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A Stochastic Optimization Approach to

Hybrid Processing in Massive MIMO Systems
Georgios K. Papageorgiou, Member, IEEE, Mathini Sellathurai, Senior Member, IEEE,

Konstantinos Ntougias, Constantinos B. Papadias, Fellow, IEEE

Abstract—The high cost and energy consumption of fully
digital massive multiple-input multiple-output (MIMO) systems
has led to hybrid designs with fewer radio frequency (RF)
chains than antennas. In this letter, we propose an efficient
hybrid processing algorithm for point-to-point (P2P) massive
MIMO systems that operate in either rich or poor scattering
environments. The proposed scheme, i.e., hybrid processing via
stochastic approximation with Gaussian smoothing (HPSAGS),
alternates between a digital baseband and an analog RF pre-
coder/combiner computation step. The method achieves state-
of-the-art performance with low computational cost, which is
essential for large MIMO systems.

Index Terms—hybrid processing, massive MIMO, stochastic
approximation, Gaussian smoothing, millimeter waves

I. INTRODUCTION

Massive MIMO has been recognized as one of the key

technologies for future generation communication networks,

due to its high capacity gains [1]. Moreover, it is consid-

ered an integral component of millimeter wave (mmWave)

communications, since the high array gain of massive MIMO

systems can compensate for the large propagation losses in

such frequencies [2], while the small wavelengths facilitate

compact antenna designs [3]. However, implementing large

fully digital transceivers is challenging, due to the requirement

of feeding each antenna element (AE) by its own RF chain,

which results in high cost and energy consumption [4]. In

recent years there has been a vast amount of literature on

hybrid analog-digital designs to this end. Some of the designs

consider switches [5] and other consider load controlled pas-

sive elements [6]. The most popular one, though, employs

phase shifters [4], demonstrating a good trade-off between

performance and cost.

Some hybrid precoder/combiner designs for P2P systems

consider mmWave channels. [7] provides an overview of these

methods. Most of them are computationally demanding—

for instance, in [8] a simplex 1-D iterative local search is

performed per element of the analog precoder. The state-of-

the-art is spatially sparse precoding with orthogonal match-

ing pursuit (SSPOMP) [9]. This algorithm exploits the poor

scattering nature of mmWave channels (sparsity) to achieve

good performance with low complexity. Other schemes con-

sider also rich scattering environments, which are typically

found in systems that operate in sub-6 GHz. Nevertheless,

their computational complexity is typically prohibitive. For

example, the matrix decomposition precoding (MDP) scheme

introduced in [10] demonstrates near-optimal performance in

both rich and poor scattering environments at the cost of

increased computational complexity, due to the requirement

for solving as many quadratic programming tasks as the

number of antennas.

In this letter, we propose an efficient algorithm (in terms

of performance and computational cost) for hybrid processing

that can be used in both rich and poor scattering environ-

ments to fill the aforementioned gaps in the related literature.

The proposed alternating optimization algorithm employs a

convolution smoothing technique [11] followed by a stochas-

tic approximation scheme for the estimation of the phases

(analog RF precoder/combiner) and demonstrates very good

performance with low computational complexity, particularly

in rich scattering environments.

II. SYSTEM MODEL

We consider a P2P communication of a hybrid transmitter

equipped with Nt antennas and Mt RF chains and a hybrid

receiver with Nr antennas and Mr RF chains, where Ns data

streams are supported. The architecture of both systems is

a fully connected one with fewer RF chains than antennas,

where Ns ≤ Mt ≤ Nt and Ns ≤ Mr ≤ Nr. The transmitter

applies a Mt × Ns baseband precoder FB (enabling both

amplitude and phase modifications) and a Nt × Mt analog

precoder FR (enabling phase changes only). Therefore, each

(i, j)-th element of FR satisfies |(FR)i,j | = 1/
√
Nt. Finally,

to meet the total transmit power constraint FB is normalized

to satisfy ‖FRFB‖2F = Ns. Assuming a narrowband block-

fading propagation channel, as in [9], the received signal

y ∈ C
Nr×1 before combining is y = HFRFBs+ n,

where H ∈ CNr×Nt is the normalized channel matrix with

E[‖H‖2F ] = NtNr, s ∈ CNs×1 is the transmitted signal with

E[ssH ] = (P/Ns)INs
, P is the average transmit power, and

n ∼ CN (0, σ2
nINr

) is the i.i.d. noise vector.

Furthermore, we assume that the channel is known at both

the transmitter and the receiver, the processed received signal

after combining is expressed as ỹ = WH
BWH

RHFRFBs+ z,
where z = WH

BWH
Rn, while WR and WB denote the analog

and digital combining matrices, respectively. A fully connected

phase shifter design is considered for the combiner as well,

hence, |(WR)i,j | = 1/
√
Nr. Under Gaussian signaling the

achieved instantaneous spectral efficiency is given by:

R(FR,FB,WR,WB) = log2(|INs
+

P

Ns

R−1
z H̃H̃H |), (1)

where Rz = σ2
nW

H
BWH

RWRWB is the noise covariance

matrix after combining and H̃ = WH
BWH

RHFRFB .
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Scattering Environment:

1) For rich scattering we consider i.i.d. Rayleigh fading chan-

nels. For this type of channels, we consider perfect/imperfect

channel-state-information (PCSI/ICSI), which is modeled via

Ĥ =
√
1− α2H+αE, where 0 ≤ α ≤ 1 and E ∼ CN (0, I).

2) For limited scattering (sparse) we consider the geometric

clustered mmWave model [9] with Nc clusters and Np paths

per cluster:

H =

√
NtNr

NcNp

Nc∑

m=1

Np∑

n=1

βmnar(φmn)at(θmn)
H , (2)

where βmn ∼ CN (0, 1) is the complex channel gain of

the (m,n)-th path, while ar(φmn) denotes the receive array

response vector at the azimuth angle of arrival (AoA) φmn

and at(θmn) denotes the transmit array response vector at the

azimuth angle of departure (AoD) θmn. The mean angles of

each cluster (center) are uniformly distributed and the angles

within each cluster are distributed according to the truncated

Laplace distribution with angular spreads σφ, σθ, respectively.

Finally, we considered uniform linear arrays (ULAs) with

half-wavelength spacing of the N antenna elements (Nt for

the transmitter and Nr for the receiver) in the numerical

section with the array response vector given by ak(ϑ) =
[1, e−jπ sinϑ, . . . , e−jπ sinϑ(N−1)]T /

√
N, k ∈ {r, t}.

III. PRELIMINARIES

A. Hybrid Design

Assuming that rank(H) ≥ Ns, the optimal precoder F∗

and combiner W∗ of a fully digital system can be found

by the singular value decomposition (SVD) of the channel

matrix H = UΛVH , where U and V are Nr × Nr and

Nt×Nt unitary matrices, respectively, and Λ is the an Nr×Nt

diagonal matrix with singular values in decreasing order on its

diagonal. The optimal unconstrained precoder and combiner,

for equal power allocation is given by {F∗,W∗} = {V1,U1},
where V1 and U1 are obtained from V and U by extracting

their first Ns columns, respectively. Joint optimization of

the hybrid precoders {FR,FB} and combiners {WR,WB}
(global minimum of the joint design) is a difficult task due

to the non-convex constraints of the analog RF precoder and

combiner. The adopted approach is to first design the hybrid

precoders, which are sufficiently close to the optimal ones,

i.e., F∗ = V1, by solving the following optimization task:

min
FR,FB

‖F∗ − FRFB‖2F ,

s.t. FR ∈ FR, ‖FRFB‖2F = Ns, (3)

where FR = {FR ∈ CNt×Mt : |(FR)i,j | = 1/
√
Nt}

is the set of matrices with constant-magnitude entries. The

fact that the error of the approximation in (3) is non zero

makes U1 no further optimal. The linear MMSE combiner

that will achieve the maximum spectral efficiency for linear

and separate detection of each data stream is given by:

W∗ =

√
P

Ns

(
P

Ns

HFRFBF
H
BFH

RHH + σ2
nINr

)−1

HFRFB.

(4)

Hence, given the set of optimized precoders and calculating

W∗ from (4), the hybrid combiner can be obtained in a similar

manner as the solution to the following task:

min
WR,WB

‖W∗ −WRWB‖2F , s.t. WR ∈ WR, (5)

where WR is the set of complex Nr × Mt matrices with

constant-magnitude entries.

B. Gaussian Smoothing of Matrix Variable Functions

Definition 1: The random matrix S ∈ RN×M follows a

matrix variate normal distribution (MVND), denoted as S ∼
MNN×M (M,Σ,Ψ), where M ∈ RN×M is its mean, and

Σ ∈ R
N×N , Ψ ∈ R

M×M are positive definite matrices, if

vec(S) ∼ NNM (vec(M),Ψ ⊗ Σ) [12]. The p.d.f. of S is

given by:

p(S|M,Σ,Ψ) =
e−

1

2
tr(Ψ−1(S−M)Σ−1(S−M)T )

√
(2π)NM det(Σ)M det(Ψ)N

. (6)

Let M = ON×M (zero matrix) and Σ = β2IN ,Ψ = γ2IM .

Moreover, considering µ = βγ (6) is written as:

p(S, µ) =
e
− 1

2µ2
‖S‖2

F

µNM
√
(2π)NM

. (7)

The smoothed approximation to the original function f with

weighting Gaussian p.d.f., p(S, µ), can be expressed via their

convolution given by:

fµ(X) = (p ∗ f)(X) =

∫

RN×M

p(S, µ)f(X− S)dS,

=

∫

RN×M

p(S)f(X− µS)dS, (8)

where p(S) = p(S, 1) is the standard MVND (using a change

of variables). From (8), it is directly observed that fµ(X) =
ES [f(X− µS)] , which leads to:

∇Xfµ(X) = ES [∇Xf(X− µS)] , (9)

where i.i.d. samples are obtained from the RN×M space with

the p.d.f. p(S). Therefore, the (one-sided) unbiased gradient

estimator is expressed as ∇Xfµ(X) = 1
L

∑L
ℓ=1∇Xf(X −

µS[ℓ]). Using the change of variables S = −Y in (9),

summing and solving w.r.t. the gradient we obtain the two-

sided estimate of the gradient, given by:

∇Xfµ(X) =
1

2L

L
∑

ℓ=1

[

∇Xf(X+ µS[ℓ]) +∇Xf(X− µS[ℓ])
]

.

(10)

It should be noted that (10) suggests that L samples can be

used for the gradient estimation, as in a mini-batch approach.

However, in this work we only consider its stochastic flavor,

i.e., L = 1 [11].
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IV. HYBRID PRECODING VIA STOCHASTIC

APPROXIMATION WITH GAUSSIAN SMOOTHING

In this section we introduce an iterative scheme for hy-

brid precoding via Stochastic Approximation with Gaussian

Smoothing (HPSAGS), which alternates between the optimiza-

tion of the digital and the analog precoder, as a solution of

(3). The solution of (5) for the combiners is similar and hence

omitted due to space limitations (see Remark 1). Therefore,

we drop the transmitter-receiver indices from the dimensions

and use N,M instead. The scheme is summarized in Alg. 1.

A. Baseband Precoder Update

Given an initial solution F
(0)
R , the set of hybrid precoders at

the k-th iteration is
{
F

(k)
R ,F

(k)
B

}
. Provided we have computed

F
(k)
R the baseband precoder update, F

(k)
B , is given by the

solution of minFB

∥∥∥F∗ − F
(k)
R FB

∥∥∥
2

F
, given in close form:

F
(k)
B =

(
F

(k)H

R F
(k)
R

)−1

F
(k)H

R F∗. (11)

B. Analog Precoder Update via Stochastic Approximation

with Gaussian Smoothing

Next, follows the update of the analog precoder. To this

end, we impose the constant-modulus structure on the matrix.

Considering the non-linear mapping g : RN×M → CN×M

with g(Θ) = ejΘ/
√
N, the precoder matrix is expressed via

the element-wise function FR = g(Θ),Θ ∈ RN×M . Hence,

we seek for Θk+1 minimizing f : RN×M → R with f(Θ) =

‖F∗−g(Θ)F
(k)
B ‖2F , leading to the update F

(k+1)
R = g(Θk+1).

Note that f defines a multiextremal mapping with respect to

Θ. Thus, standard approaches to find a minimizer of f do not

apply here. Nevertheless, the function is smooth with gradient:

∇Θf(Θ) = −2Re{jg(Θ)⊙ (F∗− g(Θ)F
(k)
B )∗F

(k)T

B }, (12)

where Re{·} denotes the real part of the complex input, ⊙ is

Hadamard (element-wise) product and (·)∗ the is the conjugate

of the matrix. The objective of convolution function smoothing

[11] is to represent f as a superposition of a uniextremal

function and other multiextremal ones, which add some noise

to the former, and perform minimization of the smoothed

uniextremal function by filtering out the noise, eventually

leading towards its global minimum. This is performed by

generating a sequence of minimization runs, while reducing

the amount of smoothing at the end of the cycle. For the

smoothing of f we have followed the approach in Section III-B

for the derivative, therefore, we attempt to solve the following

stochastic optimization task at every k-th step (instead of f ):

min
Θ

{fµk
(Θ) = ES [f(Θ− µkS)]} , (13)

where S is sampled from the standard MVND in eq. (7) and

the sequence (µk)k∈N is strictly decreasing with limk→∞ µk =
0. However, in practice, a small finite number K is sufficient

for the approximation. Finally, at the k-th iteration, Stochas-

tic Gradient Descent (SGD) in Alg. 2 is employed for the

phases’ update. The computational efficiency of the algorithm

is expressed in terms of the worst case complexity, which is

O(NM2KTmax). The full code can be found online in [13].

Remark 1: Note that for the design of the combiner the

same algorithm can be used with minor modifications, i.e.,

by replacing F∗ with W∗ in (4) and by neglecting the

normalization of the baseband matrix in row 9 of Alg. 1.

Algorithm 1 Hybrid Precoding via Stochastic Approximation

with Gaussian Smoothing

1: procedure HPSAGS(F∗,Θ0, (µk)
K−1
k=0 , η, Tmax, ǫ)

2: Set k ← 0
3: while k < K do

4: Select µ← µk

5: Compute F
(k)
B

in (11) with F
(k)
R

= g(Θk)

6: Θk+1 ← SGD(F∗,Θk,F
(k)
B

, µ, η, Tmax, ǫ) using Alg. 2
7: Set k ← k + 1
8: Compute F

(K)
R

= g(ΘK) and F
(K)
B

from (11)

9: F
(K)
B
←
√
NsF

(K)
B

/‖F(K)
R

F
(K)
B
‖F

10: Output: F
(K)
R

,F
(K)
B

Algorithm 2 Stochastic Gradient Descent

1: procedure SGD(F∗,Θk ,F
(k)
B

, µ, η, Tmax, ǫ)

2: Set t← 0, εt ←∞ and Θ
(t)
k
← Θk.

3: while t < Tmax and εt > ǫ do

4: Draw one sample from p(S, 1) in (7).

5: Compute the gradients at Θ
(t)
k

+ µS,Θ
(t)
k
− µS using (12)

6: Compute ∇Θfµ(Θ
(t)
k

) in (10) with L = 1

7: Update gradient Θ
(t+1)
k

← Θ
(t)
k
− η∇Θfµ(Θ

(t)
k

)

8: Set εt ← ‖Θ(t+1)
k

−Θ
(t)
k
‖F /‖Θ(t)

k
‖F and t← t+ 1

9: Output: Θk+1.

V. SIMULATION RESULTS

In this section we evaluate the performance of HPSAGS

against a) MDP [10] in Rayleigh fading channels and b) MDP,

SSPOMP [9] in mmWave channels (SSPOMP is not applicable

to rich scattering environments). For the MDP we used the

adaptive phase increment threshold implementation, which is

faster, with parameters δ̄(1) = 0.1 and Ku = 100. For all

experiments HPSAGS’ parameters were set to: Tmax = 100,
ǫ = 10−4 and µk+1 = µk/2, with µ0 = 2.5 and K = 7 using a

random initialization Θ0 ∼ U [−π, π]. For the precoder SGD’s

learning rate is set to η = 10 and for the combiner η = 600
and η = 1600 for the Rayleigh fading and mmWave channels,

respectively. Results are averaged over 100 Monte Carlo runs.

In Fig. 1, we compare the average spectral efficiency (SE)

of HPSAGS and MDP for a 256 × 64 MIMO system with

Mt = Mr = 10 RF chains transmitting Ns = 8 data streams

in i.i.d. Rayleigh fading channels for different signal-to-noise-

ratio (SNR) values. We considered both PCSI (α = 0) and

ICSI with α = 0.6. Fig. 2 demonstrates the performance of

HPSAGS and MDP while we vary the number of antennas

Nt = Nr with Mt = Mr = 8 RF chains transmitting Ns = 8
data streams in i.i.d. Rayleigh fading channels at -10 dB SNR.

It also illustrates the average processing time of these methods.

Finally, in Fig. 3 we compare the average SE of HPSAGS,

SSPOMP, and MDP for different SNR values considering a

64 × 64 MIMO system with Mt = Mr = 10 RF chains in

mmWave channels with Nc = 6, Np = 3, σφ = σθ = 7.5◦.
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Fig. 1. Achieved SE of a 256×64 MIMO system with Mt = Mr = 10 RF
chains transmitting Ns = 8 data streams in i.i.d. Rayleigh fading channels
with PCSI and ICSI with α = 0.6.
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Fig. 2. SE (top) and average processing time (bottom) in log-scale vs the
number of antennas in i.i.d. Rayleigh fading channels where Ns = 8 data
streams are transmitted through Mt = Mr = 8 RF chains.

We observed that when the number of data streams is

slightly smaller than the number of RF units, the proposed

HPSAGS method outperforms MDP for both PCSI and ICSI

in i.i.d. Rayleigh fading channels as well as SSPOMP and

MDP in mmWave channels. On the other hand, when the

number of data streams is equal to the number of RF units,

we notice a small decrease in HPSAGS performance, partic-

ularly in mmWave channels. However, as observed in Fig. 2,

HPSAGS demonstrates dramatically lower average processing

time (two orders of magnitude) compared to MDP. It should

be noted that the complexity of MDP is O(NM3Q), where

Q is a convergence parameter, and therefore it cannot be

directly compared to HPSAGS’s complexity. It should also

be mentioned that the complexity of SSPOMP is O(NM3),
ranking this method first in terms of computational efficiency

in limited scattering environments.

VI. CONCLUSIONS

We presented a novel approach to the task of hybrid

processing in single-user massive MIMO systems. The de-
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Fig. 3. Achieved SE of a 64 × 64 MIMO system with Mt = Mr = 10
RF chains in mmWave channels for Ns = 5 (top) and Ns = 10 (bottom)
supported data streams.

rived algorithm for both rich and poor scattering channels

demonstrates high spectral efficiency with low computational

cost. Future research directions include extending the proposed

algorithm to: a) multi-user setups and b) the frequency-

selectivity case (exploiting the large available bandwidth at

mmWave frequencies).
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