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ABSTRACT

In this work, we tackle the challenge of quantitative estimation of reservoir dynamic
property variations during a period of production, directly from four-dimensional
seismic data in the amplitude domain. We employ a deep neural network to invert
four-dimensional seismic amplitude maps to the simultaneous changes in pressure,
water and gas saturations. The method is applied to a real field data case, where,
as is common in such applications, the data measured at the wells are insufficient
for properly training deep neural networks, thus, the network is trained on synthetic
data. Training on synthetic data offers much freedom in designing a training dataset,
therefore, it is important to understand the impact of the data distribution on the
inversion results. To define the best way to construct a synthetic training dataset, we
perform a study on four different approaches to populating the training set making
remarks on data sizes, network generality and the impact of physics-based constraints.
Using the results of a reservoir simulation model to populate our training datasets,
we demonstrate the benefits of restricting training samples to fluid flow consistent
combinations in the dynamic reservoir property domain. With this the network learns
the physical correlations present in the training set, incorporating this information
into the inference process, which allows it to make inferences on properties to which
the seismic data are most uncertain. Additionally, we demonstrate the importance
of applying regularization techniques such as adding noise to the synthetic data for
training and show a possibility of estimating uncertainties in the inversion results by
training multiple networks.
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INTRODUCTION monitoring and history matching purposes, because 4D seis-

L . . . . mic data offer information about reservoir property changes
Estimating dynamic reservoir property change during a period . . . .
. . . . o across the whole reservoir, at a specific production time. It
of field production from four-dimensional (4D) seismic data C . o )
. L . complements well production information, which is spatially
has been a challenge and ambition for geoscientists in the oil o o
. . . . sparse but temporally dense. 4D seismic data provide infor-
and gas industry. These estimates are appealing for reservoir . o o
mation for the space between wells. But this information is

encoded into the measured seismic amplitudes. So, we need to

comprehend how the changes occurring inside the reservoir
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Along field production, the reservoir goes through con-
stant change in properties such as fluid saturation, pore pres-
sure, temperature, or even to changes in the reservoir rock
architecture itself due to compaction and dissolution. The
change in each of these properties has an independent impact
on the seismic data, but they seldom act alone. Water injec-
tion for example leads to an increase in water saturation and
an increase in pressure in the vicinities of the injector well.
The observed 4D seismic amplitudes are a superposition of all
the effects caused by the simultaneous variations in any dy-
namic property. The challenge is in quantitatively estimating
the simultaneous contribution of each reservoir property to
the final observed data. As is common in geophysical inver-
sion, this is an underdetermined problem, prone to ambigui-
ties and highly uncertain. Seismic information is limited and
cannot provide enough independent measurements to charac-
terize the whole reservoir state.

The information present in the variation of 4D ampli-
tudes with offset (4D AVO) is crucial for quantifying multi-
ple simultaneous reservoir property changes. We can highlight
two major theoretical studies that use analytical solutions to
show the possibility of quantifying the changes in both pres-
sure and saturation directly from the 4D AVO data. In the first,
Landre (2001) follows a linearization of Smith and Gidlow’s
approximation to the reflection coefficient equation (Smith
and Gidlow, 1987) to analytically derive a linear relation link-
ing the 4D AVO gradient/intercept seismic attributes to the
changes in two reservoir properties, pressure and water/oil sat-
uration. The derived equations depend on rock physics-related
parameters that can be estimated using laboratory measure-
ments. In a different approach, Alvarez and Macbeth (2014)
follow a linearization of the Aki and Richards’ (1980) ap-
proximation to the reflection coefficient equation to derive an
angle-dependent linear relation between the changes in pres-
sure and oil/water saturations and the 4D seismic amplitudes.
This relation also depends on reservoir petro-elastic param-
eters. Additionally, MacBeth ez al. (2006) developed a data-
based inversion method that assumes a linear link between
any 4D seismic attribute and the changes in pressure and sat-
uration. The parameters in the equations here are not directly
related to any petro-elastic property, instead, they need to be
previously calibrated using repeated well measurements, in a
similar manner as the way neural networks are trained us-
ing direct observations. In this study, the authors run a prin-
cipal component analysis to determine the best 4D seismic at-
tributes for the simultaneous quantification of pressure and
saturation changes (Floricich, 2006). The authors conclude
that the 4D AVO related attributes contribute the most to the

inversion process and that the separation of effects could not
be done without this AVO information.

Other methods take advantage of the 4D AVO informa-
tion in many domains (impedance, gradient/intercept, seis-
mic amplitudes) to invert for the changes in different reser-
voir properties such as pressure, compaction, and the satu-
rations of water and gas (Trani et al., 2011; Coleou et al.,
2013; Corzo et al., 2013; Davolio et al., 2013; Omofoma,
2017; Wong, 2017; Corte et al., 2019). Most of these stud-
ies stress that there is a good deal of ambiguity and uncer-
tainty in the solutions, thus any available external informa-
tion should be used to constrain and/or regularize the inver-
sion process (Blanchard and Thore, 2008; Blanchard, 2012).
External information may come from the wells, as in MacBeth
et al. (2006) and Coleou et al. (2013), where the authors use
well-injected and produced volumes as global constraints to
the saturation results. Reservoir simulation models can also
be used to provide information to guide the inversion results.
Davolio et al. (2013) and Omofoma (2017) use multiple real-
izations of a reservoir simulation model to define local hard
bounds, constraining the possible inversion results. Corte et al.
(2019) use the results of a history matched simulation model
as local prior information in a Bayesian inversion approach
to regularize the solution and provide soft constraints to the
inversion results. Additionally, 4D seismic time-shift measure-
ments have also been used as a data-based source of informa-
tion in simultaneous inversion processes (Trani et al., 2011;
Thore and Hubans, 2012). In neural network solutions, we
do not have the possibility of applying direct constraints to the
inference process. Constraining the training dataset does not
guarantee constrained results either, as the network can ex-
trapolate beyond the training dataset. In this paper, we show
a few techniques that can be used in the construction of the
network architecture and training dataset that contribute to
regularizing and constraining the inversion results.

The construction of the training dataset is a critical step
that has great impact on the inversion results. Neural network
applications, as opposed to most of the mentioned studies, do
not rely on a physical model to establish the links between the
seismic and reservoir domains. Instead, they rely on a training
dataset composed of real input—output measurements, learn-
ing from it the non-linear relations that link inputs to outputs.
The training dataset defines the ‘physical’ model that is used
in the inversion, so it is important that it contains a good phys-
ical representation of the whole problem. In this case, a good
training dataset should represent the whole reservoir, contain-
ing the global variability on reservoir quality and the possible

dynamic property combinations.
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Measured data to compose a training dataset can only
come from repeated well measurements at seismic acquisition
times. MacBeth et al. (2006) use well data in a model cali-
bration approach analogous to neural network training. The
authors pre-define a linear equational link between the seismic
and reservoir domains and iteratively calibrate the equations’
parameters to fit the data measured at a few well locations.
The main difference to neural network training is that deep
neural networks (DNNs) contain thousands more parameters
to be calibrated, leading to much more complex non-linear
relations. Consequently, deep neural networks need a much
larger amount of data for satisfactory training. Nonetheless,
Cao and Roy (2017) perform a synthetic study showing that
a neural network can also be trained successfully using only
information at well locations in a 4D reservoir property in-
version application. In real reservoir cases though, the neces-
sary repeated saturation well logs are not common and may
be lacking as whole, as is true in our case study. This type of
data is sparse, and it can be argued that it may be biased to
good reservoir areas, where the wells are located, and thus, in-
capable of representing the entire reservoir. More often than
not, just the well data are not sufficient to properly train a
neural network.

The alternative is to use synthetic data to help in the con-
struction of the training dataset. Ayzenberg and Liu (2014)
present a real reservoir case of a neural network application to
4D pressure and saturation inversion where the authors pop-
ulate their training dataset with reservoir simulation results
and real seismic observations at a few well-understood areas.
To extend their training dataset beyond the wells, they begin
a shift to synthetic data, but only on the reservoir domain,
keeping the real observed seismic data. Xue et al. (2019) use a
fully synthetic dataset to train their neural network to quantify
the changes in water saturation on a real reservoir case. The
authors make use of a wedge model as a static frame and ran-
dom sampling of the dynamic domain. More recently, Zhong
et al. (2020) presented a solution using convolutional genera-
tive adversarial networks to invert impedance change images
to reservoir property changes. Their convolutional approach
analyses full images, incorporating a spatial correlation aspect
into the inference results. For this reason, their synthetic train-
ing dataset is composed of full reservoir images, created by
running 300 reservoir simulations with varying static models.
Although convolutional networks are the state-of-the-art in
image analysis, they require an immense amount of previous
work to prepare synthetic training datasets

This paper presents a DNN application to inverting 4D

AVO seismic data into the simultaneous changes in three reser-
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voir properties: pressure (  P), water saturation ( S,,) and gas
saturation ( Sg). It provides a quick and practical alternative
to more well-established inversion methodologies. As a good
platform for comparison, we present a Bayesian model-based
inversion approach applied to the same dataset in Corte et al.
(2019), and a direct comparison of methods in Dramschet al.
(2019a).

The DNN is trained with synthetic data and applied to
real 4D seismic data from a North Sea field. We use a reser-
voir simulator to seismic modelling approach (Sim2Seis) to
construct four synthetic training datasets with the objective of
assessing the impact of the distribution of data in the training
dataset on the quality of the inversion results when applied to
a real 4D seismic dataset. The training datasets presented dif-
fer essentially on how much external physical information is
used to constrain and distribute the data. We show the value of
using physics informed and fluid flow consistent realizations
to create a realistic distribution of data in a synthetic training
dataset. Furthermore, we show the importance of training the
DNN on noisy synthetic data and the possibility of estimating
uncertainties in the results by training multiple DNN models
with varying signal to noise levels. With this we address the
problems of constraining the results with external physical in-
formation and regularizing solutions to avoid overfitting of

the training data and inverting noise.

FIELD AND DATASET

The field is composed of stacked turbidite channel and sheet-
like sands ranging from 5 to 30 m in thickness and 25-30%
in porosity. It is highly compartmentalized both laterally and
vertically due to faults and intercalating shales. The sand-
stone reservoir is present in four adjacent fault blocks. Faults
between blocks are sealing, creating four isolated segments
with varying water oil contacts (Fig. 1b). This whole struc-
ture dips and thickens to the north-west (Fig. 1a). Inside each
segment there are faults that may be sealing or not, leading to
a few isolated compartments and a highly complex geological
setup. Figure 1(c) shows the vertical sum of pore volume in the
reservoir, where we see clearly the channel features. Detailed
explanations of the depositional and stratigraphic evolution
of the region can be found in Ebdon ez al. (1995) and Lamers
and Carmichael (1999).

The initial pressure in the field was only around 3 MPa
above bubble point pressure, making pressure maintenance
to prevent gas exsolution the main production strategy. To
maintain pressure, water injectors were drilled in the water

leg, on the west flank of the reservoir and in other select zones
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Figure 1 (a) Top reservoir horizon in time, (b) initial water saturation for reservoir sandstone, (c) pore volume for reservoir and (d) NRMS

measure of non-repeatability.

around the reservoir. Even so, production in this complex
compartmentalized structure led to areas with strong pres-
surization due to water injection into isolated compartments,
while other areas lack the pressure support and experience
gas release due to pressure depletion below bubble point
pressure. This creates a complex dynamic setup on top of an
already complex static framework. The challenge is to use
four-dimensional (4D) seismic data to quantitatively estimate
simultaneous changes in three dynamic properties: pressure
( P), water saturation ( S,) and gas saturation ( S,)
across the reservoir. Both pressure and gas effects on seismic
data are non-linear, so the inversion method should deal
properly with the non-linearities due to changes in these two
properties.

The production strategy for this reservoir included regu-
lar 4D seismic acquisitions to aid in monitoring reservoir pro-
duction. In this paper, we present the results of the method ap-
plied to one of the many monitor seismic acquisitions acquired
along the field life. The reservoir is thin to seismic standards,

being identified in a seismic quadrature section as one single

trough (Fig. 2). For this reason, all of the analysis is done in
map form. The seismic data used for inversion (Fig. 3) are the
time-lapse difference in the sum of negative amplitudes map
attribute ( SNA), extracted from quadrature seismic volumes
along the reservoir time window. This map extraction consists
of a vertical sum of the negative seismic amplitudes between
the top and bottom reservoir horizons (shown in Fig. 2) for
the baseline and monitor volumes, followed by a subtraction
of these two maps (monitor — baseline). Calculated time-shifts
are very small and show no correlation with the seismic am-
plitudes or production data, so unfortunately, they were not
useful. We use the pre-production seismic acquisition as the
baseline for generating the 4D seismic maps.

Figure 1(d) shows the normalized root mean squared
(NRMS) map extracted from the monitor-baseline pair used
for inversion. This was calculated in a 400 ms time win-
dow, 100 ms above the reservoir, so that it is away from any
production-related effects, but deep enough not to capture ac-
quisition footprints. NRMS is a measure of comparison be-

tween two seismic traces. When extracted in the overburden
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