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Abstract (100-150 words) 20 

Improving existing buildings’ energy performance requires energy models that accurately represent the 21 

building. Computer vision methods, particularly image-based 3D reconstruction, can effectively support 22 

the creation of 3D building models. In this paper, we present an image-based 3D reconstruction pipeline 23 

that supports the semi-automated modeling of existing buildings. We developed two methods for the 24 

robust estimation of the building planes from a 3D point cloud that (i) independently estimate each plane 25 

and (ii) impose a perpendicularity constraint to plane estimation. We also estimate external walls’ 26 

thermal transmittance values using an infrared thermography-based method, with the surface 27 

temperatures measured by a thermal camera. We validate our approach (i) by testing the pipeline’s ability 28 

in constructing accurate surface models subject to different image sets with varying sizes and levels of 29 

image quality, and (ii) through a comparative analysis between the calculated energy performance 30 

metrics of a ground truth and calculated energy simulation model.  31 

Keywords: 3D modeling; building energy modeling; computer vision; 3D reconstruction; infrared 32 

imaging 33 

 34 

 35 

 36 

 37 

 38 

 39 

 40 



3 

 

1 Introduction  41 

Existing buildings are increasingly being placed into focus in the Architecture, Engineering, 42 

Construction, and Facility Management (AEC/FM) industry, due to their great potential for performance 43 

improvement and meaningful environmental impact. AEC/FM applications on existing buildings 44 

typically require 3D models that represent the precise, as-is conditions. Such models can support 45 

activities regarding a wide range of areas including safety / health assessment, space planning, 46 

procurement, cost estimation, life cycle assessment, sustainability assessment, performance monitoring, 47 

operations and maintenance, scheduling and retrofit / refurbishment / renovation planning [1]. In the 48 

literature, the benefits of rapid assessment of as-built building conditions are reported to enhance the 49 

efficiency of building and maintenance operations [2]. The effective and timely execution of AEC/FM 50 

tasks, specifically those that target increased energy performance, call for approaches that precisely 51 

model the existing buildings and quantify building performance through simulation tools. Energy 52 

simulation has the potential to reduce buildings’ environmental impact, improve occupant comfort and 53 

indoor environmental quality and facilitate innovation in AEC [3]. For existing buildings, energy 54 

simulations can also complement real monitored building data for operational optimization or retrofit. 55 

A simulation-based virtual model has the capacity to analyze the building’s past behavior to calibrate 56 

the program for improved predictive potency, or predict the building’s response to alternative scenarios 57 

[4]. Dynamic energy simulation tools adopt a forward-modeling approach that begins with a description 58 

of the building and components, providing a physical description of the building (design geometry, 59 

thermal characteristics of the building envelope, internal heat gains, infiltration and occupancy profiles), 60 

its systems (system types and sizes, control schedules, outdoor air requirements) and components 61 

(HVAC components) [5]. Amongst these, the former is the most fundamental category that the other 62 

categories are based upon. Therefore, a correct description of the building form and envelope thermal 63 

properties is critical for the reliability of simulation-based performance assessment.  64 
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Despite the key role of simulations in performance assessment, the difficulties in the construction of 65 

energy models has been a major obstacle against their widespread use. Manual modeling based on 66 

building documentation (i.e. drawings, specifications, schedules) and walk-through audits have been 67 

proven to be labor-intensive and difficult, mainly due to missing or outdated building documentation 68 

(i.e. drawings or models), and the process’s proneness to imprecision and error [6]. This is also due to 69 

buildings undergoing undocumented major changes and the degradation of materials and building 70 

systems over time. As a result, the rapid acquisition of spatial information and the automation of 71 

modeling appear as key factors in the effective and timely execution of AEC/FM tasks.   72 

ICT techniques can help automate building modelling. Remote sensing technologies such as Light 73 

Detection and Ranging (LiDAR) are widely used to obtain 3D point clouds of target geometries based 74 

on distance measurements. LiDAR can be used for planning retrofit, spatial planning, resource and 75 

construction progress tracking [7–13]. Despite the volume of existing research on automated as-built 76 

generation, these steps still largely remain as semi-automated and labor-intensive processes that involve 77 

human labor to various degrees [14]. Moreover, LiDAR-based approaches’ high cost, high level of 78 

operational expertise and complexity prevent their widespread use.  79 

Computer vision methods, especially 3D reconstruction techniques, offer potentials in the data 80 

acquisition and modeling of building or component geometry in unstructured physical environments. 3D 81 

reconstruction from multiple views mainly relies on finding the “projections” (or occurrences) of 3D 82 

scene points in 2D multiple views [15]. Given its 2D projections in different views, the source 3D scene 83 

point can be estimated by simple geometric calculations. In buildings, image-based reconstruction 84 

techniques are reported to be advantageous over LiDAR for their low cost of technology implementation 85 

and data collection, but at the same time are expensive in data processing for 3D point cloud generation 86 

[16]. Another difference between the two methods is the sparsity of the generated point cloud models in 87 

image-based techniques. However, image-based reconstruction techniques have proven to be a robust 88 

alternative to LiDAR, and recently resulted in models that are comparable to LiDAR in their accuracy 89 
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[17].  90 

The AEC/FM applications that use computer vision methods primarily focus on the data capturing and 91 

modeling of existing built forms, monitoring and progress tracking. Dimitrov and Goldparvar-Fard [18] 92 

developed a vision-based approach based on structure-from-motion, multi-view stereo, together with a 93 

voxel coloring algorithm to generate a volumetric reconstruction of a construction site and detect 94 

progress using 4D as-planned BIM models. Kim et al. [19] apply a data-driven scene-parsing method 95 

that recognizes construction objects classes in images. Park et al. [20] develop a content-based image 96 

retrieval approach for the automated registration of photos to 4D BIM and identification of BIM objects 97 

for construction project management. Tang et al. [21] propose an automatic method for reconstructing 98 

semantically rich indoor 3D building models including components of indoor environments such as 99 

space, wall, floor, ceilings, windows, and doors from low-quality RGB-D sequences. Brillakis et al. [22] 100 

propose a videogrammetric framework for acquiring spatial data of infrastructure using low-cost high 101 

resolution video cameras that are traversed around a scene to produce a dense 3D point cloud.  102 

Infrared thermal imaging is a viable, non-destructive technique for fast and accurate building diagnostics 103 

and material characterization. Typical building thermal performance assessment practices make use of 104 

IR testing to detect problems of heat losses, thermal bridges, air leakage and moisture sources and 105 

missing / damaged thermal insulation [23]. Since the identification of problems requires the manual and 106 

simultaneous interpretation of infrared (IR) images and RGB images, this process is limited in 107 

applicability due to its dependence on human expertise in combining IR and RGB images [24]. Image 108 

fusion, therefore, is used to combine multiple input images of the same object into a composite image 109 

that contains critical thermal information. The fusion of thermal and visual images for building 3D 110 

modelling has been addressed in the previous literature in AEC/FM. Yang et al. [25] propose a method 111 

for thermal model reconstruction from thermal and RGB images, which builds a 3D mesh model with 112 

surface temperature values. González-Aguilera et al. [26] develop an approach for the automatic 113 

registration of infrared (IR) images and 3D-laser scanner models and the combination of thermographic 114 
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and geometric data in a thermographic 3D-model to locate thermal defects and quantify heat losses. 115 

Ribaric et al. [24] propose a knowledge-based system that uses the fusion of information extracted from 116 

low-resolution IR images and high-resolution visual RGB images for non-destructive testing and façade 117 

diagnostics. Merchán et al. [27] improve the existing modelling techniques that generate colored 3D 118 

models of outdoor scenes by decoupling the color integration and geometry reconstruction stages. The 119 

development of non-destructive, non-contact techniques for architectural heritage conservation is 120 

addressed by Costanzo et al. through the fusion of terrestrial laser scanning and the infrared thermal 121 

images [28]. Lagüela et al. [29] combine geometric information with thermal data using a new procedure 122 

that builds thermographic 3D models by the fusion of infrared mosaics and visible images. Adan et al. 123 

[30] improve the accuracy and soundness of existing approaches in a system that fuses information from 124 

3D laser scanners, RGB cameras and thermal cameras to generate dense thermal 3D point clouds. 125 

Schramm et al. [31] reduce the impact of correspondence problems when scanning objects with few 126 

geometric features by developing an imaging system consisting of an IR camera and a near-infrared 127 

(NIR) depth sensor. Ham and Golparvar-Fard [32] develop a vision-based approach for 3D spatio-128 

thermal modeling by automatically generating and superimposing the 3D building and thermal point 129 

clouds to build 3D energy performance models.  130 

The automated recognition of relevant objects in a 3D scene and extracting useful semantic information 131 

using machine learning methods is also an important research direction. The image-based detection and 132 

classification of building materials has been addressed previously using various methods including 133 

Support Vector Machine classifiers [12], Multilayer Perceptron (MLP), Radial Basis Function (RBF), 134 

and Support Vector Machines (SVM) [33] and Neuro-Fuzzy systems (NFS) [34]. Similarly, the 135 

automated detection of building components can greatly ease the generation of as-is models of existing 136 

buildings. Xiong  et al. develop a method to automatically convert raw 3D point data, which can also 137 

identify and model the main structural components of an indoor environment (i.e. walls, floors, 138 

windows) by point cloud voxelization, planar patch extraction and the labeling of patches as building 139 
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elements [8]. Wang et al. follow a similar approach to plane segmentation, an edge and boundary 140 

detection algorithm, followed by a rule-based building envelope component classification system [35]. 141 

The resulting data is converted to gbXML to process further in energy simulation applications. Valero 142 

et al. propose a Terrestrial Laser Scanning data-processing pipeline that builds semantic 3D models of 143 

building interiors using Boundary Representation (B-Rep) models, which recognizes openings by 144 

detecting the moldings around empty areas in 3D points [36]. Liu et al. propose a method for the remote 145 

monitoring of external cladding using classical operators and fuzzy logic algorithms [37]. The inspection 146 

of steel frame manufacturing is addressed by Martinez et al. using a vision-based framework and a 147 

knowledge-based decision-making system [38]. Automating the acquisition, updating and management 148 

of knowledge in historic / heritage buildings is also an active research area that is in need of novel 149 

methods to capture historic building elements in a high level of detail [39]. Automated methods for 150 

construction project monitoring and the detection of construction equipment / workers is addressed using 151 

various methods including deep learning and virtual reality [40], vector-quantized histograms for 152 

material classification [33], vision-based algorithms that detect partition components [41], 2D 153 

Continuous Wavelet Transform for the automatic segmentation of stones in walls [42], convolutional 154 

neural networks to detect workers and heavy equipment [43], vision-based algorithms using as-built 155 

video data to recognize activity states of construction activities [44], and convolutional networks and 156 

transfer learning to detect construction equipment [45]. Adan et al. focus on the recognition of non-157 

structural components such as MEP components using a consensus strategy for depth-based and color-158 

based recognitions [46].  159 

Critical factors for the successful implementation of image-based 3D reconstruction include usability, 160 

reliability, and ease-of-use [47]. While 3D point cloud data extraction from an image collection has been 161 

previously addressed widely, obtaining a useful model from point cloud data using fit-to-purpose plane 162 

segmentation approaches is still an active research area in AEC/FM. The extraction of a 3D model 163 

(surface or wireframe model, BIM or energy model) demands either cumbersome manual work or 164 
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computational approaches to streamline the modeling process that require different degrees of 165 

complexity. Despite the success of the existing work in the automation of modeling, executing tasks on 166 

huge, unstructured point clouds require a high level of expertise and experience on software tools to be 167 

able to operate on raw geometries, which can hinder the effectiveness of the task. During the generation 168 

and processing of large 3D point clouds, approaches tailored for specific purposes are needed to 169 

efficiently integrate, update, manage, analyze, and visualize 3D points [48]. Moreover, imaged based 170 

methods demonstrate reduced robustness when the scenes do not have sufficiently textured areas, contain 171 

excessively repetitive textures, and when lighting varies dramatically across the views [49]. The lack of 172 

distinguishable features in indoors (especially on walls or ceilings) needed for image registration is also 173 

an obstacle against the reliable convergence of feature-based methods. Another problem encountered in 174 

interior spaces is occlusion due to furniture, curtains or other indoor objects. This makes it difficult to 175 

clearly identify and extract objects of interest, and reduces the reliability of model construction [50]. 176 

Therefore, high levels of tolerance to missing data is required for indoor modeling, as compared to 177 

outdoor modeling. 178 

In this paper, we present an image-based 3D reconstruction pipeline that supports the semi-automated 179 

energy modeling of existing buildings. The main motivation behind the proposed approach is the 180 

pressing necessity for the fast, easy and low-cost method for reliable and precise building energy 181 

modeling. As an alternative to high-cost LiDAR data, our approach makes use of unstructured visible 182 

(optical) and thermal images of a room captured using readily available cameras. The developed pipeline 183 

can generate different models during its successive stages, including point clouds, planar surface models 184 

and building energy models. For the latter two models, we developed two methods for the robust 185 

estimation of the building planes from the initially generated 3D point cloud. The first method 186 

independently estimates each plane using RANdom SAmple Consensus (RANSAC) and singular value 187 

decomposition (SVD). The second method builds upon the same method by imposing a plane 188 

perpendicularity (or any angular, in general) constraint to plane estimation step to improve geometric 189 
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precision. Surface planarity, minimum surface complexity and the reduction of unnecessarily intricate 190 

geometries are desirable qualities the surface models. 191 

The thermal characterization of opaque external building surfaces in also of key importance for energy 192 

simulations in the calculation of conductive heat transfer between the indoor and outdoor environments. 193 

As discussed previously, IR imaging can be used for the quantitative characterization of building 194 

constructions using the surface temperatures measured by a thermal camera. In our pipeline, we calculate 195 

external walls’ thermal transmittance using an existing IR thermography–based procedure [51]. In the 196 

construction 3D thermal point clouds, we follow a similar approach to Ham and Golparvar-Fard [32], 197 

who calculated actual thermal resistance of building assemblies at the level of 3D points and converted 198 

it into a single value for each building element. Our pipeline differs in the following: (i) Ham and 199 

Golparvar-Fard perform separate 3D reconstruction from the thermal images and visible band images, 200 

which, however, is inefficient and unnecessary given that the visible band and thermal cameras are 201 

calibrated. In our approach, we perform 3D reconstruction only from the visible band images, and the 202 

thermal information is transferred using the transformation between the cameras. (ii) We propose a novel 203 

mechanism for integrating structural priors into the pipeline to get more accurate reconstructions even 204 

with small number of images. 205 

The main practical advantage of our approach is that users’ involvement required for the extraction of 206 

architectural elements of an indoor space (e.g., walls, windows, floors and ceilings) is based on simple 207 

interaction tasks on 2D images. Specifically, after the construction of a point cloud, architecturally 208 

significant elements are identified by the users by partially or fully marking these elements on 2D 209 

images. This eliminates the need for complex software tools and human expertise for point cloud editing, 210 

and makes our approach a viable, rapid, low-cost and easy-to-use alternative to the existing approaches 211 

in the literature.  212 
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The rest of this paper is structured as follows. Section 2 presents the development of the proposed 213 

pipeline, and the phases of calibration, 3D point cloud generation, 3D room modeling, fusion with 214 

thermal data and thermal transmittance value calculation. Section 3 presents and discusses the results of 215 

the two experiments conducted for the validation of the developed pipeline. Finally, Section 5 concludes 216 

this work and points to some future research directions. 217 

2 Material and methods 218 

In this paper, we propose a methodology for the semi-automated modeling of existing buildings using 219 

3D reconstruction. Specifically, we develop a pipeline that merges digital 2D visible (optical) images 220 

and thermal images of a room into a single 3D building model with thermal transmittance values 221 

assigned to the external walls. The developed pipeline generates different models including point clouds, 222 

planar surface models and energy models. The pipeline uses visible band images registered with the 223 

corresponding thermal images as input data. Visible band images are utilized for 3D model generation 224 

whereas thermal images are used for obtaining thermal transmittance values of external walls. 225 

Our pipeline is composed of the following main steps (Figure 1):  226 

- The calibration of the imaging system: This step estimates the parameters of the cameras (e.g. 227 

focal length, scaling factor or distortion) and the rotation & translation between the two cameras. 228 

- 3D point cloud generation: This step uses multiple views of a room to estimate a set of 3D points 229 

of the room. For this, a structure-from-motion technique and a multi-view stereo method are 230 

employed. 231 

- 3D model generation: From the sparse set of 3D points generated in the previous step, the walls 232 

of the room are calculated in 3D. 233 

- Fusion with thermal data, and thermal resistance calculation: The 3D model of the room is 234 

populated with the temperature values from the thermal camera, and with this, the external walls’ 235 
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thermal resistance values are calculated. 236 

 237 

 238 

Figure 1 An overview of the proposed pipeline for constructing an energy model of a room from visible band and thermal 239 

images.  240 

2.1 The Calibration of the Imaging System 241 

Physical properties of a camera are defined by its intrinsic parameters, which mainly describe the focal 242 

length and optical center. The extrinsic parameters, on the other hand, describe the physical location 243 

(rotation and translation) of a camera with respect to a reference coordinate system. Using two cameras 244 

together, such that information can be shared between them, requires knowing both the intrinsic and the 245 

extrinsic parameters of the cameras. The process of computing the intrinsic and extrinsic (rotation and 246 

translation) parameters of a camera at the same time is known as camera calibration in computer vision. 247 

We calibrated our visible band and thermal cameras using MATLAB’s camera calibration toolbox as 248 

follows:    249 

Visible Band Calibration: We manufactured a checkerboard calibration object using a piece of cardboard, whose images 250 

were taken by the visible band camera ( 251 

a. Figure 2-a). We calculated the intrinsic and extrinsic parameters of the visible band camera with 20 252 

pictures of the calibration object captured by the camera.  253 

Thermal Calibration: The same checkerboard pattern is used for the calibration of the thermal camera since the pattern is 254 

observable in the thermal image ( 255 
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b. Figure 2-b). We similarly calculate the intrinsic and extrinsic parameters of the thermal camera 256 

using 20 images of the calibration object captured by the thermal camera.   257 

c. Calculation of rotation and translation between the two cameras: The visible band camera and the 258 

thermal camera are mounted on the same camera body (Figure 3), which makes calculating the 259 

transformation (translation and rotation) between them easy and practical. The extrinsic parameters 260 

were obtained with respect to the same calibration object, which is visible for both visible band and 261 

thermal cameras. We exploit this fact to calculate the relative translation and rotation between the 262 

two cameras.  263 

 264 

  

(a) (b) 

 265 

Figure 2 The checkerboards used for calibrating the visible band and thermal cameras. 266 

 267 
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Figure 3 A view of FLIR E60. 268 

2.2 3D Point Cloud Reconstruction 269 

For generating a high-quality 3D point cloud of the room, we mainly rely on Structure from Motion 270 

(SfM), a widely-used technique in computer vision (Figure 4). In SfM, a set of images of an environment 271 

is used to obtain 3D information about the environment. These images are assumed to be captured at 272 

different positions (and possibly with different cameras) and to contain overlapping views of the 273 

environment. From these overlapping views, or more technically, the visual information that corresponds 274 

to the same 3D entities in the environment, the positions of the cameras and the 3D coordinates of the 275 

pixels can be identified.  276 

 277 
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 278 

Figure 4 An overview of the main steps of 3D point cloud generation and 3D model construction. The dense 3D point cloud 279 

generated by step (i) is provided as input to the 3D room model construction step (ii) 280 

 281 

To perform 3D reconstruction to obtain a point cloud, we developed a software tool by adapting the 282 

OpenMVG library [52]. Our tool follows the steps outlined in Figure 4 and is described in detail in the 283 

following sections. 284 

2.2.1 Keypoint (Visual Feature) Description  285 

SfM relies on finding matching pixels across the different views. However, not every pixel in an image 286 

carries visually meaningful information, and therefore, trying to find which pixels carry meaningful 287 
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information and how we can represent this information are very critical. To find those “useful” pixels 288 

(called keypoints) as well as to represent information at and around those keypoints, we use the Scale-289 

Invariant Feature Transform (SIFT) method [53]. SIFT finds keypoints by looking at intensity changes 290 

in an image at multiple scales. If there is a consistent change at a pixel at different scales, then that pixel 291 

is assumed to carry useful information. For representing such a keypoint, SIFT calculates a summary of 292 

how the intensity changes around the keypoint in the form of a 128-dimensional vector. 293 

2.2.2 Visual Feature Matching  294 

The previous step has identified in each image useful keypoints and represented them as (feature) 295 

vectors. Before estimating the 3D coordinates, the keypoints that correspond to the same 3D points 296 

should be identified. This is accomplished by comparing the feature vectors across the different views, 297 

and the closest feature vectors are identified as matching. For matching we use a cascaded method 298 

[54], which results in a set of potential matches between features in different views. Then, a post-299 

processing step is employed to remove matches that are geometrically incorrect using AC-RANSAC 300 

(acronym for A Contrario RANdom SAmple Consensus) [55]. 301 

2.2.3 Structure from Motion (SfM)  302 

SfM essentially formulates and solves jointly (1) the 3D reconstruction of matching points and (2) the 303 

estimation of the relative 3D distance and pose between the images. For SfM, we use the method 304 

proposed by Moulon et al. [55] due to its robustness and adaptive capacity. The method constructs an 305 

initial 3D model using the best matching two images and continues reconstruction by adding the 306 

remaining images iteratively. 307 

2.2.4 Densification using Multi-view Stereo (MVS)  308 

Since a dense 3D point cloud is needed for 3D reconstruction, it is essential to densify the sparse 3D 309 

point cloud computed by SfM. For densification, we employed an existing algorithm for multi-view 310 

stereopsis [56], which densifies a given 3D point cloud by interpolation. 311 
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2.2.5 Enhancement through Interaction   312 

The 3D point cloud generated by the previous step requires adjustments on the scale, and selection of 313 

the planar regions on the walls, and the doors and the windows by mouse clicks. 314 

2.2.5.1 Adjusting the Scale and Pose of the 3D Model  315 

The 3D point cloud obtained in the previous step needs to be corrected for its scale and pose. We first 316 

select three points from the captured visual band images (Figure 5). We also identify these points’ actual 317 

coordinates by manually measuring the distances to a selected origin point in the room. With this 318 

information at hand, we can calculate the transformation between the current model and the target model 319 

with correct scale and orientation. For this, we compute a similarity transformation: 320 

 𝐱′ = 𝐀𝐱 + 𝐭,  (1) 

where 𝐱 ∈ ℜ3 is a 3D point in the original, scale-free, arbitrarily oriented 3D model; 𝐀 is ℜ3×3 321 

orthogonal matrix with rotation and scaling elements; 𝐭 ∈ ℜ3 is translation; and 𝐱′ ∈ ℜ3is the scale-322 

corrected, orientation-corrected 3D point. The solution is obtained using a non-linear least square 323 

optimization method [57] that provides the lowest mean squares error (i.e. ∑ (𝑥𝑖
′ − 𝑥𝑖) 2/𝑛𝑖 ). This 324 

similarity transformation is applied onto the reconstructed 3D point cloud to correct the scale, orientation 325 

and translation of the 3D point cloud. However, this process can introduce some degree of discrepancy, 326 

since it is inherently challenging to select the pixel that corresponds to a known 3D point. This 327 

imprecision amplified further with the use of low resolution images, where finding the correct match 328 

between the model and the image pixel is challenged further. Moreover, the rooms themselves are not 329 

perfect constructions (e.g. rounded corners, tilted walls), which makes the process noisier.  330 

 331 
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 332 

Figure 5 Scale and pose correction 333 

2.3 3D Room Model Construction 334 

The dense 3D model has a set of 3D points in 3D space. For correctly constructing a 3D model, the 335 

surfaces need to be identified and estimated as 3D planes. The equations of a plane for each boundary 336 

surface (walls, floor and ceiling) are computed for the points that lie within a rectangular shape that is 337 

manually marked by the user on the images using our tool. In this process, it is important to mark only 338 

the surface portions that are free of any possible obstructions, in order to eliminate the objects that can 339 

misinform plane fitting. As such, the algorithm can effectively function in physical environments that 340 

are heavily obstructed or cluttered.  341 

We developed two methods for the robust estimation of the corresponding planes from the 3D point 342 

cloud. The first method, namely the “Baseline Plane Estimation from 3D Point Cloud” (BPE) method, 343 

is based on RANSAC and SVD, which estimates one plane corresponding to each wall, ceiling or floor 344 

independently. The second method, namely the “Robust 3D structure estimation with geometric 345 

constraints” (RSEC) method, is an improvement over the first method by increasing the precision of the 346 

final model. RSEC builds upon BPE and exploits the assumption of the rectangularity of the room.  347 

The baseline method in Section 2.3.1 is very similar to the method used for 3D model construction 348 
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from visible band images in Ham and Golparvar-Fard [32]. However, the second method, RSEC, to be 349 

presented in Section Error! Reference source not found. is our contribution.  350 

2.3.1 Baseline Plane Estimation from 3D Point Cloud (BPE) Method  351 

The BPE method is based on least-squares plane fitting algorithms with RANSAC. As described above, 352 

the user selects a four-corner polygon on each wall such that the points in the polygon are coplanar. The 353 

3D points that are bounded by this region are first found in the 3D point cloud. Afterwards, our algorithm 354 

tries to fit a plane to each wall to construct the geometric model of the room in 3D as follows:  355 

Using RANSAC for 3D plane estimation 356 

Several points are randomly selected from each surface to estimate a plane. The performance of the plane 357 

fit is measured by computing the inlier ratio of our model estimation; in other words, we evaluate the 358 

success of the estimated model based on the ratio of the points in the estimated model. A distance 359 

thresholding method is utilized for inlier decision. If the distance between a point and its corresponding 360 

estimated plane is below a certain threshold (which is basically a hyperparameter), the point is an inlier 361 

point. After this process is iterated a number of times, the geometric model with the highest inlier ratio 362 

is kept as the best model. 363 

Plane Fitting   364 

We adapted a least square error plane fitting algorithm for model estimation in the proposed pipeline. 365 

First, we have N 3D points, 𝐱1, … , 𝐱𝑁  with 𝐱𝑖 ∈ ℝ3, sampled by RANSAC that can be stacked in a 𝑁 ×366 

3 matrix as 𝐗  =  [ 𝐱1, 𝐱2, … , 𝐱𝑁]𝑇 where T denotes transpose. As typically performed as a preprocessing 367 

step, the center point of the set is calculated and subtracted from all points to shift the center of the points 368 

to the origin. As a result, the new points and the new 𝑁 × 3 point matrix become: 369 

 𝐱̅ =
1

𝑁
∑ 𝐱𝑖

𝑁

𝑖=1

 , (2) 
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𝐱𝑖
′  =  𝐱𝑖 −  𝐱̅, (3) 

  

𝐗′ =  [𝐱1
′ , 𝐱2

′ , … , 𝐱𝑁
′ ]𝑇 . (4) 

 370 

The goal of plane fitting is to find a normal vector 𝐧 ∈ ℝ3 that minimizes the mean square error 371 

(distance) of the 3D points that are expected to be on the wall: 372 

  𝐧∗ ← arg min
𝐧

∑  |𝐧𝑇𝐱𝑖|2

𝑁

𝑖=1

= arg min
𝐧

𝐧𝑇𝐗′𝑇
𝐗′𝐧 ,         𝑠. 𝑡.  ||𝐧||

2

2
= 1. (5) 

 373 

The Lagrange multipliers method is an appropriate choice for minimizing this cost since we need to 374 

perform least squares minimization with the constraints. The cost function can be expressed in 375 

Lagrangian multipliers as: 376 

𝐽(𝐗′; 𝐧, λ)  =  𝐧𝑇𝐗′𝑇𝐗′𝐧  +  λ(1  −  𝐧𝑇𝐧). (6) 

 377 

To find a solution that minimizes the function 𝐽, we need to take the derivative of 𝐽 and equate to 0: 378 

 379 

∂𝐽

𝜕𝐧
 = 2𝐗′𝑇𝐗′𝑛 −  2λ𝐧 =  0 , (7) 

𝐗′𝑇𝐗′𝐧 =  λ𝐧. (8) 

 380 

The vector 𝐧 ∈ ℝ3 satisfying Eq. 8 is an eigenvector of 𝐗′T𝐗′. We need to find the cost 𝐧𝑇𝐗′𝑇𝐗′𝐧 in 381 

terms of the eigenvalue: 382 
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 𝐧𝑇𝐗′𝑇
𝐗′𝐧  =  λ 𝐧𝑇𝐧  =  λ. (9) 

 383 

Therefore, to minimize the cost we need to select the eigenvector (normal) corresponding to the 384 

minimum eigenvalue: 385 

𝐧∗ ←   arg min
𝐧

λ. (10) 

 386 

The plane equation is then calculated as:  387 

𝐧∗(𝐱  − 𝐱0)  =  𝑎𝑥  +  𝑏𝑦  +  𝑐𝑧  + 𝑑. (11) 

 388 

where 𝐧∗ is the normal vector corresponding to the plane, 𝐱0 is a known fixed point on the plane and 𝐱 389 

is any point on the plane. Hence, the parameters 𝑎, 𝑏, 𝑐 and 𝑑 become: 390 

 391 

𝑎  =  𝐧𝑥
∗  ,       𝑏  =  𝐧𝑦

∗  ,      𝑐 = 𝐧𝑧 
∗  ,     𝑑 =   − 𝐧∗𝑇𝐱0, (12) 

 392 

where 𝐧𝑥,  𝐧𝑦 and 𝐧𝑧 are the 𝑥, 𝑦 and 𝑧 components of vector 𝐧. 393 

2.3.2 Robust 3D structure estimation with geometric constraints (RSEC) 394 

We propose an improvement over the baseline method in order to exploit the 3D structure of the room. 395 

To be specific, we assume that room surfaces meet at a right (90o) angle, and plane estimation is 396 

performed with this as a constraint. Accordingly, RSEC requires the computation of three surface normal 397 

vectors that are orthogonal to each other. In order to provide this constraint, two different cost functions 398 

are required for the whole room (recall that, in BPE, each wall is handled independently); one for plane 399 

fitting and a second one for the surface orthogonality constraint. The first cost function is defined as 400 
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follows: 401 

𝐽𝑓𝑖𝑡(𝐗1, 𝐗1, … 𝐗6; 𝐧1,  𝐧2,  𝐧3)

=  𝐧1
𝑇𝐗1

𝑇𝐗1𝐧1  +  n2
𝑇𝐗2

𝑇𝐗2n2  +  𝐧1
𝑇𝐗3

𝑇𝐗3𝐧1  + 𝐧2
𝑇𝐗4

𝑇𝐗4𝐧2   

             + 𝐧3
𝑇𝐗5

𝑇𝐗5𝐧3 +  𝐧3
𝑇𝐗6

𝑇𝐗6𝐧3,  

(13) 

which can be simplified as: 402 

𝐽𝑓𝑖𝑡(𝐗1, 𝐗1, … 𝐗6; 𝐧1,  𝐧2,  𝐧3) = 𝐧1
𝑇𝐀𝐧1 + 𝐧2

𝑇𝐁𝐧2 + 𝐧3
𝑇𝐂𝐧3, (14) 

where 𝐀, 𝐁, 𝐂 are symmetric positive semi-definite matrices defined as 𝐀 = 𝐗1
𝑇𝐗1 + 𝐗3

𝑇𝐗3; 𝐁 =403 

𝐗2
𝑇𝐗2 + 𝐗4

𝑇𝐗4, and 𝐂 = 𝐗5
𝑇𝐗5 + 𝐗6

𝑇𝐗6. The three vectors 𝐧1,  𝐧2 and 𝐧3 can be stacked into a 3 × 3 404 

matrix as 𝐍  =  [𝐧1,  𝐧2,  𝐧3].  The cost then can be formulated using the N matrix as: 405 

𝐽𝑓𝑖𝑡(𝐗1, 𝐗1, … 𝐗6; 𝐍) =  𝐢1
𝑇𝐍𝑇𝐀𝐍𝐢1  +  𝐢2

𝑇𝐍𝑇𝐁𝐍𝐢2  +  𝐢3
𝑇𝐍𝑇𝐂𝐍𝐢3 , (15) 

where 𝐢1 = [1 0 0]𝑇, 𝐢2 = [0 1 0]𝑇 and 𝐢3 = [0 0 1]𝑇. 406 

The second cost function which measures orthogonality can be defined by exploiting the fact that 𝐍𝑇𝐍 407 

should be equal to the identity matrix 𝐈 by the orthogonality principle as follows: 408 

𝐽𝑜𝑟𝑡(𝐍) =  || 𝐍𝑇𝐍  −  𝐈  ||
𝐹

2
   =  tr((𝐍𝑇𝐍  −  𝐈)𝑇(𝐍𝑇𝐍  −  𝐈)), (16) 

 409 

where || 𝐃 ||
𝐹

= ∑ ∑ 𝐷𝑖𝑗
2

𝑗𝑖  is the Frobenius norm.  410 

As the last step, these two cost functions are merged using a penalty factor: 411 
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𝐽(𝐗1, 𝐗1, … 𝐗6; 𝐍, λ)  =  𝐽𝑓𝑖𝑡 (𝐗1, 𝐗1, … 𝐗6; 𝐍) +  λ 𝐽𝑜𝑟𝑡(𝐍) . (17) 

 412 

The final cost function in Eq. 17 is minimized by using the “Nelder-Mead” method [58] with an initial 413 

N matrix provided by consecutive three normal vectors provided by our baseline method. Here, optimal 414 

N is computed as: 415 

𝐍∗  ←  arg min  
𝐍

𝐽(𝐗1, 𝐗1, … 𝐗6; 𝐍, λ). (18) 

 416 

We tested different λ values such as 0.1, 1.0 and 10.0 with 140 images from a Nikon D90 camera and 417 

we settled on λ to 1.0, which experimentally provided maximum geometric accuracy. 418 

2.3.3 Window and Door Selection  419 

To mark the windows and doors in 3D, the corners of the windows and the doors are selected by the 420 

users on the visible images. With this, we assume that the windows and doors need to be co-planar with 421 

the walls on which they are located. After this selection, the corresponding 3D point for each corner 422 

point is calculated by intersecting the ray passing from selected point on the 2D plane with the 423 

corresponding wall plane.  424 

2.4 Fusion with Thermal Data 425 

In this step, the 3D points are assigned thermal values from the thermal images to be able to calculate 426 

thermal transmittance values for the external walls in the next step. To this end, the (intrinsic) parameters 427 

of visible band and thermal cameras and the relative 3D rotation and 3D translation between them are 428 

used. This is different from Ham and Golparvar-Fard [32], who performed separate reconstructions for 429 

the visible band and thermal images and then combined them. In the case of calibrated pair of cameras, 430 

this is inefficient and unnecessary. 431 
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The steps of how we fuse the 3D model with the thermal images are as follows:   432 

 After calibration, we have 𝐑𝑅𝐺𝐵 and 𝐭𝑅𝐺𝐵, the 3D rotation and translation of the visible (RGB) 433 

camera with respect to the calibration object.  434 

 We then calculate the transformation from a 3D point 𝐱 to the thermal camera as follows:  435 

 436 

𝐩 = 𝐏𝑡ℎ𝑒𝑟𝑚𝑎𝑙  𝐱, (19) 

  

𝐏𝑡ℎ𝑒𝑟𝑚𝑎𝑙 = 𝐊𝑡ℎ𝑒𝑟𝑚𝑎𝑙[𝐑𝑡ℎ𝑒𝑟𝑚𝑎𝑙 , 𝐭𝑡ℎ𝑒𝑟𝑚𝑎𝑙], (20) 

  

𝐑𝑡ℎ𝑒𝑟𝑚𝑎𝑙 = 𝐑𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒𝐑𝑅𝐺𝐵
𝑇 , (21) 

  

𝐭𝑡ℎ𝑒𝑟𝑚𝑎𝑙 = 𝐑𝑅𝐺𝐵
𝑇 𝐭𝑅𝐺𝐵 + 𝐭𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 , (22) 

  

  

where 𝐑𝑡ℎ𝑒𝑟𝑚𝑎𝑙 is the rotation matrix of the thermal camera, 𝐑𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 is the rotation matrix of 437 

the rotation difference between the RGB and the thermal cameras (obtained via the calibration 438 

step), 𝐭𝑡ℎ𝑒𝑟𝑚𝑎𝑙is the translation vector of the thermal camera, 𝐭𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 is the translation vector 439 

of the translation difference between the RGB and the thermal camera, 𝐏𝑡ℎ𝑒𝑟𝑚𝑎𝑙is the projection 440 

matrix and 𝐊𝑡ℎ𝑒𝑟𝑚𝑎𝑙  is the intrinsic matrix of the thermal camera. 441 

 442 

 Each 3D point of the point cloud is projected onto thermal images’ planes using 𝐏𝑡ℎ𝑒𝑟𝑚𝑎𝑙 the 443 

previously calculated projection matrices. Afterwards, the depth (the 3rd value that we get from 444 

projection since we use homogenous coordinate system) and the projected coordinates are 445 

checked. If the depth and the projected coordinates are both positive and within the image’s 446 
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coordinates, they are accepted as point correspondences and the RGB color of the thermal image 447 

point is assigned to its corresponding 3D point (Figure 6). 448 

 449 

  

 450 

Figure 6 Juxtaposition of the thermal images on the point cloud. 451 

2.5 Calculation of thermal transmittance  452 

The thermal characterization of opaque external building surfaces is of key importance for energy 453 

simulations. Particularly, surface thermal transmittance, or U-value, is mainly used in the calculation of 454 

conductive heat transfer between the indoor and outdoor environments. U-value is dependent on the 455 

thickness and type of materials, which may be unknown for existing buildings. The heat flux method 456 

(HFM) is a non-destructive method that calculates R-value by measuring the temperature gradient and 457 

the direct heat-flux through the envelope with heat flux meters. However, the results can easily be 458 

affected by thermal bridges, humidity, mold and poor adhesion of the sensors [59].  As a robust and easy 459 

alternative to HFM, IR imaging can be used to estimate U-value using surface temperature values 460 

measured by a thermal camera. Instead of partially focusing on a limited number of measurements read 461 

from heat flux meters in HFM, the IR thermography method can estimate the average temperature and 462 

the overall R-value of a surface [60]. The main assumption behind the IR-based calculations is that the 463 

total heat transfer from the surface to the thermal camera is due to thermal radiation and thermal 464 
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convection. Radiation heat transfer happens between two physically disconnected bodies with different 465 

temperatures. Convective heat transfer is transfer of energy between a moving gas or liquid phase and a 466 

solid phase, or, in this case, the building element and the indoor air.  467 

U-values of the external walls are calculated using an existing infrared thermography method proposed 468 

by Albatici et al. [51]. This method assumes that heat passing through the element, dissipated from its 469 

surface and transferred to the IR thermal camera sensor (P), is the sum of heat dissipated by the element 470 

for radiation (E) and heat dissipated for convection (H). E is calculated using the Stefan–Boltzman Law 471 

for grey body radiation as:  472 

𝐸 = 𝜎𝜖𝑇𝑠,𝑖𝑛
4  (23) 

where 𝜎 is the Stefan-Boltzmann constant of proportionality (5.67 × 10−8 [W/(m2K4]), 𝜖 is the thermal 473 

emissivity of the surface and 𝑇𝑠,𝑖𝑛 is the surface temperature (K) of the external wall measured by the 474 

thermal camera. For the specific cases wherein a gray body is completely enclosed within a closed 475 

environment (i.e. a room), Eq. 23 can be modified to account for the net radiation exchange as:   476 

𝐸 = 𝜎𝜖(𝑇𝑠,𝑖𝑛
4 − 𝑇𝑟𝑒𝑓𝑙

4 ) (24) 

where 𝑇𝑟𝑒𝑓𝑙 is the measured dry bulb air temperature of the environment (K). 𝑇𝑟𝑒𝑓𝑙 is measured to 477 

exclude the impact of reflected radiation in the thermal image, and to acquire the surface’s correct 478 

temperature information. 𝑇𝑟𝑒𝑓𝑙 is the average reflected temperature from a reflective mirror (i.e. a 479 

crumpled aluminum coil) that is placed at a short distance from the wall and measured by a thermal 480 

camera. H can be calculated as:  481 

𝐻 = 𝛼𝑐𝑜𝑛|𝑇𝑠,𝑖𝑛 − 𝑇𝑎𝑖𝑟,𝑖𝑛| (25) 

where 𝛼𝑐𝑜𝑛 is the convective heat transfer coefficient [Wm-2K] and 𝑇𝑎𝑖𝑟,𝑖𝑛 is the measured air 482 

temperature of the indoor environment. Finally, U-value [W/m2K] of a building surface is calculated by 483 

considering that P is the sum of E and H: 484 
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𝑈 = 𝑃/(𝑇𝑎𝑖𝑟,𝑖𝑛 − 𝑇𝑎𝑖𝑟,𝑜𝑢𝑡) (26) 

𝑈 =
𝜎𝜖|𝑇𝑠,𝑖𝑛

4 − 𝑇𝑟𝑒𝑓𝑙
4 | + 𝛼𝑐𝑜𝑛|𝑇𝑠,𝑖𝑛 − 𝑇𝑎𝑖𝑟,𝑖𝑛|

𝑇𝑎𝑖𝑟,𝑖𝑛 − 𝑇𝑎𝑖𝑟,𝑜𝑢𝑡
 (27) 

 485 

where 𝑇𝑎𝑖𝑟,𝑜𝑢𝑡 is the measured outdoor air temperature. The U-value can thus be calculated from the 486 

mean surface temperature of each external wall.  487 

2.5.1 Data integration 488 

Once the previous steps are completed, the generated data (corner points of planes, U-values, window 489 

and door points) is written in an XML file with an XML schema developed by us. This file is read by a 490 

parser to construct a surface model for 3D model validation, and by OpenStudio SDK, an open-source 491 

framework that provides access to EnergyPlus object attributes [61] for building energy modeling.  492 

In EnergyPlus, the opaque room surfaces are instantiated as the BuildingSurface:Detailed object type, 493 

which specifies the surface type (wall, floor, ceiling or roof), the thermal zone that the surface is a part 494 

of,  the outside boundary condition, sun and wind exposure, the construction name and the four 495 

vertices that define the planar surface. The transparent surfaces are defined in a similar way using the 496 

FenestrationSurface:Detailed object type. Both opaque and transparent surfaces are instantiated by 497 

automatically reading in the vertices of the previously calculated surfaces, and manually entering the 498 

remaining information. The external walls, for which the U-value is calculated using the IR 499 

thermography method, need to be associated with the Material:NoMass object, as only the U-value of 500 

the surface is known. When instantiating this object, it should be associated with the relevant surface, 501 

and the thermal resistance (the reciprocal of the calculated U-value) value needs to be automatically 502 

entered. For all the other surfaces, the standard Material object type can be used, which requires 503 

manual data input for material thickness, conductivity, density and specific heat.  504 
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2.6 3D Room Reconstruction Tool  505 

Together with the described pipeline, a graphical user interface (GUI) was designed to allow the users 506 

select the geometric model extraction method, normal mode or test mode (where the tool calculates the 507 

geometric errors 100 times and calculates these error’s mean and standard deviation) the penalty method 508 

parameters used in robust 3D geometry estimation part, the optical and thermographic images for 3D 509 

reconstruction, manually mark the surfaces of walls on optical images for plane construction and mark 510 

the boundaries of windows and doors to define these elements in the model.  511 

 512 

3 Results  513 

In this section we present the results of the two experiments that aim to validate the developed pipeline. 514 

The first experiment aims to assess the performance of the pipeline and the two surface construction 515 

methods (BPE and RSEC) in constructing precise surface models subject to different input datasets. The 516 

second experiment is a comparative analysis between the calculated energy use of two energy simulation 517 

models: the first based on an existing high-precision surface model with theoretical thermal 518 

transmittance values, and the second using the proposed method that constructs an energy model with 519 

calculated thermal transmittance.  520 

3.1 Experiment setup 521 

The experiments were conducted in a classroom in an educational building (Figure 7Error! Reference 522 

source not found.). The room has an area of 46.48 m2 and a volume of 171.85 m3. The external wall 523 

material is reinforced concrete with 0.25 cm thickness. Previous to this study, a ground truth model of 524 

the room had been obtained through 3D laser scanning, using a high-precision laser scanner (Faro Focus 525 

120) that is registered by FARO-Scene. The resulting 3D point cloud model was used to manually 526 

generate a surface model. The room is a rectangular prism, with a door and a window. The electro-optic 527 
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images of the room were captured with a digital single-lens reflex camera, Nikon D90. Nikon D90 has 528 

a 12.3-megapixel resolution and a built-in autofocus motor. To capture the thermal images of the external 529 

wall, a FLIR E60 infrared camera was used. FLIR 60 has a thermal sensitivity of <0.05°C, with an 800-530 

pixel resolution for infrared images (320 × 240).  531 

 532 

 533 

 534 

Figure 7 Isometric view of the selected classroom 535 

The experiments aim to demonstrate the viability and precision of the proposed pipeline and the two 536 

surface construction methods (BPE and RSEC, as described in Section 2.3) when subjected to different 537 

input dataset conditions. The input datasets are representative of dataset sizes and image qualities (Table 538 

1). The experimental setup considers a various number of images from 140 to 35, with both high- and 539 
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low-quality images. To generate the latter, we decreased the pixel size of the original images and applied 540 

Gaussian noise with 5.0 standard deviation to lower the image quality. Each combination of image count 541 

and image resolution is called as an experiment case in the rest of the section.  542 

Table 1 Experiment setup. Each combination of image count and resolution is used as an experimental case for evaluation in 543 

the rest of the paper. 544 

Number of images  

140p (140 photos) 

105p (105 photos) 

70p (70 photos) 

35p (35 photos) 

Image resolution  
high resolution (4288×2848 pixel) 

low resolution (2144×1424 pixel, with Gaussian noise added) 

 545 

For each setup case, the following steps are followed: 546 

a. 8 image datasets are considered for 3D reconstruction, with different number of images and image 547 

resolutions, to generate the corresponding 3D point clouds (Figure 8-A). 548 

b. The scale and pose of the point cloud model are adjusted through user interaction. Three points are 549 

selected in the physical environment, and their physical distances to a selected origin point are 550 

measured manually. The same points are selected on the images by the user using the developed 551 

tool, and the measurements are manually entered to the corresponding points (Figure 8-B). 552 

c. The user selects the images that will be used to calculate the wall surfaces and marks the walls. This 553 

step can be realized using one of the methods that we developed, BPE or RSEC. As a result, the 554 

surfaces of the room are generated for each method (Figure 8-C and D). 555 

d. The user the selects the images that will be used to calculate the window and doors, and outlines 556 

these surfaces on the images, as described in the previous section (Figure 8-E). 557 

e. The resulting surface model is then converted to XML format to be read into a 3D modeler or the 558 



30 

 

energy simulation tool.  559 

 560 

Figure 8 A. The sparse 3D model (left) and the densified 3D point cloud (right)surfaces, B. Adjusting scale and pose of the model, 561 

C. The main GUI and image selection for walls, D. Identification of the surfaces on the selected photos for each wall, E. 562 

Identification of the window and door surfaces by selecting a certain area on the desired window (left) or door (right).  563 

 564 
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3.2 Evaluation measures 565 

The comparative analysis between the two 3D models are based on the evaluation measures (Error! 566 

Reference source not found.). The results of these measures facilitate the benchmarking between the 567 

computed models and the ground truth model. The evaluation measures include:  568 

a. The difference between room volumes:  569 

𝑑𝑉(𝐺, 𝐶) = |𝑉𝐺 − 𝑉𝐶|, (28)  

where 𝑑𝑉(𝐺, 𝐶) is the volume difference, 𝑉𝐺 and 𝑉𝑅 are the volume of the ground truth model 570 

and the calculated model respectively.  571 

b. The cumulative Euclidean distances between surface vertices: 572 

 573 

𝑑𝐸(𝐺, 𝐶) = ∑ 𝑑(𝐱𝑖
𝑔

, 𝐱𝑖
𝑐)

𝑛

𝑖=0

, (29)  

where 𝑑𝐸(𝐺, 𝐶) is the total Euclidean distance error between all the vertices in the model 574 

including the boundary surfaces, windows and doors; 𝐺 is the ground truth model; 𝐶 is the 575 

calculated model; n is the total number of measured points; 𝐱𝑖
𝑔

∈ 𝐺 is the 𝑖𝑡ℎ point of the ground 576 

truth model; 𝐱𝑖
𝑐 ∈ 𝐶 is the corresponding point of the computed model where correspondence is 577 

manually determined; and 𝑑(⋅,⋅) is the Euclidean distance between two vectors.  578 

c. The cumulative angle differences between the surface normal vectors of the walls: 579 

𝑑𝜃(𝐺, 𝐶) = ∑|𝐧𝑖
𝑔

− 𝐧𝑖
𝑐|

𝑛

𝑗=0

, (30)  

where 𝑑𝜃(𝐺, 𝐶) is the total angular distance error; 𝑛 is the total number of wall surfaces; 𝐧𝑖
𝑔

 and 580 
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𝐧𝑖
𝑐 respectively are the surface normal of the 𝑖𝑡ℎ ground truth surface and the corresponding 581 

estimated surface.  582 

 583 

Figure 9 The evaluation measures. The blue box (G) and the red box (C) represent the ground truth geometry and the 584 

calculated geometry respectively.  585 

 586 

3.3 Comparative analysis  587 

The first experiment aims to assess the performance of the proposed pipeline subject to different datasets 588 

in constructing precise surface models, focusing particularly the two surface construction methods (BPE 589 

and RSEC). Error! Reference source not found. shows the change in computation time and point cloud 590 

density for eight point-cloud models generated for each setup case. The results depict an expected 591 

decreasing trend in the time cost and point cloud density with decreasing dataset sizes (Figure 11). The 592 

ratio of decrease in computational time from 140p to 35p are 73% and 67.1% for high- and low-593 

resolution images respectively. The ratio of decrease in point cloud density from 140p to 35p are 58.3% 594 

and 58% for high- and low-resolution images respectively.  595 

 596 
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 597 

Figure 10 High resolution point cloud, interior views 598 

 599 

 600 

  

(a) (b) 

Figure 11 (a) Computational time cost for 3D point cloud generation in seconds and (b) 3D point cloud density (the number 601 

of points) for each setup. High resolution is 4288×2848 and low resolution is 2144×1424. The results are obtained 602 

on a PC with Intel® Core™ i7-7700 Processor (3.60GHz 8MB) with a 16 GB DDR4 RAM. 603 

 604 
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The results of the benchmark metrics can be found in Error! Reference source not found.. As 605 

expected, dataset size (the number of images) has the most significant impact on model accuracy. In all 606 

metrics, the magnitude of error consistently increases from high to low number of images. However, 607 

the error difference between high and low number of images is more prominent in the BPE method. In 608 

other words, model precision diminishes more rapidly for BPE as compared to RSEC. For instance, the 609 

absolute difference for ΔV amounts to 5.55 and 5.89 m2 for 𝐵𝑃𝐸ℎ𝑖𝑔ℎ and 𝐵𝑃𝐸𝑙𝑜𝑤, while for 𝑅𝑆𝐸𝐶ℎ𝑖𝑔ℎ 610 

and 𝑅𝑆𝐸𝐶𝑙𝑜𝑤 these values are 2.16 and 3.35 m2 (Error! Reference source not found.-a). Moreover, 611 

models constructed with 140p using 𝑅𝑆𝐸𝐶ℎ𝑖𝑔ℎ and 𝑅𝑆𝐸𝐶𝑙𝑜𝑤 start off with lower precision (𝑑𝑉 = 1.43 612 

m2 and 1.35 m2) as compared to 𝐵𝑃𝐸ℎ𝑖𝑔ℎ  and 𝐵𝑃𝐸𝑙𝑜𝑤 (𝑑𝑉 = 0.07 m2 and 0.83 m2), but outperform 613 

𝐵𝑃𝐸ℎ𝑖𝑔ℎ and 𝐵𝑃𝐸𝑙𝑜𝑤  as the number of images drop to 35. This underlines that the RSEC method can 614 

be more viably and easily used in practical settings. The volume error is most determinant for energy 615 

simulations, as the heating / cooling energy consumption is directly proportional to the room volume. 616 

This places additional emphasis on the selection of the correct method and underlines the importance 617 

of an accurate understanding of the tradeoffs between the use of different datasets.    618 

 619 

  620 
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Table 2 The results of the benchmark metrics. The best values for each error measure are marked boldface. 621 

Metric Method 140p 105p 70p 35p 

Volume difference error 

(𝒅𝑽(𝑮, 𝑪)) 
𝐵𝑃𝐸ℎ𝑖𝑔ℎ 0.07 1.08 3.16 5.62 

𝑅𝑆𝐸𝐶ℎ𝑖𝑔ℎ 1.43 1.80 2.65 3.59 

𝐵𝑃𝐸𝑙𝑜𝑤  0.83 1.55 4.46 6.73 

𝑅𝑆𝐸𝐶𝑙𝑜𝑤 1.35 2.21 3.66 4.70 

Euclidean distance error 

(𝒅𝑬(𝑮, 𝑪)) 
𝐵𝑃𝐸ℎ𝑖𝑔ℎ 3.35 3.15 3.08 4.92 

𝑅𝑆𝐸𝐶ℎ𝑖𝑔ℎ 2.30 2.03 2.11 2.33 

𝐵𝑃𝐸𝑙𝑜𝑤  3.52 3.64 4.24 5.79 

𝑅𝑆𝐸𝐶𝑙𝑜𝑤 2.64 3.04 3.84 4.46 

Angle difference error 

(𝒅𝜽(𝑮, 𝑪)) 
𝐵𝑃𝐸ℎ𝑖𝑔ℎ 6.56 7.52 9.24 13.56 

𝑅𝑆𝐸𝐶ℎ𝑖𝑔ℎ 0.09 0.09 0.09 0.09 

𝐵𝑃𝐸𝑙𝑜𝑤  9.45 9.24 14.74 23.13 

𝑅𝑆𝐸𝐶𝑙𝑜𝑤 3.92 5.62 8.48 8.04 

 622 

The results of 𝑑𝐸 and 𝑑𝜃 (Error! Reference source not found.-b and Error! Reference source not 623 

found.-c) show a similar trend to 𝑑𝐷, such that the magnitude of error increases with lower image 624 

number. The exception to this is the results of 𝑅𝑆𝐸𝐶ℎ𝑖𝑔ℎ, wherein a insignificant change 𝑑𝐸 is observed, 625 

and 𝑑𝜃 is zero. BPE performs poorly in 𝑑𝜃 with 140p for both high- and low-resolution images (𝑑𝜃 = 626 

6.56° and 9.45° respectively), which degrades to intolerable results with 35p (13.56° and 23.13°). In 627 

contrast, 𝑑𝜃 results with 𝑅𝑆𝐸𝐶ℎ𝑖𝑔ℎ are negligible, indicating that the constraints could ensure the 628 

orthogonality of the room geometry.  𝑅𝑆𝐸𝐶𝑙𝑜𝑤, on the other hand, showed poorer performance in 𝑑𝜃 629 

due to the lower resolution point cloud.  630 

  631 
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3.4 Building energy modeling 632 

In this section, we assess the viability of the use of the proposed method in building energy modeling. 633 

In the previous section, we tested the geometric precision of the constructed geometries through metrics 634 

that quantify the magnitude of error between the ground truth geometry and the calculated geometries. 635 

In this section, we comparatively assess the difference in building performance metrics between a 636 

theoretical energy model and the calculated energy model.  637 

140 images were captured each from electro-optic and IR cameras mounted on a FLIR E60. The IR 638 

images had 76,800-pixel (320×240) and the electro-optic images had 3.1-megapixel (2048×1536) 639 

resolution. While capturing images, measurements were taken for U-value calculations, on 24 December 640 

2018 at 6:00am, to achieve a quasi-steady-state condition of heat transfer. The variables in Eq. 27 were 641 

measured as 𝑇𝑎𝑖𝑟,𝑖𝑛= 23.1 C°, 𝑇𝑎𝑖𝑟,𝑜𝑢𝑡= 1.0 C° and 𝑇𝑟𝑒𝑓𝑙  = 27.0 C°.  642 

The images were processed through the pipeline shown in Figure 4. The resulting point cloud had a 643 

density of 403,861, and the calculated V = 164.38 m3. The average U-value of the 0.25 m reinforced 644 

concrete external wall was calculated as 2.0 W/m2-K. This result is consistent with a previous study that 645 

conducts in-situ IR Thermography measurements of the same building wall from the external 646 

environment by [62], which measured the external wall average U-value as 2.07±0,38 W/m2K.  647 

Following, two EnergyPlus models of the classroom was built for the ground truth (theoretical) model 648 

and the newly calculated building model. The theoretical U-value and the newly calculated U-values 649 

was used for the theoretical and calculated models respectively. The surfaces other that external surfaces 650 

were modeled as adiabatic surfaces to exclude heat transfer with other indoor spaces. Other material 651 

thermal characteristics used in both models can be found in Table 3. The windows are modeled as 652 

double-glazed windows (U= 2.6 W/m2K, SHGC = 0.75, VT = 0.8). The standard templates defined in 653 

DesignBuilder for people, lighting and equipment are used as internal loads. The heating setpoint and 654 

setback temperatures are set to 21 C° and 15.5 C° respectively. Infiltration is set to 25ACH at 50Pa. The 655 
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simulation run period was set to 24-30 December, which was the week that the actual measurements 656 

were taken.  657 

Table 3 The thermal characteristics of the opaque materials in the energy models 658 

Element Material  Thickness (mm) 

Theoretical U value  

(W/m2-k) 

Calculated U value  

(W/m2-k) 

Wall Concrete, reinforced 250 3.7 2.0 

Roof Concrete, Reinforced  130 0.577 - (the theoretical 

value is used in 

simulations) 
Waterproofing membrane - 

XPS - CO2 blowing 50 

Roofing felt  4 

Stone chipping 10 

 659 

The performance metrics are as follows: 660 

a. Conductive heat loss through the external wall (QC) occurs as a result of temperature difference 661 

as well as the thermal properties of the wall.   662 

b. Operative temperature (OT) is a metric for thermal comfort, which is defined as the average of 663 

indoor air dry bulb temperature and mean radiant temperature in a room. In cases that a room’s 664 

boundary surfaces are different from the room temperature, significant changes to OT and 665 

occupant discomfort can be observed.  666 

c. Heating energy use (QH) is the amount of energy to maintain the room temperature at the 667 

determine setpoint temperature.  668 

According to the simulation results ( 669 

Table 4, Figure 12), the difference in total heat loss through the external from the theoretical model to 670 

the calculated model is -41.32 %. This decrease is due to the lower heat transfer rate through the concrete 671 

wall in the calculated model. Because of the increased thermal performance of the external wall in the 672 

calculated model, a decrease of -19.17 % in the heating energy use was observed. Hourly results also 673 
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show that the results of the theoretical model are consistently offset from the calculated model. The 674 

maximum difference in heat loss is 0.30 kW (at 02/11, 15:00), operative temperature is 0.88 C° (at 02/09, 675 

13:00), heating energy use is 1.28 kW (at 02/06, 13:00).  676 

 677 

Table 4. The results of the energy simulations for the two models 678 

 Total heating energy 

use (kW) 

Total heat loss through 

external walls (kW) 

Average Operative 

Temperature (C°) 

Simulation with theoretical model 617.56 65.51 18.17 

Simulation with generated model 499.18 38.44         18.37  

% change -19.17 % -41.32 % 1.1 % 

 679 

 680 

  681 
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 682 

 683 

 684 

Figure 12 The hourly results of the energy simulations for the two models 685 
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4 Conclusion  687 

In this paper, we propose a 3D reconstruction pipeline that semi-automatically merges digital 2D visible 688 

images and IR images of a room into a single 3D building energy model. Our approach facilitates the 689 

fast and easy modeling of buildings by also allowing users’ interaction with the 2D images. During 690 

conversion of 3D point clouds into planar surface models, two methods are proposed for the robust 691 

estimation of planes for room surfaces. The first method, BPE, is based on RANSAC and SVD, which 692 

estimates planes corresponding to each wall, ceiling or floor independently. The second method, RSEC, 693 

is an improvement over BPE, exploiting the assumption of rectangularity of the room and considering 694 

surface orthogonality as a second constraint to plane estimation. For surface U-value estimation, an 695 

existing non-destructive method based on infrared thermography [51] was used, and a similar approach 696 

to [32] was developed in the registration of U-values to the 3D point clouds.  697 

The proposed pipeline was evaluated in a classroom, wherein the electro-optic images, thermal images 698 

and the environmental conditions to calculate wall U-value were first captured. Two experiments were 699 

carried out. The first experiment assessed the performance of the pipeline subject to different input 700 

datasets representing different dataset sizes and image resolutions. The second experiment aimed to 701 

assess the viability of the pipeline in building energy modeling through a comparison of simulation 702 

results. The results of the first experiment has shown a consistent change in point data cloud density as 703 

a result of different datasets. While model precision reduces from high to low number of images for all 704 

evaluation measures, this change is more prominent for BPE as compared to RSEC. For all the evaluation 705 

measures, BPE calculates more accurate models for 140p, but RSEC outperforms BPE when the dataset 706 

scale is reduced towards 35p. This indicates RSEC’s robustness to low image quality and reduced sizes 707 

of input datasets. Moreover, although the experiments were conducted on a simple geometry, the RSEC 708 

method is generalizable to rooms of arbitrary complexity, provided that the angular relationships are 709 

previously known and specified. Our RSEC method jointly optimizes the parameters of the planes for 710 
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all surfaces at once. This aim is achieved by assuming some a priori angular difference between the wall 711 

normal vectors such that the overall solution satisfies these orientation constraints together. Provided 712 

that the orientation constraints are suitably adjusted, the RSEC method can be applied to any room with 713 

planar surfaces. 714 

The proposed approach requires user interaction for the identification of building elements to be 715 

modeled. Different from the existing approaches, user interaction in our pipeline in realized using the 716 

2D images through simple mouse clicks. This simple interaction routine does not necessitate any 717 

expertise on complex software tools or digital models that might be difficult to manage for the users. 718 

More specifically, our approach unburdens the user of complex operations performed on 3d point clouds, 719 

and instead allows interaction with easy-to-understand images. Our approach, therefore, can be said to 720 

be advantageous due to its ease of use and practicality. 721 

The extension of our pipeline to buildings requires addressing several issues. The first issue is the 722 

reduction of user interaction for e.g. the definition of doors and windows. This problem is especially 723 

relevant for large-scale settings, wherein the definition of a number of building elements in the model 724 

might exceed the capacity of user interaction. In this case, an object detector (e.g. YOLO [63], RetinaNet 725 

[64]) can be used to detect doors and windows automatically, and the user could only correct mis-726 

detections or errors in localization. The second problem is putting together 3D models of single rooms 727 

for large-scale buildings. Currently, the proposed pipeline currently supports the accurate 3D modeling 728 

of a single room. However, practical contexts that aim to assess whole building performance usually 729 

consider multiple rooms in a building. This issue can be addressed by making use of simultaneous 730 

localization and mapping (SLAM) techniques [65]. In SLAM, a moving camera continuously captures 731 

snapshots from an environment, from adjacent frames 3D scene is reconstructed and “appended” to the 732 

current 3D model of the whole environment by considering the 3D motion of the camera. With such an 733 

approach, the 3D spatial transformation between the rooms of a building can be estimated and therefore, 734 

3D models of single rooms can be stitched together to form a single 3D model. We leave both aspects 735 
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as future work. 736 
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