure 10: Comparisons of wave spectrum (S�� ) and wave spectral dissipation ratio (SDR )

versus wave frequency (f ) between the suspended mussel farm and submerged aquatic vege-

tation (SAV) with di�erent canopy densities (shown in legend) at 10:00 UTC (a), 16:00 UTC

(b), and 22:00 UTC (c) on Jan 27. The canopy length is 200 m for both canopies. The

incident signi�cant wave height and peak period are denoted by H s0 , and Tp , respectively.

SAV (400 shoots/m
2
) for f > 0:12 Hz (wave period T < 8:3 s) and sparse SAV579

(200 shoots/m
2
) for wave frequency f > 0:055 Hz (T < 18 s). The SDR of580

the sparse suspended mussel farm (0.06 droppers/m
2
) is larger than that of the581

dense SAV for wave frequency f > 0:16 Hz (T < 6:25 s) and sparse SAV for582

f > 0:12 Hz (T < 8:3s). As H s0 and Tp increases, the threshold value of the583

wave frequency where the SDR of suspended mussel farm is larger than that584
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of SAV increases to f > 0:167 Hz (T < 6 s) for the dense mussel farm and the585

dense SAV, f > 0:1 Hz (T < 10 s) for the dense mussel farm and the sparse586

SAV, f > 0:21 Hz (T < 4:8 s) for the sparse mussel farm and the dense SAV,587

and f > 0:17 Hz (T < 5:9 s) for the sparse mussel farm and the sparse SAV588

as shown on Fig. 10(b2). For the same H s0 and Tp at high tide, the SDR of589

both the mussel farm and SAV decreases due to the increase of water level. The590

threshold value of the wave frequency where the SDR of suspended mussel farm591

is larger than that of SAV decreases to f > 0:147 Hz (T < 6:8 s) for the dense592

mussel farm and the dense SAV, f > 0:095 Hz (T < 10:5 s) for the dense mussel593

farm and the sparse SAV, f > 0:18 Hz (T < 5:5 s) for the sparse mussel farm594

and the dense SAV, and f > 0:15 Hz (T < 6:7 s) for the sparse mussel farm and595

the sparse SAV as shown on Fig. 10(c2).596

4.3. Mussel farm and SAV at di�erent water depths597

The previous section shows the advantages of suspended mussel farms on598

damping high frequency wave energy over SAV at the same water depth. Usu-599

ally, SAV colonizes in shallower water as shown on Fig. 1. To compare the per-600

formances of the suspended mussel farm and the shallow water SAV meadow,601

the water depth for SAV is set at 6 m so that maximum H s0=h = 0:79 to602

avoid wave breaking. The water depth for the suspended mussel farm keeps603

the same at 10.6 m. The wave shoaling is incorporated using shoaling coe�-604

cient K s(! ) =
p

cgd(! )=cgs(! ) (Dean & Dalrymple, 1991), where cgd(! ) and605

cgs(! ) are the wave group speed at deeper and shallower water depths, respec-606

tively. Correspondingly, EDR and SDR are calculated using the shoaled wave607

energy and wave spectrum. The canopy density is set as 200 shoots/m
2

(1000608

blades/m
2
) for SAV meadow and 0.125 droppers/m

2
for the mussel farm. The609

canopy length for SAV meadow is set as L v = 100 m. For the mussel farm, two610

canopy lengths of 100 m and 200 m are designed for comparison.611

The wave attenuations of SAV and mussel farms as well as their combinations612

are shown on Fig. 11. The wave attenuation by SAV decreases dramatically613

with increasing water level while the suspended mussel farm is less a�ected by614
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Figure 11: (a) Comparisons of wave energy dissipation ratio (EDR ) between the sus-

pended mussel farm and submerged aquatic vegetation (SAV). The canopy densities are 0.125

droppers/m2 for the suspended mussel farm and 200 shoots/m2 (1000 blades/m2) for the SAV

meadow, respectively. The canopy length is 100 m for the SAV meadow. The canopy length

for the mussel farm is shown in the legend. (b1, c1, d1) The incident wave spectrum (S�� )

and (b2, c2, d2) Comparisons of wave spectral dissipation ratio (SDR ) versus wave frequency

(f) at 10:00 UTC (A), 16:00 UTC (B) and 22:00 UTC (C) on Jan 27. The incident signi�cant

wave height and peak wave period are denoted by H s0 , and Tp , respectively.

the water level change. For example (Fig. 11a), the EDR of SAV decreases615

by 49% from 0.51 at low tide (Jan 27 16:00 UTC) to 0.26 at high tide (Jan 27616

22:00 UTC) with water level increment of 2.5 m while the EDR of the suspended617

mussel farm decreases by 29%. The combination of the suspended mussel farm618
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and SAV provides a larger wave attenuation, especially for smaller signi�cant619

wave period and low tide (Fig. 11a). For example at 10:00 UTC on Jan 27620

with Tp = 9:2 s and H s0 = 2:9 m, the EDR of SAV and a large mussel farm621

(L v = 200 m) is 0.37, which is 1.5 times of the EDR = 0:15 of SAV. Adding a622

small mussel farm (L v = 100 m) to SAV can also favorably improve the EDR623

of SAV to 0.27 by 80%. As H s0 and Tp increases to H s0 = 3:5 m and Tp = 13:5624

s, the improvements of the wave attenuation of SAV by adding mussel farms are625

reduced because the mussel farm is more e�ective for reducing shorter period626

waves. However, the improvements still can reach up to 31% by adding a small627

mussel farm and 54% by adding a large mussel farm. The improvements of628

combined SAV and mussels hold for wave energy at all frequencies by taking629

the advantage of the canopy density of SAV and the vertical position of the630

suspended mussel as shown on Fig. 11(b2, c2 and d2).631

5. Discussion632

5.1. Wave attenuation characteristics of suspended aquaculture farms and SAV633

Wave attenuation occurs through the drag force which is determined by634

the horizontal wave orbital velocity. In shallow water waves, the amplitude of635

the horizontal wave orbital velocity is almost uniform with depth. Thus, the636

vertical position of the canopy has little e�ect on attenuating shallow water637

waves. Taking the advantages of canopy density, SAV can dissipate more wave638

energy than suspended mussel farms for long period waves. However, the wave639

attenuation of SAV is in
uenced by changes of water level. In shallow water, the640

wave attenuation of SAV decreases dramatically during high tide, storm surge,641

or storm tide (tide plus storm surge), which highlights the weakness of SAV in642

protecting coastlines during large storm tide conditions. This implies that severe643

erosion by storms may occur during high storm tide levels (in addition, higher644

waves may arrive at the shore without breaking during high tide). Therefore,645

living shorelines represented by SAV would be less e�ective during extreme646

events.647
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Suspended aquaculture farms can work as living breakwaters to protect the648

coast due to their capacity for wave attenuation. The wave attenuation capacity649

of suspended aquaculture farms is mainly dictated by the canopy density and650

the size (length) in the wave direction. Unlike SAV, which is limited by water651

depth due to light and nutrients, the vertical locations of suspended aquaculture652

farms can be adjusted to optimize their growth. Consequently, there is no depth653

restriction for suspended farms and they can be quite large, e.g., the suspended654

mussel aquaculture farm o� Gouqi Island in East China Sea has an area of about655

8 km2 (Lin et al., 2016). In theory, the size of suspended aquaculture farms can656

be designed to achieve optimal wave attenuation. For example, for the incident657

signi�cant wave height (H s0) to be reduced to the transmitted signi�cant wave658

height (H sT ) that will allow the living shorelines to thrive and mitigate coastal659

erosion, the size of the aquaculture farms can be designed as660

L v >
1

� (! c)
ln

H s0

H sT
; (27)

where ! c is the critical angular frequency such that
R1

0
S�� (!; 0)e�2� (! )L v d! =661

e�2� (! c )L v
R1

0
S�� (!; 0)d! . The existence of ! c is guaranteed according to the662

mean value theorem for de�nite integrals. For narrow-banded waves, ! c can be663

approximated using the peak wave angular frequency, ! c � ! p = 2�=T p. The664

external factors such as the water depth and the vertical position of aquaculture665

farms should also be considered during the design. For places that are not suit-666

able to establish living shorelines, such as low-nutrient seabeds, the suspended667

aquaculture farms o�er a viable alternative to SAV for nature-based coastal668

defense.669

This work has shown that suspended aquaculture farms can supplement SAV670

in wave attenuation. Suspended aquaculture farms attenuate shorter peak pe-671

riod waves and high frequency wave components more than SAV. Hence, adding672

suspended aquaculture farms to SAV-based living shorelines can compensate for673

the limitations of SAV for attenuating shorter period waves (such as boat wake)674

and enhance the wave attenuation capacity of SAV-based living shorelines for a675

wider range of wave frequency. The wave attenuation by SAV decreases during676
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high tide or storm surge due to the increase in water level. The water level,677

however, has fewer in
uences on suspended aquaculture farms since they are678

located near the surface and move up and down with water level. Therefore,679

suspended aquaculture farms can enhance the wave attenuation capacity of SAV-680

based living shorelines during extreme events. The combination of suspended681

aquaculture farms and traditional living shorelines (such as SAV) is therefore a682

desirable nature-based coastal defense strategy.683

5.2. Simpli�ed analytical solutions684

The generalized three-layer frequency dependent theoretical wave attenua-685

tion model developed in this paper is applicable to analyze the wave attenuation686

capacity of submerged, emerged, suspended, and 
oating canopies for random687

waves including narrow-banded and wide-banded wave conditions. The present688

analytical model provided a more precise consideration of the blade motion by689

incorporating the e�ects of inertia (neglected in Mullarney & Henderson, 2010;690

Henderson, 2019) and the mode shape (not considered in Asano et al., 1992;691

M�endez et al., 1999).692

The present model can reduce to previous models for submerged rigid vegeta-693

tion without motion by setting the transfer functions 
 s and 
 c as 0. Therefore,694

the decay coe�cient � in (22) reduces to the solution for rigid blades and given695

by696

� R (! ) =
2
p

2Nk 2

p
�! (2kh + sinh 2kh)

Z �d1

�d1�d2

Cdb� u [cosh k(h + z)]2dz; (28)

where � 2
u =

R1
0

[! cosh k(h + z)=sinh kh]2S�� (!; 0)d! . If d3 = 0, the solution697

in (28) reduces to the solution by Jacobsen et al. (2019) for submerged rigid698

vegetation. In this model, the nonlinear drag is linearized using the Borgman699

(1967) method such that juj �
p

8=�� u . If using the root mean square velocity700

to linearize the drag force following Madsen et al. (1988) such that juj �
p

2� u ,701

the solution reduces to the Hasselmann & Collins (1968) based solution in Chen702

& Zhao (2012) for submerged rigid vegetation. For idealized narrow-banded703

waves such that S�� � 0 when ! 6= ! p, the damping coe�cient in (28) can be704
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further simpli�ed as705

� RN =
1

12
p

�
CdbNkpH rms 0

9 sinh kp (d2 + d3)� 9 sinh kpd3 + sinh 3kp (d2 + d3)� sinh 3kpd3

(sinh 2kph + 2kh) sinh kph
;

(29)

where H rms 0 =
q

8
R1

0
S�� (!; 0)d! is the root mean square incident wave height706

and kp is the peak wave number calculated by solving ! 2
p = gkp tanh kph. For707

bottom-rooted rigid vegetation such that d3 = 0, � RN in (29) reduces to the708

solution of Mendez & Losada (2004). The relationship between the present and709

previous models are shown on Fig. 12.

Figure 12: Relationship between the present solutions (22), (28), (29) and previous solutions

by Chen & Zhao (2012), Jacobsen et al. (2019), and Mendez & Losada (2004), where 
 s and


 c are the transfer function for the motion of canopy component, d3 is the thickness of the

gap between the canopy and sea bed, u is the horizontal wave velocity and � u is the stand

deviation of u.

710

6. Conclusions711

A generalized three-layer frequency-dependent theoretical model for the wave712

attenuation by submerged and suspended canopies subjected to random waves713

was derived and validated with laboratory and �eld data. This model incorpo-714

rates the motion of canopies using a cantilever-beam model for slender canopy715
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components and a buoy-on-rope model for canopy components with concen-716

trated mass and buoyancy. This frequency-dependent solution was used to717

demonstrate the shoreline protection capability of suspended mussel farms alone718

and in combination with submerged aquatic vegetation (SAV) to damp wave en-719

ergy at a �eld site in Saco Bay, Maine, USA during a January 2015 Blizzard.720

The results showed that both suspended mussel farms and SAV have the poten-721

tial to damp wave energy considerably during storm events. Suspended mussel722

farms are more e�ective at damping shorter waves and high frequency wave723

components of the wave spectrum while dense SAV colonized in shallower water724

have the advantages of damping longer waves and lower frequency wave compo-725

nents more e�ectively. However, the wave attenuation of SAV in shallow water726

decreases dramatically at the peak of storm tide due to increased water level,727

which decreases the wave motion reaching the ocean bottom. In contrast, sus-728

pended aquaculture farms can move up and down with water level change and729

are less a�ected by water level change. As a consequence, the combination of730

suspended aquaculture farms and traditional SAV-based living shorelines pro-731

vide an optimized nature-based shore protection scheme that can damp more732

wave energy for a wider wave frequency and water level range.733

The research of wave attenuation by suspended and 
oating canopies is still734

in its infancy. More laboratory and �eld experiments data for the hydrodynamic735

properties of suspended aquaculture farms (e.g., mussels and kelp) as well as736

wave attenuation are desirable. The present theoretical model assumed the737

blade motion as a linear vibration with small-amplitude. However, as long as738

the nonlinear e�ects of large-amplitude blade motion is negligible, the present739

theoretical model remains valid. In addition, the bottom friction, bedforms,740

bottom slope as well as wave-driven currents, wave and current conditions may741

also be signi�cant for certain types of bottom rooted vegetation (e.g., Jensen742

et al., 1989; Myrhaug, 1995; Zou, 2004; Zou & Hay, 2003; Smyth & Hay, 2002;743

Maza et al., 2019; Abdolahpour et al., 2017; van Rooijen et al., 2020). Therefore,744

it is worthwhile to investigate the nonlinear e�ects of large-amplitude blade745

motion on the wave damping capacity of suspended canopies as well as the746
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e�ects of bottom properties and wave-current conditions in the future work.747
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Appendix A. Normal mode solutions for blade displacements in ran-758

dom waves759

The governing equation (6) for the blade displacement in random waves is760

given by761

m �� +c _� +EI� 0000 =
X

!

a! � [ccos(kx � !t +  ) + !m I sin(kx � !t +  )] (A.1)

with the boundary conditions � (0; t) = 0, � 0(0; t) = 0, � 00(l; t ) = 0, and � 000(l; t ) =762

0 for a cantilever beam. The solution of (A.1) can be written as the linear763

superposition of components of di�erent frequencies764

� = �! � ! ; (A.2)

where � ! is the solution of765

m �� ! + c _� ! + EI� 0000! = a! � [ccos(kx � !t +  ) + !m I sin(kx � !t +  )] : (A.3)

According to normal mode approach (Rao, 2007), the solution of (A.3) can be766

assumed as a linear superposition of the normal modes of the cantilever beam767
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as768

� ! =
X

n

� n (s)qn (t); (A.4)

where � n (s) is the nth normal mode and qn is the nth generalized coordinate769

or modal participation coe�cient. The normal modes for a cantilever beam are770

found from the equation771

� 0000 � � 4� = 0 (A.5)

with boundary conditions � (0) = 0, � 0(0) = 0, � 00(l) = 0, and � 000(l) = 0.772

Solving (A.5) yields the nth normal mode,773

� n = (cos � n l + cosh � n l) (sin � n s� sinh � n s)+(sin � n l + sinh � n l) (cosh � n s� cos � n s) ;

(A.6)

where � n is the nth solution of774

1 + cos �l cosh �l = 0: (A.7)

Using (A.5) associated with the boundary conditions, the normal modes are775

proved to satisfy the orthogonality conditions,776

Z l

0

G(s)� n � m ds =

8
<

:

Rl
0

G(s)� 2
n ds; n = m;

0; n 6= m;
(A.8)

where G(s) is an arbitrary function. Substituting (A.4) into (A.3) yields777

m
X

n

� n �qn + c
X

n

� n _qn + EI
X

n

� 0000n qn

=a! � [ccos(kx � !t +  ) + !m I sin(kx � !t +  )] :

(A.9)

Multiplying (A.9) by � m and integrating from 0 to l result in778

X

n

 Z l

0

m� n � m ds�qn +

Z l

0

c� n � m ds _qn +

Z l

0

EI� 0000n � m dsqn

!

=a!

" Z l

0

c�� m dscos(kx � !t +  ) + !
Z l

0

mI �� m dssin(kx � !t +  )

#

:

(A.10)
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Substituting (A.5) into (A.10) and using the orthogonality conditions (A.8) yield779

780

�qn + 2� n � n _qn + � 2
n qn = a! [Dn cos(kx � !t +  ) + !I n sin(kx � !t +  )] ;

(A.11)

where 2� n � n =
Rl

0
c� 2

n ds=
Rl

0
m� 2

n ds, � 2
n = � 4

n

Rl
0

EI� 2
n ds=

Rl
0

m� 2
n ds, Dn =781

Rl
0

c�� n ds=
Rl

0
m� 2

n ds, and I n =
Rl

0
mI �� n ds=

Rl
0

m� 2
n ds. The steady state solu-782

tion for (A.11) is783

qn = a!Q s sin(kx � !t +  ) + a!Q c cos(kx � !t +  ); (A.12)

where784

Qs =
!I n

�
� 2

n � ! 2
�
� Dn 2� n � n !

(� 2
n � ! 2)

2
+ (2� n � n ! )

2 (A.13)

and785

Qc =
Dn

�
� 2

n � ! 2
�

+ !I n 2� n � n !

(� 2
n � ! 2)

2
+ (2� n � n ! )

2 : (A.14)

Substituting (A.6) and (A.12) into (A.4) and the result into (A.2) yields the786

blade displacement,787

� =
X

!

a� [
 s sin(kx � !t +  ) + 
 c cos(kx � !t +  )] ; (A.15)

where the transfer functions 
 s and 
 c are given by788


 s =
!
�

1X

n =1

� n
!I n

�
� 2

n � ! 2
�
� Dn 2� n � n !

(� 2
n � ! 2)

2
+ (2� n � n ! )

2 (A.16)

and789


 c =
!
�

1X

n =1

� n
Dn

�
� 2

n � ! 2
�

+ !I n 2� n � n !

(� 2
n � ! 2)

2
+ (2� n � n ! )

2 : (A.17)
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