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DEHN FILLING DEHN TWISTS

FRANÇOIS DAHMANI, MARK HAGEN, AND ALESSANDRO SISTO

Abstract. Let Σg,p be the genus–g oriented surface with p punctures,
with either g > 0 or p > 3. We show that MCG(Σg,p)/DT is acylin-
drically hyperbolic where DT is the normal subgroup of the mapping
class group MCG(Σg,p) generated by Kth powers of Dehn twists about
curves in Σg,p for suitable K.

Moreover, we show that in low complexity MCG(Σg,p)/DT is in fact
hyperbolic. In particular, for 3g− 3 + p ≤ 2, we show that the mapping
class group MCG(Σg,p) is fully residually non-elementary hyperbolic
and admits an affine isometric action with unbounded orbits on some
Lq space. Moreover, if every hyperbolic group is residually finite, then
every convex-cocompact subgroup of MCG(Σg,p) is separable.

The aforementioned results follow from general theorems about com-
posite rotating families, in the sense of [Dah18], that come from a col-
lection of subgroups of vertex stabilisers for the action of a group G on a
hyperbolic graph X. We give conditions ensuring that the graph X/N is
again hyperbolic and various properties of the action of G on X persist
for the action of G/N on X/N .
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Introduction

Thurston’s Dehn filling theorem has an algebraic counterpart in the con-
text of relatively hyperbolic groups [Osi07, GM08], which has numerous
important applications such as in the proof of the Virtual Haken conjec-
ture [Ago13] and in the solution of the isomorphism problem for certain
relatively hyperbolic groups [DG18, DT19]. A Dehn filling of a relatively
hyperbolic group G is the quotient of G by the normal closure of normal sub-
groups Ni /Hi of its peripheral subgroups Hi, and the Dehn filling theorem
for relatively hyperbolic groups says that such quotients are still relatively
hyperbolic provided that the Ni are sufficiently “sparse”. Mapping class
groups are not non-trivially relatively hyperbolic except in very low com-
plexity [AAS07, BDM09], but it is still natural to think of their subgroups
generated by Dehn twists around curves in a pants decomposition as pe-
ripheral subgroups. Hence, we think of the following theorem (Theorem 5.2
below), as a Dehn filling theorem for mapping class groups:

Theorem 1. Suppose g > 0 or p > 3, and consider Σg,p, an oriented surface
of genus g with p punctures. There exists a positive integer K0 so that for
all non-zero multiples K of K0, if DTK denotes the normal subgroup of
the mapping class group MCG(Σg,p) generated by all Kth powers of Dehn
twists, then the group MCG(Σg,p)/DTK is acylindrically hyperbolic.

Residual properties of mapping class groups in low complexity.
Recall that the complexity of Σg,p is defined as ξ(g, p) = 3g + p − 3. In
low complexity, we can press a bit further and study residual properties
of mapping class groups. First, we produce many hyperbolic quotients.
Recall that, given a class of groups P, a group G is fully residually P if for
every finite set F ⊆ G − {1} there exists a group H in P and a surjective
homomorphism φ : G→ H with φ(F ) ⊆ H − {1}.

Theorem 2. Suppose that (g, p) ∈ {(0, 5), (1, 2)}. Then MCG(Σg,p) is fully
residually non-elementary hyperbolic.

It was not previously known whether either of MCG(Σ0,5) or MCG(Σ1,2)
admits an infinite hyperbolic quotient.

We deduce Theorem 2 from a different statement, Theorem 5.8, which is
interesting even in complexity 1. Specifically, for (g, p) ∈ {(0, 4), (1, 0), (1, 1)},
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this says that MCG(Σg,p)/DTK is hyperbolic for all suitably large multiples
K of the constant K0 from Theorem 5.8, and when (g, p) ∈ {(0, 5), (1, 2)},
the quotient MCG(Σg,p)/DTK is hyperbolic relative to subgroups isomor-
phic to MCG(Σg′,p′)/DTK with (g′, p′) ∈ {(0, 4), (1, 1)} and is therefore
again hyperbolic.

From Theorem 2 and results of Yu and Nica (see also Alvarez and Laf-
forgue), we obtain:

Corollary 3. Suppose that (g, p) ∈ {(0, 5), (1, 2)}. Then MCG(Σg,p) admits
an affine isometric action with unbounded orbits on some Lq space.

Specifically, Theorem 2 yields a non-elementary hyperbolic quotient Q,
which in turn admits a proper affine isometric action on Lq(∂Q× ∂Q) and
`q(Q×Q), by [Nic13, Yu05, AL17], for sufficiently large q.

This is related to the question of which mapping class groups have prop-
erty (T) because, if Q can be chosen as above so that one could take q = 2,
we would get an affine isometric action of MCG(Σg,p), with unbounded
orbits, on a Hilbert space.

Recall from [FM02] that a subgroup H ≤MCG(Σg,p) is convex-cocompact
if some (hence any) H–orbit in the Teichmüller space of Σg,p is quasicon-
vex. There are several equivalent characterisations of convex-cocompactness,
see [KL08, Ham05, DT15], and one reason this notion is interesting is its
connection with hyperbolicity of fundamental groups of surface bundles over
surfaces [FM02, Ham05].

In [Rei06], Reid posed the question of whether convex-cocompact sub-
groups of MCG(Σg,p) are separable. Recall that a subgroup H < G is
separable if for every x ∈ G − H there exists a finite group F a surjective
homomorphism φ : G→ F with φ(x) /∈ φ(H).

Note that in general MCG(Σg,p) contains non-separable subgroups, and
in fact this is already the case for MCG(Σ0,5) [LM07]. (Nonetheless, various
geometrically natural subgroups, e.g. curve-stabilisers, are known to be
separable in MCG(Σg,p) [LM07].)

The techniques of the present paper engage with this question in a some-
what mysterious way:

Theorem 4. Assume that all hyperbolic groups are residually finite. Sup-
pose (g, p) ∈ {(0, 5), (1, 2)}. Then any convex-cocompact subgroup Q <
MCG(Σg,p) is separable.

The proof of Theorem 4 relies on the hyperbolic quotients of MCG(Σg,p)
arising in the proof of Theorem 2. The extra work, done in Proposition 5.12,
is to show that in all but finitely many such quotients, the subgroup Q sur-
vives as a quasiconvex subgroup, and arbitrary g ∈ Σg,p\Q can be separated
from Q in such quotients. At this point, the assumption about residual
finiteness is invoked: using a result of [AGM09] (namely, if all hyperbolic
groups are residually finite then all hyperbolic groups are QCERF), we then
separate the image of g from this quasiconvex subgroup in a finite quotient.
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More general context and proof strategy. In order to prove our results
we actually work in a more general context (that we plan on using in future
work, see the next subsection). Roughly speaking, we consider a group G
acting on a hyperbolic graph X so that the vertex set of X fits the frame-
work of composite projection systems introduced in [Dah18], and consider
quotients G/N of G by normal subgroups N generated by subgroups of ver-
tex stabilisers consisting of “big rotations”. The main technical innovation
we introduce in this paper is our method for proving that the graph X/N
is hyperbolic. The strategy is as follows (see Proposition 4.3). Consider a
geodesic triangle in X/N . We can lift the 3 sides of the triangle to a con-
catenation of 3 geodesics, which need not close up. If it doesn’t close up,
there is a non-trivial element n ∈ N that maps the initial vertex x of the
concatenation to the terminal vertex nx. We then want to change the lifts
so that the new concatenation is either a triangle, or at least n is “simpler”.
What allows us to do this is Corollary 3.6, which we think of as an analogue
of the Greendlinger lemma from [DGO17]. What the corollary says is that
we have a large rotation γv around some vertex v so that γvn is “simpler”,
and v needs to lie within distance 1 of one of the lifts. Applying γv to part of
the concatenation yields new lifts with the required property. The measure
of complexity of elements of N is actually rather complicated, but the same
proof strategy works in other contexts as long as there is a version of the
Greendlinger lemma so that some notion of complexity gets reduced when
applying it. In particular, it can replace the use of the Cartan-Hadamard
Theorem (for hyperbolic space) in the context of very rotating families from
[DGO17] (thereby making for a simpler proof). On the other hand, Cartan-
Hadamard cannot be applied to X/N in our context, and in fact we could
not see any way to apply it to any space quasi-isometric to it.

Future work in the hierarchically hyperbolic setting. A natural strat-
egy for extending the above applications beyond complexity 2 involves com-
bining the techniques in the present paper with the theory of hierarchically
hyperbolic groups [BHS17b, BHS15] (of which mapping class groups are one
of the “type species”).

We believe that the quotients MCG(Σg,p)/DTK are in fact hierarchically
hyperbolic. One could then apply again our results on composite rotating
graphs, and take further quotients. The complexity (in the hierarchically hy-
perbolic sense) decreases at each step, and hierarchically hyperbolic groups
of minimal complexity are known to be hyperbolic [BHS17a]. In particular,
under the assumption that every hyperbolic group is residually finite, one
should be able to prove that for arbitrary g, p, the group MCG(Σg,p) admits
a non-elementary hyperbolic quotient, and that every convex-cocompact
subgroup is separable.

Outline of the paper. In Section 1, we recall the notions of composite pro-
jection systems and composite rotating families from [Dah18] and establish
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some useful facts, relying on the transfer lemma from [Dah18]. The notion of
a composite projection system relies on the projection axioms from [BBF15].

In Section 2, we introduce hyperbolic graphs into the picture, and define
the notion of a composite projection graph and a composite rotating family
on it. Here, we state our main technical result, Theorem 2.1, and give a
proof which relies on statements proved in subsequent sections.

The reader mainly interested in the proof of Theorem 2.1 is advised to
focus on the main result of Section 3, which is Corollary 3.6; this is the
statement, mentioned above, that allows one to lower the “complexity” of
elements n ∈ N by applying large rotations. This is used in Section 4 to
construct the lifts mentioned above. From the lifting procedure, one obtains
the facts used in the proof of Theorem 2.1. In Section 4, we also prove
Proposition 4.8, which describes how stabilisers of vertices in X intersect
N . This is not used in the proof of Theorem 2.1, but does play a role in
Section 5.

Finally, in Section 5, we consider the case of MCG(Σg,p) acting on the
curve graph C(Σg,p), which is a composite projection graph by Proposi-
tion 5.1 (see also [Dah18]). Large powers of Dehn twists generate a collec-
tion of rotation subgroups forming a composite rotating family, and we can
invoke Theorem 2.1 to obtain Theorem 1. The rest of Section 5 is devoted
to the proofs of Theorem 2 and Theorem 4.

1. Composite projection systems and rotating families

We now recall the notion of a composite projection system from [Dah18],
and establish some basic facts. The reader familiar with mapping class
groups might want to keep in mind that in that context Y∗ is the collection
of (isotopy classes of simple closed) curves, that two curves are active if they
intersect, and that dπy is defined using subsurface projection.

1.1. Composite projection systems. Given y in a partitioned set Y∗ =
tmi=1Yi, denote by i(y) the index such that y ∈ Yi(y).

Definition 1.1. [Dah18, Definition 1.2] Let Y∗ be the disjoint union of
finitely many countable sets Y1, . . . ,Ym. A composite projection system on
(Yi)i=1..m (or on Y∗), for the constant θ, consists of

• a family of subsets Act(y) ⊂ Y∗ for y ∈ Y∗ (the active set for y)
such that Yi(y) ⊂ Act(y), and such that x ∈ Act(y) if and only if
y ∈ Act(x) (symmetry in action),
• and a family of functions dπy : (Act(y) \ {y})2 → R+, satisfying:

– Symmetry: dπy (x, z) = dπy (z, x) for x, z ∈ Act(y) \ {y};
– Triangle inequality: dπy (w, x) ≤ dπy (w, z) + dπy (z, x) for all
w, x, z ∈ Act(y) \ {y};

– Behrstock inequality: min{dπy (x, z), dπz (x, y)} ≤ θ whenever
both quantities are defined;

– Properness: |{y ∈ Yi : dπy (x, z) ≥ θ}| <∞ for all x, z ∈ Yi;
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– Separation: dπy (z, z) < θ for z ∈ Act(y) \ {y};
– Closeness in inaction: if x /∈ Act(z) then, for all y ∈ Act(x)∩

Act(z), we have dπy (x, z) ≤ θ;
– Finite filling: for all Z ⊂ Y∗, there is a finite collection xj ∈ Z

such that ∪j Act(xj) covers ∪x∈Z Act(x).

By [BBF15, Theorem 3.3], for each i ≤ m, and y ∈ Yi, and for a suitable
choice of θ, there exists a modified function dy : Yi×Yi → R+, satisfying the
monotonicity property of [BBF15, Theorem 3.3] (see also [BBFS17, Axiom
(SP3)] for a strengthened property).

This function is unfortunately not defined on Act(y) \Yi. However, dπy is

defined on all of Act(y). Therefore, we define d^y : (Act(y) \ {y})2 → R+ as
follows. Let x, z ∈ Act(y) \ {y}. If x, z ∈ Yi, we let d^y (x, z) = dy(x, z), and
otherwise, we let d^y (x, z) = dπy (x, z).

Let YjM (x, z) = {y ∈ Yj ∩ Act(x) ∩ Act(z) : d^y (x, z) ≥ M} (the set of
M -large projections between x and z in the j-coordinate). The elements
x, y, z need not be in the same coordinate.

We now introduce the first of various constraints on the constants that will
appear. Fix a composite projection system with constant θ. Let Θ = Θ(θ) be
the constant provided by applying Theorem 3.3 of [BBF15] to each Yi to ob-
tain the maps dy as above. In particular, dy now has the monotonicity prop-
erty: if dy(x, z) ≥ Θ, then dw(x, y), dw(y, z) ≤ dw(x, z) where w, x, y, z ∈ Yi.
Within Yi, the maps dy continue to be symmetric and satisfy the properness
property, with Θ replacing θ. The same theorem also provides a constant κ
so that, for all pairwise distinct x, y, w, z ∈ Yi, we have

• dπy − κ ≤ dy ≤ dπy ;
• dy(x, z)− κ ≤ dy(x,w) + dy(z, w);
• min{dy(x, z), dx(y, z)} ≤ κ.

We emphasise that the constants κ,Θ have been chosen so that the above
properties hold within each Yi.
Remark 1.2. From the proof of [BBF15, Theorem 3.3], we see that we
can take Θ = 4θ + 1. Indeed, any choice of Θ > 4θ guarantees all of the
properties of dy that we will need. We can also take any κ ≥ 3θ, by [BBF15,
Proposition 3.2].

1.2. Composite rotating families. We now recall the notion of a com-
posite rotating family. The main idea to keep in mind is that we want Γx
to consist of “large rotations” around x, where d^x is thought of as the angle
at x.

Definition 1.3. (Composite rotating family) Consider a composite pro-
jection system Y∗ endowed with an action of a group G by isomorphisms,
i.e. G acts on Y∗, preserving the partition Y∗ =

⊔m
i=1 Yi, and satisfying

Act(gy) = gAct(y) for all g ∈ G and y ∈ Y∗. Moreover, suppose that if
x, y, z ∈ Y∗ are such that d^y (x, z) is defined, then d^gy(gx, gz) = d^y (x, z) for
all g ∈ G.
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A composite rotating family on (Y∗, G), with rotating control Θrot > 0 is
a family of subgroups Γv, v ∈ Y∗ such that

• for all x ∈ Y∗,Γx < StabG(x), is an infinite group;
• Γx acts by rotations around x (i.e. whenever y = x or y 6∈ Act(x),

the subgroup Γx fixes y and d^y ), with
• proper isotropy (i.e. for all R > 0, y ∈ Act(x), the set {γ ∈ Γx :
d^x (y, γy) < R} is finite);
• for all g ∈ G, and all x ∈ Y∗, we have Γgx = gΓxg

−1;
• if x /∈ Act(z) then Γx and Γz commute;
• for all i ≤ m and for all x, y, z ∈ Yi, if dy(x, z) ≤ Θ, then

dy(x, gz) ≥ Θrot

for all g ∈ Γy \ {1}.

Standing assumptions 1.4. From now and until the end of the subsection,
we fix a composite rotating family, and we use the notation from Definition
1.3. Moreover, we assume that the constants are chosen as in Remark 1.2.
Finally, we set Θ0 = 2Θ + 3κ.

Recall the useful transfer lemma, which allows one to reduce to “transfer”
various configurations to a single coordinate.

Lemma 1.5. (Transfer Lemma, [Dah18, Lemma 1.4, Prop. 1.6]) Let x ∈
Y∗. For all i, there exists xt ∈ Yi, such that

• for all γx ∈ Γx, and all z ∈ Yi, one has d^z (γxx
t, xt) ≤ Θ0, and

• for all y ∈ Yi that is x-active, for all but finitely many elements γx
of Γx, one has d^y (x, γxx

t) ≤ κ,
• there is γx ∈ Γx so that for all y ∈ Yi that is x-active, we have either
d^y (x, γxx

t) ≤ κ, or d^y (x, xt) ≤ κ.

Moreover, if Γx has a fixed point in Yi, we can choose xt to be such a fixed
point.

Remark 1.6. The reader familiar with the construction of projection com-
plexes from [BBF15] will notice that the first bullet says that Γx has an
orbit of diameter at most 1 in the projection complex of Yi. This is in fact
the defining property of xt in [Dah18], and the reason why the “moreover”
part holds.

Remark 1.7. Notice that by the first and third bullets, we have d^y (x, xt) ≤
Θ0 + κ (regardless of which case from the third bullet applies).

Corollary 1.8. Let x, y ∈ Y∗ so that x is y-active, and let γy ∈ Γy − {1}.
Then d^y (x, γyx) ≥ Θrot − 2(Θ0 + 2κ).

Proof. Let xt be as in Lemma 1.5. Recall that we have d^y (x, xt) ≤ Θ0 + κ

(Remark 1.7). By equivariance, d^y (γyx, γyx
t) ≤ Θ0 + κ, and the conclusion

follows from the (approximate) triangular inequality for d^y . �
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Also, the transfer lemma allows one to transfer properness, from Defini-
tion 1.1, which will be useful.

Lemma 1.9. For all i and all x, z ∈ Yi the set I = {y ∈ Y∗ : dπy (x, z) ≥
θ + 2κ} is finite.

Proof. Assume it is infinite, and extract an infinite family of elements of the
same coordinate j. We use Lemma 1.5 to transfer x and z in Yj : for xt

and zt as in the transfer lemma, we have that for all y ∈ Yj ∩ I, and for
φx(y) either the specific element γx ∈ Γx from the lemma (third point), or
the identity, (and φz similarly), one has d^y (φx(y)xt, φz(y)zt) > θ. One may
extract an infinite family of elements y for which the φx(y) are all equal,
and the φz(y) are all equal. This provides two elements φx(xt) and φz(z

t)
of Yj such that {y ∈ Yj : dπy (φx(xt), φz(z

t)) ≥ θ} is infinite, which is a
contradiction with properness. �

Notation 1.10. Given a composite rotating family, let N ≤ G be the
subgroup generated by all the subgroups Γx, x ∈ Y∗.

2. Composite projection graphs

We say that (X,Y∗) is a G-composite projection graph if

(1) X hyperbolic graph and G acts on X by simplicial automorphisms.

(2) Composite projection system: Y∗ = X(0) has the structure of
a composite projection system on which G acts by isomorphisms.
We let θ be the constant from Definition 1.1 and let Θ, κ be the con-
stants, depending on θ, from the discussion following that definition.

(3) Bounded geodesic image (BGI): There exists C so that the
following holds. For each x, y, s ∈ Y∗ so that ds(x, y) is defined and
larger than C, on any geodesic [x, y] there exists a vertex w with
dX(w, s) = 1.

Moreover, ({Γs},Yτ∗) is a composite rotating family with constant Θrot on
the G-composite projection graph (X,Y∗) if:

(1) {Γs} is a composite rotating family on a composite projection system
Yτ∗ ⊆ Y∗, with constant Θrot.

(2) Γs fixes any w with dX(w, s) = 1.

Our main technical statement is about properties of the action of G on X
that persist for the action of G/N on X/N when the rotations are sufficiently
large.

Recall that, given a group G acting on a metric space X, the element
g ∈ G is WPD (weakly proper discontinuous) if for every x0 ∈ X and r ≥ 0
there exists n0 so that for all n ≥ n0 the set

{h ∈ G : dX(x0, hx0), dX(gnx0, hg
nx0) ≤ r}

is finite.
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Our main goal in this section is to prove Theorem 2.1. The proof refers to
various statements which are postponed to subsequent sections, so that the
high-level strategy is made clear before the technicalities are introduced.

Theorem 2.1. Let (X,Y∗) be a G-composite projection graph. If Θrot is
sufficiently large, in terms of X,G,Y∗,Yτ∗ , C, then for N = 〈{Γs}〉, we have:

• X/N is hyperbolic.
• If the action of G on X has a loxodromic then so does the action

of G/N on X/N . If the action of G on X has a WPD element,
then so does the action of G/N on X/N . If the action of G on X is
non-elementary, then so is the action of G/N on X/N .

Proof. We will refer to three facts established in the next section, Corol-
lary 4.5, Proposition 4.6, and Lemma 4.7. Let θ,Θ, κ be the constants from
above, which depend on the composite projection system, and recall that C
is the BGI constant associated to the composite rotating family. Suppose
that Θrot satisfies 3

10Θrot >
5
2Θ0 + 3κ+ 2C.

Corollary 4.5 implies that X/N is hyperbolic.
Suppose that γ ∈ G acts loxodromically on X. Suppose, moreover, that

there exists x0 ∈ X such that ds(x0, γ
nx0) < Θrot/10 for all n ∈ Z and all

s for which the preceding quantity is defined. Then Proposition 4.6 ensures
that the image γ̄ ∈ G/N of γ is loxodromic on X/N , and, moreover, if γ
acts on X as a WPD isometry, then γ̄ acts on X/N as a WPD isometry.
We need to show that for a suitably large Θrot, there exists a loxodromic
(resp. loxodromic WPD) element γ ∈ G with the desired small-projection
property from Proposition 4.6.

Fix a base vertex x0 ∈ X and let γ ∈ G be loxodromic on X (we choose
it loxodromic WPD if there is such an element in G). We now show that
ds(x0, γ

nx0) is uniformly bounded whenever it is defined. This is ultimately
a consequence of the BGI property, which implies that the “tails” of the
orbit of γ do not affect projection distances very much.

Let Lγ = Lγ(x0) be the supremum over all n ∈ Z, and over all s for which
the quantity is defined, of ds(x0, γ

nx0). We claim that Lγ <∞.
Indeed, let δ be the hyperbolicity constant for X. Then there exists

µ = µ(γ, δ) such that each geodesic [x0, γ
nx0] lies at Hausdorff distance at

most µ from the (quasigeodesic) sequence x0, γx0, . . . , γ
nx0.

Fix s. By the BGI property, either ds(x0, γ
nx0) ≤ C, or s is adja-

cent to some vertex of [x0, γ
nx0]. Hence there exist integers p, q with

1 ≤ p ≤ q ≤ n and |p − q| depending only on γ, so that s is not ad-
jacent to a vertex of [x0, γ

ix0] or [γix0, γ
nx0] unless p ≤ i ≤ q. Thus

ds(x0, γ
nx0) ≤ ds(γ

px0, γ
qx0) + 2C, by the BGI property and the triangle

inequality. It follows that ds(x0, γ
nx0) ≤ 2C + dγ−ps(x0, γ

q−px0). Now, ei-

ther dγ−ps(x0, γ
q−px0) ≤ θ+2κ, in which case ds(x0, γ

nx0) ≤ θ+2κ+2C, or

γ−ps is one of finitely many elements for which dγ−ps(x0, γ
q−px0) > θ + 2κ,

by Lemma 1.9. Letting L′γ be the maximum of dγ−ps(x0, γ
q−px0) over these
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finitely many elements gives ds(x0, γ
nx0) ≤ L′γ + 2C. Hence Lγ <∞ for all

γ.
Now let L = inf Lγ , where the infimum is taken over the set of γ ∈ G

that are loxodromic on X. Note that L depends only on the composite
projection system, its associated constants, the BGI constant C, and the
G–action, but not on the choice of rotation subgroups. Suppose that Θrot >
10(L+ 1). Then, any loxodromic γ with Lγ ≤ L+ 1 satisfies the hypothesis
of Proposition 4.6 and thus has image γ̄ which is loxodromic on X/N , and
WPD if γ is itself WPD.

Finally, suppose that γ is as above and that γ′ is a loxodromic element
that is independent of γ and has the property that γ̄′ is also loxodromic on
X/N . (If G contains independent loxodromics γ, γ1, then we can choose γ′

to be a conjugate of γ by a sufficiently high power of γ1, and see from the
above argument that γ̄′ is again loxodromic on X/N .)

Given such a pair γ, γ′, let Lγ,γ′ be the supremum, over all m,n ∈ Z and
all s where the following quantity is defined, of ds(γ

mx0, (γ
′)nx0). We claim

that Lγ,γ′ < ∞. Indeed, since γ, γ′ are independent loxodromics, there
exists µ such that we have the following. For all m,n ∈ Z, any geodesic
[γmx0, (γ

′)nx0] lies at Hausdorff distance ≤ µ from

{γmx0, γ
m−1x0, · · · , x0} ∪ {x0, γ

′x0, · · · , (γ′)nx0}.

We can now argue as above, using BGI property and replacing {x0, γx0, . . . , γ
nx0}

by {γmx0, γ
m−1x0, · · · , x0} ∪ {x0, γ

′x0, · · · , (γ′)nx0}.
Now, letting γ, γ′ vary over all pairs of independent loxodromic elements

of G such that γ̄, γ̄′ ∈ G/N are loxodromic on X/N , take M = infγ,γ′ Lγ,γ′ .
Suppose that Θrot > 10(M + 1). Then any pair γ, γ′ ∈ G of independent
loxodromics such that γ̄, γ̄′ are loxodromic and Lγ,γ′ ≤ M + 1 has the
property that γ̄, γ̄′ are independent loxodromics, by Lemma 4.7. Hence, if
Θrot > 10(M + 1), the action of G/N on X/N is non-elementary. �

3. Shortenings and their applications

We work in the setting of Section 2, keeping all notation.
The results of this section support the lifting procedure developed in

Section 4, which is vital for proving the statements (Proposition 4.6, Corol-
lary 4.5, Lemma 4.7) used in the proof of Theorem 2.1.

The main statements are Corollary 3.6 and Proposition 3.5, on which the
corollary depends. In fact, the reader interested in the proof of Theorem 2.1
is advised to read the statement of Corollary 3.6 and then proceed to Sec-
tion 4. In order to understand the statement of Corollary 3.6, one needs to
know the following. For each γ ∈ N \ {1}, there is an associated complexity
(α(γ), n(γ)), where α(γ) is a countable ordinal and n(γ) ∈ N, and Θshort is
a constant depending on Θrot, Θ0, and κ. (This value is one of the sources
of the “sufficiently large” constraint on Θrot in Theorem 2.1.)
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3.1. Structure of the kernel N and complexity of elements. The
aim of [Dah18] was to investigate the structure of N . We may extract the
following statement, combining the construction from [Dah18, §2.4.2] with
[Dah18, Lem 2.16, Prop. 2.13, Lem 2.17]:

Theorem 3.1. For any countable ordinal α there exists a subset Y∗α of Y∗
such that, denoting by Nα the subgroup of N generated by Γv, v ∈ Y∗α, we
have:

(1) N0 = {1} and Y∗0 = ∅
(2) if α is not a limit ordinal, there exists i(α), and a subset Rα ⊂ Yi(α),

such that Nα is an amalgamated free product of Nα−1 with the groups

Γv × 〈Γw, w ∈
(
Y∗α−1 \Act(v)

)
〉

for v ∈ Rα. ([Dah18, Lem. 2.16])
Notice that each element in the Nα-orbit of Rα naturally corre-

sponds to a vertex in the Bass-Serre tree of the previous decomposi-
tion; from now on we implicitly identify any such element with the
corresponding vertex.

(3) Suppose that α is not a limit ordinal, and let Tα be the Bass-Serre
tree of the previous decomposition. Also, let v1, v2, v3 be three vertices
of Tα in the Nα-orbit of the vertices of Rα, with v2 ∈ [v1, v3] in
Tα. Then, when seen as elements in Yi(α), one has d^v2

(v1, v3) ≥
Θrot −Θ0, and there exists γv2 ∈ Γv2 such that d^v2

(v1, γv2v3) ≤ Θ0.
([Dah18, Lem. 2.16 with Prop 2.13])

(4) if α is a limit ordinal, Nα is the direct union of Nβ, β < α. ([Dah18,
Lem. 2.17])

(5)
⋃
αY∗α = Y∗. ([Dah18, Lem. 2.19])

We can now define the complexity (α(γ), n(γ)) of γ ∈ N \ 1.

Definition 3.2. Given γ ∈ N , let α(γ) be the smallest ordinal α for which
γ is in a conjugate of Nα in N . Observe that α(γ) is never a limit ordinal,
by the fourth point of Theorem 3.1, and if α(γ) = 0 then γ = 1.

Definition 3.3. Given γ ∈ N \{1}, consider the amalgamated free product
decomposition of a conjugate of Nα(γ) containing γ, given by the second
point of Theorem 3.1.

Consider the cyclic normal form of the conjugacy class [γ], which is either
an element of Γv for some v ∈ Rα(γ), or a cyclic word w = `1`2 . . . `2r, where,
for all i, we have `2i ∈ Nα(γ)−1 \{1} and `2i+1 ∈ Γv \{1} for some v ∈ Rα(γ).
Let n(γ) be the length of this cyclic normal form, namely n(γ) = 1 if γ is
conjugate into some Γv for some v ∈ Rα(γ), and it is n(γ) = 2r for the above
r otherwise.

Remark 3.4. Note that if γ ∈ Nα(γ) is seen as an element of Nα(γ)+1, the
length of its cyclic normal form is 1, but we do not set this in the notation
n(γ) since this notation is reserved to the amalgam decomposition of Nα(γ).
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This way, no n(γ) has been multiply defined. We adopt the convention that
n(1) = 0.

3.2. Angles and shortenings. The main point of the following proposition
is to relate the normal form of γ with vertices at which one sees a large
projection between γ-translates. The move that will allow us to shorten
normal forms can be pictorially described as follows: Consider the axis of
γ, a vertex v on the axis, and an element γv that stabilises v and rotates an
edge on the axis containing v to the other such edge. Then γvγ has shorter
normal form than γ.

Proposition 3.5 (Angles and shortenings). Let γ be an element of Nα(γ)

with n(γ) > 1. Then all of the following hold:

• The element γ is hyperbolic in the tree Tα(γ), and its axis in this tree
contains some vertex v0 in the Nα(γ)-orbit of Rα(γ).
• For all v in the axis of γ and in the Nα(γ)-orbit of Rα(γ), there exists
γv ∈ Γv \ {1} such that the cyclic normal form of [γvγ] is strictly
shorter than that of [γ].
• If w is a vertex in the tree Tα(γ), then there exists a vertex v in the
Nα(γ)-orbit of Rα(γ) such that v lies in the intersection of the interior
of the segment [w, γw] of Tα(γ), and of the axis of γ. Moreover, for
all such v, one has d^v (w, γw) > Θrot −Θ0.
• For all ν ∈ Yi(γ), there is a vertex v in the Nα(γ)-orbit of Rα(γ) on

the axis of γ such that d^v (ν, γν) > (Θrot −Θ0)/2− κ.
• Suppose that j 6= i(γ) and let ν ′ ∈ Yj. Then either there exists
v in the Nα(γ)-orbit of Rα(γ) that is ν ′-inactive, and γv ∈ Γv so
that γvγ has shorter cyclic normal form than γ, or there exists v
that is active for ν ′ and γν ′, with the property that d^v (ν ′, γν ′) >
(Θrot −Θ0)/2− 2Θ0 − 3κ.

Proof. The first point is a general fact for elements in amalgamated free
products. This is also true of the second point, in the specific setting where
there is only one orbit of edges around v under the action of its stabilizer, as
is the case in our situation. The first part of the third point is also general.
The distance estimate of the third point follows from Theorem 3.1 (3).

For the fourth point, we can assume that ν is not a vertex of Tα(γ), for
otherwise we can just use the third bullet. Consider the bi-infinite sequence
of points (γnv)n∈Z for some vertex v in the Nα(γ)-orbit of Rα(γ) on the
axis of γ. This sequence can be thought of as ranging over points of the
axis of γ in Tα(γ) or over points of Yi(γ). Notice that d^γnv(γ

n−1v, γn+1v) ≥
Θrot − Θ0 for every n, by the third point of Theorem 3.1. One can then
see, using the Behrstock inequality and induction, that the set {n ∈ Z :
d^γnv(γ

n−1v, ν) ≤ κ} is an open interval (n0,+∞), for n0 ∈ Z ∪ {−∞}
(notice that d^γnv(γ

n−1v, ν) is defined for each n). Moreover, n0 cannot
be equal to −∞, since in that case, for all negative n, γnv would be in
YiΘrot−Θ0−κ(ν, γv), contradicting the properness of the projection system.
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Thus, d^γn0v(γ
n0−1v, ν) > κ, while d^

γn0+1v
(γn0v, ν) ≤ κ. The Behrstock

inequality again ensures that d^
γn0−1v

(γn0v, ν) ≤ κ. After translation by γ,

we have d^γn0v(γ
n0+1v, γν) ≤ κ.

There are two cases to consider. First, suppose that d^γn0v(γ
n0−1v, ν) ≤

(Θrot − Θ0)/2. In that case, the triangle inequality gives d^γn0v(ν, γν) ≥
(Θrot − Θ0)/2 − κ (we used d^γnv(γ

n−1v, γn+1v) ≥ Θrot − Θ0). The second

case is when d^γn0v(γ
n0−1v, ν) > (Θrot − Θ0)/2. Then d^γn0v(ν, γ

−1ν) ≥
(Θrot−Θ0)/2− κ (we used d^γn0v(γ

n0−1v, γ−1ν) = d^
γn0+1v

(γn0v, ν) ≤ κ). In

both cases, we obtained the desired conclusion.
Let us prove the fifth point. The first case is when Γν′ has no fixed point

in Yi(γ). In that case, the conjugate γΓν′γ
−1 has no fixed point either, since

a fixed point for one would give a fixed point for the other by translation
by γ−1. Then for all v ∈ Yi(γ) (so in particular in the axis of γ in the

tree Tα(γ)), ν
′ and γν ′ are v-active. We now consider ν ′t as in the transfer

lemma, and we apply the previous point for ν ′t. There is v on the axis of
γ such that d^v (ν ′t, γν ′t) > (Θrot − Θ0)/2 − κ. By Remark 1.7, we have
d^v (ν ′, γν ′t) > (Θrot −Θ0)/2− 2κ−Θ0.

Notice that d^v (γν ′, γν ′t) = d^
γ−1v

(ν ′, ν ′t), and the latter quantity is again

bounded by Θ0 + κ by Remark 1.7. Hence, we get

d^v (ν ′, γν ′) > (Θrot −Θ0)/2− 3κ− 2Θ0.

Let us now treat the case where Γν′ has a fixed point in Yi(γ). Pick one

fixed point ν ′t and consider first the case where γν ′ is not active for one of
the vertices of the axis. Then, by the second bullet, one could shorten the
length of [γ] using the element γv associated to this vertex in the normal
form of [γ], so we are done. We may thus assume that γν ′ is v active for
all v in the axis. It follows that ν ′ is active for all v in the axis as well, and
the argument of the previous case can be applied (in view of the “moreover”
part of the transfer lemma). �

3.3. Rotations to reduce complexity. For convenience, let Θshort =
(Θrot −Θ0)/2− 2Θ0 − 3κ.

Corollary 3.6 (Rotating to reduce the complexity (α, n)). For all γ ∈
N \ {1}, and all x ∈ Y∗, there is (s, γs) (here s ∈ Y∗ and γs ∈ Γs) so that
(α(γsγ), n(γsγ)) < (α(γ), n(γ)) in lexicographic order and either

(1) x is s-inactive, or
(2) x and γx are s-active and d^s (x, γx) > Θshort.

Proof. After conjugation by a suitable element h and replacing x with h−1x,
one can assume that γ ∈ Nα(γ). If x ∈ Yi(γ) then we consider v as in the
fourth bullet from Proposition 3.5 and set s = v. The cyclic normal form
of γsγ is shorter than that of γ by the second bullet from Proposition 3.5.
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Otherwise, if x ∈ Yj with j 6= i(γ), then by the fifth bullet from Proposi-
tion 3.5 we either proceed as above, or we find some x-inactive s so that γsγ
has shorter cyclic normal form.

In either case, the cyclic length of the conjugacy class is reduced. Either
the result is still greater than 2, and in that case α(γsγ) = α(γ), or it is
reduced to 1 (or 0) and γsγ is actually conjugate into Nα−1. In the latter
case, one has α(γsγ) < α(γ). Thus (α(γsγ), n(γsγ)) < (α(γ), n(γ)). �

Note that in the last case of the proof (in which α(γsγ) < α(γ)), the value
of n(γsγ) can be arbitrary.

4. Lifting and projecting

In this section, we describe how to lift quadrilaterals and triangles in X/N
to X. This will allow us to prove the various statements referenced in the
proof of Theorem 2.1.

Standing assumptions 4.1. We fix the notation of Theorem 2.1, and fix
constants as in Standing assumption 1.4. Let p : X → X/N be the quotient
map. We assume that 3Θrot/10 > 2C + 3κ+ 5Θ0/2.

4.1. Lifting. First, paths (and, more particularly, geodesics) lift:

Lemma 4.2. For each combinatorial path γ̄ in X/N starting at x̄, and
any point x in the preimage of x̄ (henceforth: a lift of x), there exists a
combinatorial path in X so that p◦γ = γ, which we call a lift of γ̄. Moreover,
if γ̄ is a geodesic, then so is γ.

Proof. In order to lift combinatorial paths it suffices to lift edges, given a lift
of the starting point of the edge in the quotient. This can be done since the
action of N on X is simplicial. Lifting a geodesic yields a geodesic because
the quotient map is 1-Lipschitz. �

The following proposition is the key to our approach to study X/N and
G/N : it allows us to lift geodesic triangles and quadrilaterals in X/N to
triangles/quadrilaterals in G/N , thereby allowing us to translate properties
of X (e.g. hyperbolicity) to properties of X/N . By requiring the constant
Θrot to be even larger, we could ensure that we can lift n-gons for any given
n, but we will only need the cases n = 3 and n = 4. The “moreover” part
will only be needed for the WPD property.

Proposition 4.3. For each geodesic quadrangle Q in X/N there exists a
geodesic quadrangle Q in X so that p(Q) = Q. We call Q a lift.

Moreover, if the geodesics [v̄1, w̄1], [v̄2, w̄2] of Q have lifts [vi, wi] so that
ds(vi, wi) ≤ Θrot/10 whenever the quantity is defined, then any other lift
[v′i, w

′
i] of [v̄i, w̄i] contained in Q is an N -translate of [vi, wi].

Proof. Let x̄, ȳ, z̄, t̄ be the vertices of a quadrangle in X/N . Lift x̄ as x ∈ X,
and lift all four geodesic segments to get geodesics [x, y], [y, z], [z, t], [t, x′].
In the setting of the “moreover” part, choose an N -translate of [vi, wi] as
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the lift of [v̄i, w̄i]. There is an element γ ∈ N such that γx = x′. We argue,
by transfinite induction on the pair (α(γ), n(γ)) (for lexicographic order).

If (α(γ), n(γ)) = (0, n), then γ = 1 and x′ = x, so we are done. We thus
assume that (α(γ), n(γ)) = (α, n), with α > 0.

Let us consider (s, γs) as in Corollary 3.6. If x is s-inactive, we have
γsx = x. We can then apply γs to all lifts, and conclude by induction
hypothesis.

Otherwise, we have ds(x, γx) > Θshort. Viewing s as a vertex of X, and
using assumption (3) (BGI) of the definition of composite projection graph,
we see that in X the geodesic [x, x′] contains a point at distance 1 from s,
and fixed by Γs.

There are several cases. The first one is when all points x, y, z, t, x′ are
active for s. Recall that ds(x, x

′) > Θshort, and by the triangle inequality and
our assumption on Θrot, at least one of ds(x, y), ds(y, z), ds(z, t) or ds(t, x

′)
is larger than the constant C from the BGI property (and, in the setting of
the moreover part, the pair giving a large projection can be chosen not in
{(vi, wi)}).

Let (u, u′) (not in {(vi, wi)}) be a pair among the aforementioned ones
such that ds(u, u

′) > C. By the BGI property, it follows that [u, u′] contains
a point at distance ≤ 1 from s, hence fixed by γs. Replacing u′ and all the
points in (x, y, z, t, x′) after the position of u′ by their image by γs produces
new isometric lifts of the segments, in such a way that the endpoint γsx

′

now differs from x by γsγ, see Figure 1. Also, in the setting of the moreover
part, notice that we replaced each [vi, wi] by an N -translate. The induction
hypothesis allows us to conclude.

Figure 1. The case that s is adjacent to a vertex on [y, z].
In all cases, s is adjacent to some vertex on one of the sides
(possibly one of x, y, z, t, x′).

The second case is when not all x, y, z, t, x′ are active for s. The argument
is similar. Let u be the first point in the tuple that is inactive for s. This
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implies that γs fixes u. Changing the lifts of all the elements after u by their
images by γs does not change the property that the lifts of segments are
isometric. The conclusion is the same. �

4.2. Projecting. The following lemma says, informally, that directions with
small projection angles in X are preserved by p.

Lemma 4.4. Suppose that x, y ∈ X(0) have the property that ds(x, y) <
Θrot/10 whenever the quantity is defined. Then p|[x,y] is isometric, for any
geodesic [x, y].

Proof. Assume there is a shorter path from x̄ = p(x) to ȳ = p(y), for some
x, y as in the statement. Lift this shorter path as a geodesic segment [y, x′].
There exists γ ∈ N such that γx = x′. Again we proceed by induction
on (α(γ), n(γ)), this time to prove that dX(y, x′) = dX(y, x) (thus falsifying
that dX/N (x̄, ȳ) < dX(x, y)), for any pair x, y as in the statement. If α(γ) = 0
then γ = 1 and it is obvious.

Assume that α(γ) > 0. Let (s, γs) be as in Corollary 3.6. If x is s-inactive,
then γsx = x, and we can apply γs to both geodesics and conclude by the
induction hypothesis.

Otherwise, ds(x, γx) > Θshort, and in particular there exists s′ on [x, x′]
at distance 1 from s. Since ds(x, y) is assumed to be small (if defined) we
also have that s′ ∈ [y, x′] (actually this is also true if ds(x, y) is not defined:
in that case, s′ = y). Thus, one can change the lift of [ȳ, x] as [y, γsx

′], while
keeping it an isometric lift. One concludes by induction hypothesis, which
applies to γsγ. �

4.3. Properties of G y X persisting for G/N y X/N . We can now
prove the various statements referenced in the proof of Theorem 2.1, thereby
completing the proof of that theorem.

First, lifting geodesic triangles from X/N to X using Proposition 4.3, we
deduce:

Corollary 4.5. X/N is δ-hyperbolic, where δ is the hyperbolicity constant
of X.

Next, we investigate survival of loxodromic (resp. WPD) elements of G
as loxodromic (resp. WPD) elements of G/N :

Proposition 4.6. Assume that φ ∈ G is a loxodromic isometry of X, and
that there is x0 ∈ X such that for all n ∈ Z for all s ∈ X, we have
ds(x0, φ

nx0) < Θrot/10 whenever it is defined. Then, φ̄ ∈ G/N is loxo-
dromic on X̄ = X/N . Moreover, if φ has the WPD property, then so does
φ̄.

Proof. Lemma 4.4 guarantees that dX̄(x̄0, φ̄
nx̄0) grows linearly, thus φ̄ is

loxodromic.
By the WPD property, we may take n such that d(x0, φ

nx0) is so large
that, for a certain k0, at most k0 elements of G move the pair (x0, φ

nx0) at
distance ≤ 100δ from itself. Call xn = φnx0.
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Assume that {φ̄i : i = 1, . . . , k} is a collection of distinct elements that
move each of x̄0, x̄n within distance 100δ from itself. Notice that each
φ̄i[x̄0, x̄n] has a lift with small projections as in the moreover part of Propo-
sition 4.3, namely φ′i[x0, xn] for some φ′i in the preimage of φ̄i (where we
choose [x̄0, x̄n] = p([x0, xn])). Hence, there is a lift of a quadrilateral
(x̄0, φ̄ix̄0, φ̄ix̄n, x̄n) of the form (x0, φix0, φixn, xn), for some φi in the preim-
age of φ̄i. (We took an N -translate of the quadrilateral from Proposition
4.3 to make sure that one side is [x0, xn].)

By definition of k0, if k > k0, then there are i 6= j such that φi = φj .
Projecting in G/N , φ̄i = φ̄j , which is a contradiction. This forces k ≤ k0.
This holds for all sufficiently large n. By, for example, the proof of [DGO17,
Proposition 5.31], this is sufficient to ensure the WPD property for φ̄. �

Finally, we see that non-elementarity persists:

Lemma 4.7. Suppose that there exist independent loxodromic isometries
φ, ψ ∈ G of X, and x0 ∈ X such that for all n,m ∈ Z for all s ∈ X,
ds(φ

nx0, ψ
mx0) < Θrot/10 whenever it is defined. Then the action of G/N

on X/N is non-elementary.

Proof. By Proposition 4.6, φ̄ and ψ̄ are loxodromic on X/N . Moreover, by
Lemma 4.4, p restricted to 〈φ〉x0∪〈ψ〉x0 is an isometry, so that φ̄ and ψ̄ are
in fact independent. �

4.4. Compatibility with stabilisers. The following proposition is not
used in the proof of Theorem 2.1, but it is useful in applications. It de-
scribes the structure of stabilisers of X/N , which turn out to be exactly
what one expects.

Proposition 4.8. Under the Standing Assumption 4.1, the following holds.
For any vertex v of X,

Stab(v) ∩N = 〈{Γw ∩ Stab(v) : w ∈ Y∗}〉 = 〈{Γw : w ∈ Y∗ \Act(v)}〉.

Proof. To see the second equality, observe that if w /∈ Act(v) then Γw ⊂
Stab(v). If Γw ∩ Stab(v) is non-trivial, then since Γw consists only of large
rotations, w must be v-inactive (in other words w /∈ Act(v)). In fact, if w is
v-active, then, for any nontrivial γw ∈ Γw, dw(v, γwv) is defined, and hence
nonzero by Corollary 1.8. Thus γwv 6= v.

The right-hand-side is contained in the left-hand-side. Let us prove the
other inclusion. Take γ ∈ Stab(v) ∩ N . We want to show that γ ∈ 〈{Γw :
w ∈ Y∗ \Act(v)}〉. We proceed by induction on (α(γ), n(γ)).

If α(γ) = 0, then γ is trivial. If α(γ) > 0, let (s, γs) be as in Corollary
3.6. If s is v-inactive, then γsγv = v, and the induction hypothesis applies
to γsγ. In particular, γ is also in 〈{Γw : w ∈ Y∗ \Act(v)}〉.

On the other hand, we cannot have d^s (v, γv) > Θshort, since this contra-
dicts v = γv. �
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5. Applications to mapping class groups

Let Σg,p denote the genus–g oriented surface with p punctures, and let
C(Σg,p) denote its curve graph.

Proposition 5.1. There exists K such that the following holds: C(Σg,p) is
an MCG(Σg,p)-composite projection graph. For any k ∈ Z\{0}, there is a
composite rotating family on the above composite projection graph such that,
for each curve y, we have Γy = 〈T kKy 〉, where Ty is the Dehn twist about y.

Proof. This follows the discussion in [Dah18, Section 3] exactly, so we just
describe the data here and refer the reader to [Dah18] for the explanation of
why this data determines a composite projection graph and rotating family.

Composite projection graph: C(Σg,p) is hyperbolic [MM99], andMCG(Σg,p)
acts by simplicial automorphisms. For each (isotopy class of) curve y, let
Act(y) be the set of curves x that intersect y, i.e. the set of vertices of C(Σg,p)
distinct from, and not adjacent to, y. Note that x ∈ Act(y) if and only if
y ∈ Act(x). The MCG(Σg,p)–invariant colouring C(Σg,p) =

⊔m
i=0 Yi is de-

scribed in [Dah18] and is derived from the colouring in [BBF15]. (There is a
finite-index normal subgroup G0 ≤ MCG(Σg,p) that preserves each colour,
and the colours correspond to the cosets of G0, so that MCG(Σg,p) acts
on the set of colours.) Given a curve y, and curves x, z intersecting y, the
distance dπy (x, z) is defined via subsurface projection, and satisfies the prop-
erties from Definition 1.1 by results from [MM00, Beh06], see the discussion
in [Dah18]. The BGI property is verified as follows. Let x, y, s be curves
so that ds(x, y) is defined. Suppose that some geodesic [x, y] in CΣg,p has
the property that every vertex of [x, y] lies at distance more than 1 from s.
Then by [MM00, Theorem 3.1], ds(x, y) is bounded independently of x, y, s.

Composite rotating family: The discussion in [Dah18] provides an
integer K > 0 such that the following holds for all k ∈ Z\{0}. For each curve
y, let Ty be the Dehn twist about y. Let Γy = 〈T kKy 〉. Then the subgroups

Γy, y ∈ C(Σg,p)
(0), form a composite rotating family on the MCG(Σg,p)–

composite projection system discussed above. �

Theorem 5.2. Let Σg,p be a finite-type surface, with either g > 0 or p > 3.
Then there exists a positive integer K0 so that for all non-zero multiples K
of K0, the group MCG(Σg,p)/DTK is acylindrically hyperbolic, where DTK
is the normal subgroup generated by all Kth powers of Dehn twists.

Proof. By Theorem 2.1, the group MCG(Σg,p)/DTK acts non-elementarily
on C(Σg,p)/DTK with loxodromic WPD elements. Hence MCG(Σg,p)/DTK
is acylindrically hyperbolic, by [Osi16, Theorem 1.2]. �

Remark 5.3. A similar theorem also holds for quotients of mapping class
groups by powers of Dehn twists around curves of one specified topological
type (we allow Yτ∗ to be a proper subset of Y∗ in the definition of a composite
rotating family on a composite projection graph).
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5.1. Relative hyperbolicity and relative quasiconvexity. We will see
that, in low-complexity, quotients of mapping class groups by powers of
Dehn twists are in fact hyperbolic groups. To prove this, we will use relative
hyperbolicity.

We will use the following definition of relative hyperbolicity (following
Proposition 4.28 of [DGO17]):

Definition 5.4. Let G be a group and let H be a collection of subgroups of
G. Let S ⊂ G be a finite set that is closed under taking inverses. Suppose
that St

⊔
H∈H generates G, and let Cay(G,St

⊔
H∈H) be the Cayley graph

with respect to this generating set.
(Note that, if s ∈ S is also contained in some H ∈ H, and g ∈ G, we

regard g and gs as being joined by two edges labelled by s, one of which is
in a the graph gΓH defined below.)

For each H ∈ H, let ΓH be the Cayley graph of H with respect to the
generating set H, so that ΓH is a diameter–1 subgraph of Cay(G,St

⊔
H∈H)

for each H ∈ H. Define a metric dH on H as follows: given vertices x, y ∈ H,
a combinatorial path σ in Cay(G,S t

⊔
H∈H) is admissible if σ does not

traverse an edge of ΓH . Then dH(x, y) is the infimum of the lengths of
admissible paths from x to y. We say that G is hyperbolic relative to H if
Cay(G,S t

⊔
H∈H) is a hyperbolic graph and the metric dH is proper for

each H ∈ H.

We also require the notion of (strong) relative quasiconvexity. In fact, we
will take as the definition the characterisation provided by Theorem 4.13
of [Osi06]:

Definition 5.5. Let G be hyperbolic relative to a collectionH of subgroups.
The subgroup Q ≤ G is strongly relatively quasiconvex if:

• Q is generated by a finite set Y ;
• letting dY be the word-metric on Q with respect to Y , the inclusion

(Q, dY )→ Cay(G,S t
⊔
H∈H) is a quasi-isometric embedding.

We will also use the following well-known fact (see [CC07, Theorem 5.1]):

Lemma 5.6. Let G act cocompactly on the graph X. Let {vi} be a (nec-
essarily finite) collection of representatives of the G-orbits of the vertices of
X. Then G is finitely generated relative to {Stab(vi)}, and any orbit map
defines a quasi-isometry between Cay(G,S t

⊔
vi
Stab(vi)) and X, for any

finite relative generating set S.

5.2. Vertex links in the curve graph. Let (g, p) ∈ {(0, 5), (1, 2)}, and

let γ ∈ C(Σg,p)
(0). The link lk(γ) of γ in C(Σg,p) is a discrete set that can be

identified with the vertex set of the curve graph of the only component of
Σg,p−γ which is not homeomorphic to Σ0,3. We equip lk(γ) with the metric
induced by this identification of lk(γ) with a subset of the curve graph of
the aforementioned complementary component. Denote by Lγ the metric
space with underlying set lk(γ), endowed with the metric just described.
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For a vertex x ∈ C(Σg,p), with x 6= γ, we denote by r(x) the entrance
point in lk(γ) of any geodesic from x to γ.

The following is an easy consequence of the Bounded Geodesic Image
Theorem, [MM00, Theorem 3.1].

Lemma 5.7. There exists C so that the following holds. Let x, y, s be
curves. If some geodesic [x, y] in C(Σg,p) from x to y does not contain
s, then dLs(r(x), r(y)) ≤ C.

Roughly speaking, the lemma says that there is a Lipschitz retraction of
the complement of γ onto lk(γ). We will use such retraction to prove that
the relative metric is finite by, again roughly speaking, starting with a path
in the complement of γ and constructing a path in lk(γ) which is not much
longer.

5.3. Hyperbolic and relatively hyperbolic quotients. Fix (g, p) ∈
{(0, 4), (0, 5), (1, 0), (1, 1), (1, 2)}. Let K ∈ Z \ {0}, and let DTK be the nor-
mal subgroup generated by all Kth powers of Dehn twists. Let G(g, p,K) =
MCG(Σg,p)/DTK , and let XK = C(Σg,p)/DTK .

Theorem 5.8. Let (g, p) be as above. Then there exists a positive integer
K0 so that for all sufficiently large multiples K of K0, the following hold.

(1) Suppose (g, p) ∈ {(0, 4), (1, 0), (1, 1)}. Then G(g, p,K) is non-elementary
hyperbolic.

(2) Suppose (g, p) = (0, 5) (resp. (g, p) = (1, 2)). Then G(g, p,K) is hy-
perbolic relative to an infinite index subgroup H virtually isomorphic
to G(0, 4,K) (resp. relative to two infinite index subgroups H1, H2,
one virtually isomorphic to G(0, 4,K) and one virtually isomorphic
to G(1, 1,K)). In particular, G(g, p,K) is non-elementary hyper-
bolic.

Moreover, letting H be the set of peripheral subgroups arising in the sec-
ond case, we have that for each relative generating set S, there is a GK–
equivariant quasi-isometry Cay(GK ,S ∪

⋃
H∈HH)→ XK .

Proof. The curve graph C(Σg,p) is anMCG(Σg,p)-composite projection graph,
and large powers of Dehn twists define a composite rotating family on it.
Thus, there exists K0 so that for sufficiently large K ∈ K0Z, the graph XK is
hyperbolic by Theorem 2.1. Moreover, the action ofG(g, p,K) onXK is non-
elementary, since the action of MCG(Σg,p) on C(Σg,p) is non-elementary. In
particular, G(g, p,K) contains elements acting on XK loxodromically.

Hyperbolicity in lowest-complexity cases: Suppose that (g, p) ∈
{(0, 4), (1, 0), (1, 1)}. Then the action of G(g, p,K) on XK has finite vertex
stabilisers. Indeed, each vertex stabiliser is a quotient of a vertex stabiliser
of C(Σg,p), which in our case is virtually generated by a Dehn twist. By
Lemma 5.6 and cocompactness of the G(g, p,K)–action on XK , G(g, p,K)
is G(g, p,K)–equivariantly quasi-isometric to XK and is thus hyperbolic.
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(Since MCG(Σg,p) is hyperbolic in this case, hyperbolicity of G(g, p,K) can
also be deduced from [Del96].)

Stabilisers: Suppose from now on that (g, p) is as in the second case. By
Proposition 4.8, all infinite vertex stabilisers for the action of G(g, p,K) on
XK are of the form specified by the statement. Specifically, for (g, p) = (0, 5)
there is only one topological type of curves (yielding exactly one conjugacy
class of stabilisers in XK), with stabiliser virtually isomorphic to a central
extension of MCG(Σ0,4) by a cyclic subgroup generated by a Dehn twist.
Proposition 4.8 guarantees that the image of such a stabiliser in G(g, p,K)
is also obtained by modding out powers of Dehn twists.

For (g, p) = (1, 2) the situation is similar, except that there are two topo-
logical types of curves (one non-separating, with complement Σ0,4, and one
separating with complement Σ0,3 t Σ1,1).

Relative hyperbolicity: By Lemma 5.6, Cay(G(g, p,K),S ∪ H) is
equivariantly quasi-isometric to XK , where S is any fixed finite generat-
ing set, and H is a union of conjugacy representatives of stabilisers. Since
the action of G(g, p,K) on XK has a loxodromic element, the stabilisers
must have infinite index. We now have to prove that the relative metric on
each stabiliser, H, is proper.

Recall from Subsection 5.2 that, for γ a curve on Σg,p, we defined a metric
space Lγ with underlying set the link lk(γ) of γ (regarded as a vertex of
C(Σg,p)). Moreover, Lγ is naturally isometric to the vertex set of the curve
graph of the (only non-Σ0,3 component of the) complement of γ. Similarly,
in view of the discussion above about stabilisers, the link of γ̄ in XK can
be made into a metric space Lγ̄ naturally isometric to the vertex set of
the quotient of the curve graph of a complexity-1 surface by the action of
the subgroup generated by K-th powers of Dehn twists supported on said
surface.

Lemma 5.9. Let γ be a curve. Let x̄, ȳ 6= γ̄ be adjacent vertices of XK . Let
r(x̄) = rγ̄(x), r(ȳ) = rγ̄(y) be the entrance points in lk(γ̄) of geodesics from
x̄, ȳ to γ̄. Then dLγ̄ (r(x̄), r(ȳ)) ≤ C, where C is as in Lemma 5.7.

Proof. For z̄ a vertex of XK , we choose any geodesic αz̄ from z̄ to γ̄. By
Proposition 4.3, we can lift the geodesic triangle formed by αx̄, αȳ and an
edge connecting x̄, ȳ to C(Σg,p), and for convenience we arrange that one of
the vertices of the lift is γ.

By Lemma 5.7, we see that, in C(Σg,p), the entrance points of the lifts
of αx̄, αȳ in lk(γ) are close to each other as measured in Lγ , which implies
that the same holds for r(x̄), r(ȳ) in Lγ̄ . �

We now claim that, for any fixed x0 ∈ lk(γ̄), there exists M with the
following property. Suppose that we can write some h ∈ H = Stab(γ̄) as
h = s1h1 . . . sn, where si ∈ S, hi ∈ H and s1h1 . . . si /∈ H for all i ≤ n − 1.
Then dLγ̄ (x0, hx0) ≤ Mn. Since Lγ̄ is equivariantly quasi-isometric to H
(see the argument for the hyperbolicity of G(0, 4,K) and G(1, 1,K) above),
this concludes the proof of relative hyperbolicity.
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We can assume that S is symmetric, and that S ∩ H = ∅. We will use
the maps rγ̄ (for any γ) from the lemma, where we assume that the relevant
geodesics are chosen equivariantly.

Let L0 = maxs∈S maxγ̄′ dLγ̄′ (r(x0), r(sx0)). Notice that L0 is indeed at-

tained because for any given s (of which there are finitely many), there are
only finitely many γ̄′ for which dLγ̄′ (r(x0), r(sx0)) can exceed C times the

distance between x0 and sx0, namely those occurring along a geodesic from
x0 to sx0.

By equivariance, we have dLγ̄ (r(gx0), r(gsx0)) ≤ L0 for any g ∈ G(g, p,K).
Moreover, if g /∈ H and h′ ∈ H, then gx0 and ghx0 are connected by two
edges not containing γ̄, so that dLγ̄ (r(gx0), r(ghx0)) ≤ 2C. Hence

dLγ̄ (x0, hx0) = dLγ̄ (r(x0), r(hx0)) ≤ L0n+ 2(n− 1)C,

as required.
Finally, in case (2), hyperbolicity of G(g, p,K) follows since a group hy-

perbolic relative to hyperbolic subgroups is hyperbolic by [Osi06, Corollary
2.41]. �

5.4. Residual properties of MCG(Σg,p). Let K0,K be as in the state-
ment of Theorem 5.8 and let G(g, p,K) and XK be as above. Let ΨK :
MCG(Σg,p)→ G(g, p,K) be the quotient map.

Lemma 5.10. Let x ∈ MCG(Σg,p) \ {1}. Then ΨK(x) 6= 1 for all suffi-
ciently large K ∈ K0Z.

Proof. We consider three cases.

• If x is pseudo-Anosov, then it acts loxodromically on C(Σg,p), so by
Proposition 4.6, ΨK(x) 6= 1 for sufficiently large K.
• If x has finite order, then x 6∈ DTK since each element of DTK

has infinite order. This follows by transfinite induction using Theo-
rem 3.1.(2),(4).
• The remaining possibility is that x is reducible. In this case, there

exists n > 0, depending only on (g, p), so that xn stabilises a simple
closed curve γ of Σg,p. Let U, V be the components of Σg,p \ γ
(if γ is non-separating, we take V = ∅ and U = Σg,p \ γ). Let
H ≤MCG(Σg,p) be the stabiliser of γ. Let W = U t V , which is a
(possibly disconnected) subsurface of Σg,p of complexity strictly less
than that of Σg,p.

The action of H on W gives an exact sequence 1→ Z → H
φ−→ Â,

where Z is central in H and is the cyclic subgroup generated by the

Dehn twist about γ, and Â has a finite-index subgroup A such that
A ≤MCG(U) if V = ∅ and A ≤MCG(U)×MCG(V ) otherwise.

Let H ′ ≤ H be the finite-index subgroup H ′ = φ−1(A). Let ΨU
K :

MCG(U)→ GK(U) be the quotient obtained by killing Kth powers
of Dehn twists in MCG(U), and define ΨV

K : MCG(V ) → GK(V )
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analogously (if V 6= ∅). Let Ψ′K : A→ A be the restriction of ΨU
K to

A if V = ∅ and the restriction of ΨU
K ×ΨV

K to A otherwise.

Define a homomorphism φ̄ : ΨK(H ′)→ A by φ̄(ΨK(g)) = Ψ′K(φ(g)).
To see that this is well-defined, it suffices to show that Ψ′K(φ(n)) = 1
whenever n ∈ DTK ∩H ′. By Proposition 4.8, we have n = yq, where
y is a power of the Dehn twist about γ and q is the product of pow-
ers of Dehn twists about curves in W . Moreover, φ(q) = φ(yq) =
φ(n) ∈ A, since n ∈ H ′. Hence φ(n) is the product of powers of
Dehn twists in U and V , and lies in A, so Ψ′K(φ(n)) is defined and
Ψ′K(φ(n)) = 1, as required.

Choose m ≥ 1 so that xmn ∈ H ′. Write xmn = zw, where z ∈ Z
and w is supported on W , with either xmn = z or φ(w) 6= 1.

If xmn = z, then ΨK(xmn) = ΨK(z) 6= 1 for sufficiently large K,
by Proposition 4.8.

Otherwise, φ(xmn) = φ(w) 6= 1. Moreover, φ(w) ∈ A, since
φ(w) = φ(xmn) and xmn ∈ H ′. Hence either φ(w) = a ∈ MCG(U)
(if V = ∅) or φ(w) = (a, b) ∈ MCG(U)×MCG(V ). In either case,
we can assume a 6= 1, so by induction on complexity, ΨU

K(a) 6= 1, and
hence Ψ′K(φ(w)) 6= 1, for all sufficiently large K, as required. But
Ψ′K(φ(w)) = φ̄(ΨK(xmn)), so ΨK(xmn) 6= 1, and hence ΨK(x) 6= 1.

(In the base case, U is an annulus or pair of pants. When U is a
pair of pants, ΨK is the identity. When U is an annulus, MCG(U)
has a finite-index normal subgroup generated by a single Dehn twist,
and the lemma clearly holds.)

By the Nielsen-Thurston classification, any x is of one of the above three
types, so the lemma holds. �

This, and Theorem 5.8, are already sufficient to prove:

Corollary 5.11. Suppose (g, p) ∈ {(0, 4), (0, 5), (1, 0), (1, 1), (1, 2)}. Then
MCG(Σg,p) is fully residually non-elementary hyperbolic.

Proof. By Theorem 5.8, G(g, p,K) is non-elementary hyperbolic, and by
Lemma 5.10, any finite subset of MCG(Σg,p) \ {1} is mapped injectively to
G(g, p,K) for all sufficiently large K. �

For convenience, whenever g, p are fixed, we write GK to mean G(g, p,K).
We now study images of convex-cocompact subgroups in GK .

Proposition 5.12. Let (g, p) be as in Section 5.3, let K0,K be as in The-
orem 5.8, and let (GK ,H) be the relatively hyperbolic structure from Theo-
rem 5.8. Let Q ≤MCG(Σg,p) be a convex-cocompact subgroup. Then:

(1) For all sufficiently large K, the quotient map ΨK is injective on Q.
(2) For all sufficiently large K, ΨK(Q) is strongly relatively quasiconvex

in (GK ,H), and hence quasiconvex in GK .
(3) For all x ∈ MCG(Σg,p) \ Q and all sufficiently large K, we have

ΨK(x) 6∈ ΨK(Q).
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Proof. Consider the action of Q on C(Σg,p) arising as the restriction of the
action of MCG(Σg,p). Fix a vertex v0 ∈ C(Σg,p). Fix h ∈ Q, and let s
be a curve. Then ds(v0, hv0) ≤ C whenever the quantity is defined, for
some uniform constant C: this is contained in the proof of [KL08, Theorem
7.4], see [DT15, Lemma 5.1]. Choosing K sufficiently large (in terms of
C) and applying Lemma 4.4 implies that geodesics [v0, hv0] ∈ C(Σg,p) map
isometrically to geodesics in XK joining the images of v0, hv0. This implies
assertion (1).

Now, fix a finite generating set Y of Q. Since geodesics [v0, hv0] map iso-
metrically to geodesics in XK , we see that the orbit map ΨK(h) 7→ ΨK(h)v0

is a quasi-isometric embedding ΨK(Q) → XK whose constants depend on
Y but are independent of K.

By Theorem 5.8, XK is GK–equivariantly quasi-isometric to Cay(GK ,S∪
H) for any finite relative generating set S, so ΨK(Q) → Cay(GK ,S ∪ H)
is a quasi-isometric embedding. Choosing S to be a finite generating set of
GK , we can pull back the quasi-isometric embedding Q→ Cay(GK ,S ∪H)
under the Lipschitz map Cay(GK ,S) → Cay(GK ,S ∪ H) to get a quasi-
isometric embedding Q→ Cay(GK ,S), proving that ΨK(Q) is quasiconvex
in the hyperbolic group GK . This proves assertion (2).

Let x ∈MCG(Σg,p) \Q. Given K, let v̄0 be the image of v0 in XK . Let
∆ = dC(Σg,p)(v0, xv0). Then there exists ∆′, depending only on ∆ and the
generating set of Q, such that for all sufficiently large K, the set of h ∈ Q
such that dXK (ΨK(h)v̄0, v̄0) ≤ ∆ is contained in the set {hi} of elements of
Q of word-length at most ∆′. This is because any orbit map Q→ ΨK(Q)→
XK is a quasi-isometric embedding with constants independent of K.

Suppose that ΨK(x) ∈ ΨK(Q). Since dXK (ΨK(x)v̄0, v̄0) ≤ ∆, we have

ΨK(xh−1
i ) = 1 for some i. For sufficiently large K, the map ΨK is injective

on Q, so x = h−1
i , contradicting that x 6∈ Q. This proves assertion (3). �

Theorem 5.13. Assume that all hyperbolic groups are residually finite. Let
(g, p) ∈ {(0, 4), (0, 5), (1, 0), (1, 1), (1, 2)}. Then any convex-cocompact sub-
group Q < MCG(Σg,p) is separable in MCG(Σg,p).

Proof. Let GK ,ΨK and XK be as in Section 5.3. Fix x ∈ MCG(Σg,p) \Q.
Using Theorem 5.8 and Proposition 5.12, we can choose K so that GK is
hyperbolic, ΨK(Q) is quasiconvex in GK , and ΨK(x) 6∈ ΨK(Q). If every
hyperbolic group is residually finite, then by [AGM09, Theorem 0.1], for
any hyperbolic group, all of its quasiconvex subgroups are separable. In
particular, GK has a finite quotient separating x from ΨK(Q). Hence there
is a finite quotient of MCG(Σg,p) separating x from Q, as required. �
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