

Heriot-Watt University
Research Gateway

A Complete Characterization of Secure Human-Server
Communication

Citation for published version:
Basin, D, Radomirovi, S & Schläepfer, M 2015, A Complete Characterization of Secure Human-Server
Communication. in 2015 IEEE 28th Computer Security Foundations Symposium. Computer Security
Foundations Symposium, IEEE, pp. 199-213, 28th IEEE Computer Security Foundations Symposium 2015,
Verona, Italy, 13/07/15. https://doi.org/10.1109/CSF.2015.21

Digital Object Identifier (DOI):
10.1109/CSF.2015.21

Link:
Link to publication record in Heriot-Watt Research Portal

Document Version:
Peer reviewed version

Published In:
2015 IEEE 28th Computer Security Foundations Symposium

Publisher Rights Statement:
© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other
uses, in any current or future media, including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works.

General rights
Copyright for the publications made accessible via Heriot-Watt Research Portal is retained by the author(s) and /
or other copyright owners and it is a condition of accessing these publications that users recognise and abide by
the legal requirements associated with these rights.

Take down policy
Heriot-Watt University has made every reasonable effort to ensure that the content in Heriot-Watt Research
Portal complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact open.access@hw.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 21. Apr. 2021

https://doi.org/10.1109/CSF.2015.21
https://doi.org/10.1109/CSF.2015.21
https://researchportal.hw.ac.uk/en/publications/1fdc1d1a-1070-4eb1-9dce-d89028b5302c

A Complete Characterization of Secure
Human-Server Communication

(Full Version)

David Basin Saša Radomirović Michael Schläpfer∗
Institute of Information Security, Department of Computer Science, ETH Zürich

Email: {david.basin, sasa.radomirovic, michael.schlaepfer}@inf.ethz.ch

Abstract—Establishing a secure communication channel be-
tween two parties is a nontrivial problem, especially when one
or both are humans. Unlike computers, humans cannot perform
strong cryptographic operations without supporting technology,
yet this technology may itself be compromised. We introduce a
general communication topology model to facilitate the analysis
of security protocols in this setting. We use it to completely char-
acterize all topologies that allow secure communication between a
human and a remote server via a compromised computer. These
topologies are relevant for a variety of applications, including
online banking and Internet voting. Our characterization can
serve to guide the design of novel solutions for applications and
to quickly exclude proposals that cannot possibly offer secure
communication.

Keywords—Security Ceremonies, Formal Modeling, Security
Protocols

I. INTRODUCTION

Security-critical applications, such as online banking and
Internet voting, rely on a secure communication channel be-
tween a human and a remote communication partner. These
channels are constructed using security protocols that protect
the messages exchanged between the human’s personal com-
puter and the remote system. However, unless the personal
computer’s hardware and software are trustworthy, informa-
tion appearing on its screen may not faithfully represent the
messages communicated with the remote system. Moreover,
the personal computer may leak information to unauthorized
third parties [10], [21]. Securing the last few inches of the
communication channel, namely between the network cable
and the human, is difficult: people need a personal computer
as a communication interface, but do not want to trust it and,
in contrast to computing devices, most people’s computing and
memorizing abilities are insufficient to perform cryptographic
computations. This problem is addressed by supporting tech-
nologies, ranging from simple code sheets [7] to smart cards
and hand-held readers with integrated keypads and displays,
commonly used for online banking [15].

How do we formally model systems where humans, com-
puters, and supporting technologies interact? Most existing
work focuses on particular scenarios, for instance on browser-
based security protocols [12], [13], login procedures [14],
solutions for online banking [27], or Internet voting [23].
A general approach to modeling and reasoning about such
systems are security ceremonies [9]. These extend communi-
cation protocols to include human actors and communication

∗ Supported in part by the Swiss Federal Chancellery.

means that are not considered in conventional security protocol
models. Security ceremonies have not been formally defined,
but they have inspired a variety of formal models with different
focal points, which we discuss later in Section V.

In this paper, we consider the setting of a distributed
algorithm running on nodes communicating over links. We use
traditional terminology and call such a distributed algorithm a
protocol rather than a ceremony. We capture the abstraction
of nodes communicating over links with a simple, intuitive,
graph-theoretic model that we call a communication topology.
We model the protocol execution for a given topology as a
multiset term rewriting system. Our approach differs from
existing approaches in that it largely ignores the interpretation
of what nodes and links are and it focuses instead on their
capabilities and security properties. The result is a simple and
useful model with applications both to protocol verification
and to establishing impossibility results.

Contributions. We introduce a communication topology model
on top of an operational semantics for security protocols. Our
topology model formalizes the environment in which protocols
are executed and allows one to reason about communication
systems at different levels of abstraction. We use the model
to completely characterize necessary and sufficient conditions
for the existence of security protocols that provide secure
channels between a human and a remote server using an
insecure network and a dishonest platform. Necessary con-
ditions are established by impossibility results and sufficient
conditions are proved constructively by providing protocols.
Our characterization is relevant for practical applications such
as online banking and Internet voting. It allows one to quickly
assess whether a particular protocol design and supporting
technology can plausibly offer secure communication. The
characterization can be used to guide the design of novel
solutions for establishing secure channels between humans and
a remote server and we provide examples that illustrate this.

Organization. We introduce our communication topology
model in Section II and the underlying security protocol model
in Section III. We characterize secure human-server commu-
nication in Section IV. We discuss related work in Section V,
and draw conclusions in Section VI. In the Appendices we
give full details on our model and all proofs.

II. COMMUNICATION TOPOLOGY MODEL

We first define a general communication topology model
that formalizes assumptions relative to which a communication

protocol’s security properties are analyzed. Every node in
the topology corresponds to a unique role in the protocol
which specifies the node’s behavior. The topology specifies the
node’s capabilities, initial knowledge, honesty, and available
communication channels. Afterwards we restrict our focus to
a particular class of topologies that is relevant for protocols
where a human securely communicates with a remote server
using a potentially compromised computer.

A. General Communication Topology Model

A communication topology (relative to two sets NodeProp
and LinkProp) is an edge- and vertex-labeled directed graph
(V,E, η, µ), where V is the set of vertices, E ⊆ V × V , and
η and µ are functions assigning labels to vertices and edges
respectively. The set of vertices V represents a protocol’s roles.
For A,B ∈ V , an edge (A,B) ∈ E denotes the existence of a
link from a node representing role A to the node representing
role B. The vertex labeling function η : V → NodeProp
assigns capability and trust assumptions to role names. It in-
dicates, for instance, whether a role is assumed to be executed
by a human and whether the executing agent is assumed to
be honest. The edge labeling function µ : E → LinkProp
assigns channel assumptions to links, for example, whether
channels are insecure, authentic, or confidential. The contents
of NodeProp and LinkProp need not concern us now; we
specify them in Section III, where our formal protocol model
is defined.

We call a sequence of vertices [v1, . . . , vn+1] ∈ V ∗, such
that (vi, vi+1) ∈ E for 1 ≤ i ≤ n, a path from v1 to vn+1 of
length n or simply a path. The path is acyclic if vi 6= vj for
all 1 ≤ i < j ≤ n+ 1. We denote the transitive closure of E
by E+, i.e., (vi, vj) ∈ E+ if there is a path from vi to vj .

Graphical representation. We graphically represent a commu-
nication topology (V,E, η, µ) as follows. Vertices A ∈ V are
drawn as simple, concentric, or dashed circles depending on
the labeling η. To express that a role A ∈ V is assumed
to be executed by a dishonest agent, we draw concentric
circles. A dashed circle indicates that an honest agent executing
the role A has restricted capabilities. Note that our vertex
representation does not distinguish between different types of
restricted capabilities and knowledge. This limitation suffices
for the present paper, since humans are the only agents with
restricted capabilities. Edges e ∈ E are drawn as arrows
connecting the circles and are labeled according to µ. The
edge labels are written next to the arrows representing the
corresponding edges.

Figure 1 shows a communication topology (V,E, η, µ),
with V = {A,B,C,D}. In this example, the role A is assumed
to be executed by an honest restricted agent, and role B is
assumed to be executed by a dishonest agent. The remaining
roles are assumed to be executed by honest, unrestricted
agents. The set of edges E and their labeling can be read
off of Figure 1. For example, (A,B) ∈ E, (A,C) 6∈ E, and
(A,C) ∈ E+. The link from A to D is secure (•−→•) and all
other links are insecure (◦−→◦).

B. Human-Interaction Security Protocols

We now introduce the class of security protocols where hu-
mans intend to securely communicate with a remote server. We

A B C

D

◦−→◦
◦−→◦ ◦−→◦

◦−→◦

◦−→◦•−→•

Honest

Dishonest

Restricted
◦−→◦ Insecure Channel
•−→• Secure Channel

Fig. 1. Communication topology example.

make the following assumptions regarding human capabilities.

Assumption 1. Humans may send, receive, compare, con-
catenate (pair) and select (project) terms. They may generate
random (fresh) values. No restrictions are imposed on human
memory.

Thus, humans are assumed to be able to remember all terms
received on any channel1 and to output any term constructible
from their knowledge using pairing and projection on any
other channel. However, they cannot perform cryptographic
operations without supporting technology.

To motivate the communication topology for human-in-
teraction security protocols, consider protocols that provide
a secure communication channel between a human and a
server. We can model such protocols’ communication topology
by defining two nodes, a human H and server S connected
by a secure channel. However, this is too abstract to reason
about the requirements a protocol must satisfy to provide a
secure channel from the human to the server. A natural step in
making this model more concrete is to assume that the human
cannot directly communicate with the remote server and must
instead use a computing platform P that communicates with
the server over an insecure network. The resulting refined
topology consists of a channel between H and P instead of
H and S and an insecure channel between P and S. If we
assume that the computing platform P is honest, then this
topology represents the well-known problem of establishing
a secure communication channel between two agents over an
insecure network.

Our focus is on the case where the computing platform is
dishonest, i.e., compromised. Achieving secure communication
generally requires that the human has access to a trusted
device D and we model this by including D in the topology.
Examples of such devices are a list of one-time passwords, a
code sheet, or a smart card with a corresponding card reader.
Protocols that establish secure communication between the
human and a remote server under these circumstances are
highly relevant in practice, for example in online banking and
Internet voting. We call such a protocol a Human-Interaction
Security Protocol, or HISP for short, and the corresponding
communication topology a HISP topology.

A HISP topology (formally defined in Section III-B3)
consists of a human H , a server S, and a device D, which
are assumed to be honest, and a computing platform P , which
is assumed to be dishonest. There are no restrictions on the
capabilities or initial knowledge of S, D, and P . However,
H is restricted as stated in Assumption 1. Figure 2 shows the

1 Our possibility results show that humans never need to remember more
than three terms plus the names of communication partners. However, not
placing limits on human memory merely strengthens our impossibility results.

2

H P S

D

•−→•

◦−→◦
◦−→◦

◦−→◦

◦−→◦

◦−→◦

•−→••−→•
◦−→◦ •−→•

Fig. 2. The supergraph of all HISP topologies.

supergraph of all HISP topologies (V,E, η, µ) and indicates
the edge labels. Since we use the same edge labelings in
all HISP topologies, we often omit them from our graphical
representations. Examples of such representations are shown
in Section IV.

III. SECURITY PROTOCOL MODEL

In this section we describe our security protocol model
which constitutes the formal underpinning of our communica-
tion topology model. Our model is based on Tamarin’s [24],
[18] security protocol model, which we call the Tamarin
model. We summarize its main features and several extensions
that we made to support HISPs, such as the notion of commu-
nicating knowledge. We provide full details in Appendix A.
Note that although our extensions are substantial, the Tamarin
tool [18], which performs deduction based on term rewriting,
can still be directly applied to analyze our protocol models.

A. Background

1) Notation: We denote the set of finite sequences of
elements from a set S by S∗. For the sequence s, |s| denotes
its length and we write si to refer to the i-th element of s. We
write a sequence s, with |s| = n, as [s1, . . . , sn] and the empty
sequence as []. We denote the concatenation of two sequences
s and s′ by s · s′. P(S) denotes the powerset of S.

We use the term algebra of the Tamarin model. The term
algebra is denoted by T , its underlying signature by Σ, and the
set of ground terms byM. The signature Σ contains functions
〈 , 〉 for pairing, senc(,) and sdec(,) for symmetric
encryption and decryption, aenc(,) and adec(,) for asym-
metric encryption and decryption, sign(,) and verify(, ,)
for signing messages and verifying signatures, π1() and π2()
for the first and second projection of a pair of terms, h()
for hashing terms, and pk() to represent the public key
corresponding to a given secret key. The function pk() can
be applied to any term t to yield the term pk(t), but t cannot
be inferred from pk(t). Σ contains the two countably infinite,
disjoint sets of fresh and public constants, denoted by Cfresh
and Cpub , respectively. Fresh constants model the generation
of nonces, while public terms represent agent names and other
publicly known values.

2) Multiset Term Rewriting System: We use a labeled mul-
tiset term rewriting system to represent all possible protocol
behaviors. The system states are represented as finite multisets
of facts. Facts are functions over T whose symbols appear
in a signature ΣFact (disjoint from Σ), which is partitioned
into linear and persistent fact symbols. F denotes the set of
facts and G denotes the set of all ground facts, i.e., facts
F(t1, . . . , tn) such that F ∈ ΣFact and ti ∈ M for all
1 ≤ i ≤ n. Linear facts model resources that can only

be consumed once. Persistent facts, prefixed by “!”, model
inexhaustible resources.

State transitions are specified by labeled multiset rewriting
rules. Each such rule is denoted by l

a−→ r with l, a, r ∈ F∗.
The elements in l, a, r are called the rule’s premises, actions,
and conclusions, respectively. The transition rewrites the cur-
rent state by replacing the linear facts in l with the facts in r
and is labeled with the facts in a. The initial system state is
the empty multiset.

A trace tr is a finite sequence of sets of actions tr i ∈ P(G),
for 1 ≤ i ≤ |tr |. The action sets in the trace label the system’s
state transitions that correspond to applying a ground instance
of a rule in a set R. We write a ∈ tr if a ∈ tr i for some
1 ≤ i ≤ |tr |, that is, when the action a occurs in a set of
ground actions in the trace tr . We denote the set of all traces
for the set of rules R by TR(R).

In HISP specifications we partition R into model rules and
protocol specification rules, denoted by RModel and RSpec

respectively. RModel consists of: Rule (1), shown below; a
fixed set of message deduction rules modeling a standard
Dolev-Yao adversary [8]; and our model extensions described
in Section III-B. The rules in RSpec model a given protocol
specification and are described in Section III-C.

The Tamarin rules modeling a Dolev-Yao adversary are
implemented with three facts. The adversary learns all terms
in Out facts and injects messages from his knowledge using In
facts. Terms learned by the adversary are stored as persistent
!K facts, which represent the adversary’s knowledge. The only
rule producing fresh constants and thereby creating Fr facts is

[] −→ [Fr(x)]. (1)

Every fresh constant is produced at most once in a trace.

B. Model Extensions

To connect the communication topology to the underlying
security protocols model, we need to define the node and link
properties, i.e., the sets NodeProp and LinkProp introduced
in Section II-A, in the Tamarin model.

1) Node Properties: Every node in a communication topol-
ogy (V,E, η, µ) is assigned capability and trust assumptions
by the vertex labeling function η : V → NodeProp. We
let NodeProp = P(Σ) × P(T) × {honest,dishonest}. An
agent’s capabilities are defined by its computational abilities
and initial knowledge. The computational capability assump-
tion is specified by a subset of Σ consisting of the function
symbols available to the agent executing the role that is
represented by the node. The initial knowledge assumption
is specified as a subset of T . It indicates the maximal initial
knowledge an agent is allowed to have. An empty set formal-
izes that the agent has no initial knowledge, while T states
that no restrictions are placed on the agent’s initial knowledge
other than that it is a finite set. Note that this finite initial
knowledge requirement is without loss of generality, because
the initial knowledge set is not required to be closed under
term inference. This is a simple way to prevent that an agent’s
initial knowledge contains all fresh constants. The elements in
{honest,dishonest} indicate the trust assumptions associated
with a role. Agents marked dishonest are assumed to be

3

AG := {

[Fr(x)]
Fresh(A,x),Honest(A)−−−−−−−−−−−−−→ [Fresh(A, x)]} (2)

[AgSt(A, step, kn)]
Dishonest(A)−−−−−−−→ [Out(〈A, step, kn〉)], (3)

[In(〈step, kn〉)] Dishonest(A)−−−−−−−→ [AgSt(A, step, kn)], (4)

[In(x)]
Dishonest(A)−−−−−−−→ [Fresh(A, x)] } (5)

Fig. 3. Honest and dishonest agent rules.

controlled by the adversary whereas those marked honest are
assumed to faithfully execute the security protocol.

We model agents explicitly with AgSt(A, step, kn) facts,
where A is a public term representing an agent’s name, step
refers to the role step the agent is in, and kn is the agent’s
knowledge at that step. The set of agents appearing in a
protocol execution, denoted by Agents(tr), is the set of all
public constants A such that AgSt(A, step, kn) appears in
a state of tr for some step and kn . The subset of honest
agents, denoted by Honest(tr), is the set of all agents A such
that Dishonest(A) does not appear in tr . We model agents
with the AG rules shown in Figure 3. Honest agents generate
fresh constants using Rule (2). These agents are marked
with a Honest action. The subsequent rules concern dishonest
agents. These agents are marked with a Dishonest action. By
Rule (3), a dishonest agent may leak all information in its state
to the adversary. Rule (4) models the adversary’s capability
to arbitrarily modify a dishonest agent’s internal state and
Rule (5) models that a dishonest agent’s fresh constants may
be chosen by the adversary.

2) Link Properties: Every link in a communication topol-
ogy (V,E, η, µ) is assigned a channel property, representing an
assumption on the link’s behavior, by the edge labeling func-
tion µ : E → LinkProp. We define four channel properties and
set LinkProp = {◦−→◦, •−→◦, ◦−→•, •−→•}, where the four symbols
denote the properties for insecure, authentic, confidential, and
secure channels, respectively. This notation is adapted from
Maurer and Schmid’s channel calculus [16].

The insecure channel ◦−→◦ is the standard communication
channel between protocol agents in a Dolev-Yao model. We
extend the Dolev-Yao message deduction rules of the Tamarin
model that pertain to insecure channels with a set of channel
rules, CH, shown in Figure 4. CH models how protocol
agents access insecure, authentic, confidential, and secure
(i.e., authentic and confidential) channels. Rules (6) and (7)
represent insecure channels. The sending of messages over an
insecure channel is labeled with the SndI action and produces
an Out fact, which represents the adversary’s capability to
learn messages by eavesdropping. Rule (7) is annotated with
the RcvI action and represents the adversary’s capability to
insert arbitrary messages into insecure channels whenever a
protocol agent intends to receive a message from an insecure
channel (In).

The authentic channel •−→◦ allows the adversary to learn
messages sent on the channel, but prevents the adversary from
modifying the message or its sender. The adversary may, how-
ever, replay transmitted messages on this channel. Rules (8)

CH := {

[SndI(A,B,m)]
SndI(A,B,m)−−−−−−−−→ [Out(〈A,B,m〉)], (6)

[In(〈A,B,m〉)] RcvI(A,B,m)−−−−−−−−→ [RcvI(A,B,m)], (7)

[SndA(A,B,m)]
SndA(A,B,m)−−−−−−−−→ [!Auth(A,m),

Out(〈A,B,m〉)],
(8)

[!Auth(A,m), In(B)]
RcvA(A,B,m)−−−−−−−−→ [RcvA(A,B,m)], (9)

[SndC(A,B,m)]
SndC(A,B,m)−−−−−−−−→ [!Conf(B,m)], (10)

[!Conf(B,m), In(A)]
RcvC(A,B,m)−−−−−−−−→ [RcvC(A,B,m)], (11)

[In(〈A,B,m〉)] RcvC(A,B,m)−−−−−−−−→ [RcvC(A,B,m)], (12)

[SndS(A,B,m)]
SndS(A,B,m)−−−−−−−−→ [!Sec(A,B,m)], (13)

[!Sec(A,B,m)]
RcvS(A,B,m)−−−−−−−−→ [RcvS(A,B,m)] } (14)

Fig. 4. Channel rules.

and (9) model authentic channels. In Rule (8), the adversary
learns the message (Out). The auxiliary !Auth fact ensures
that in Rule (9) the adversary can neither alter the message
nor its sender. The !Auth fact is persistent, which reflects
the adversary’s capability to replay authentically transmitted
messages. The rules are annotated with the corresponding
SndA and RcvA actions.

The confidential channel ◦−→• does not allow the adversary
to learn the message sent on the channel, but allows the ad-
versary to modify the sender and to repeatedly deliver (replay)
the message on the confidential channel. The adversary can
also deliver an arbitrary message from his knowledge (faking
an arbitrary sender) on the confidential channel. Confiden-
tial channels are modeled using Rules (10)–(12). Rule (10)
creates an auxiliary !Conf fact and the adversary does not
learn the message. Rule (11) represents the case where the
adversary passes the (unknown) confidential message m to
the intended recipient, possibly pretending that it stems from
another sender (In). The !Conf fact is persistent, which reflects
the adversary’s capability to replay confidentially transmitted
messages. Rule (12) represents the adversary’s capability to
access the confidential channel to deliver any message from
his knowledge.

Finally, for the secure channel •−→•, the adversary neither
learns the message sent on it, nor can he change the sender,
receiver, or transmitted message, but he may repeatedly deliver
it. Rules (13) and (14) model secure channels. In Rule (13),
the adversary learns nothing and an auxiliary !Sec fact is
generated, which models that the adversary can neither alter the
message nor its sender. Rule (14) models receiving a message
from a secure channel. The !Sec fact is persistent, allowing the
adversary to replay securely transmitted messages.

The protocol rules for the above channels are labeled with
send and receive actions that indicate the type of channel
used, the sender, receiver, and message. This means that in
a protocol execution, the application of a rule that sends a
message on, e.g., the authentic channel •−→◦ is labeled with
a SndA(A,B,m) action, where A is the agent sending the

4

message m and B is the intended recipient. The reception of
a message on the confidential channel ◦−→• is labeled with a
RcvC(A,B,m) action, where A is the apparent sender of the
message m and B the recipient. The send and receive actions
for the insecure and secure channels are SndI, RcvI and SndS,
RcvS, respectively. Thus every message sent or received by an
agent is logged with a corresponding action in the trace.

3) HISP Topology: We can now formally define the HISP
topology.

Definition 1. A HISP topology is a communication topology
(V,E, η, µ), where the set of nodes is V = {H,D, S, P} and
the set of links is E ⊆ {(a, b) ∈ V × V | a 6= b ∧ (a, b) 6=
(H,S) ∧ (a, b) 6= (S,H)}. The vertex labels are defined by
η(H) = (ΣH , T ,honest), η(D) = (Σ, T ,honest), η(S) =
(Σ, T ,honest), and η(P) = (Σ, T ,dishonest), where ΣH =
{〈 , 〉, π1(), π2()} ∪ Cpub ∪ Cfresh . The edge labels are
µ(e) = ◦−→◦, for e ∈ EP , and µ(e) = •−→•, for e ∈ E \ EP ,
where EP = {(a, b) ∈ E | a = P ∨ b = P}.
Example 1. In code voting protocols, such as SureVote [7],
code sheets assigning random codes to ballot options are
distributed by the election authority to the voters prior to an
election. It is assumed that the code sheets are distributed over
a secure channel and that no two voters’ code sheets are the
same. To vote for a candidate, a voter enters the corresponding
code into his untrusted computer. This code is then submitted
to the election authority’s server. Since the election authority
created the code sheets, it can map the code back to the
selected candidate.

The HISP topology (V,E, η, µ) is shown in Figure 5. The
voter H’s dishonest computer P is used to submit a ballot,
i.e., a candidate choice, to the election authority’s server S.
The pre-distributed code sheet is modeled by D. The edge

H P S

D

•−→•

◦−→◦ ◦−→◦

Fig. 5. HISP topology for code voting.

(D,H) ∈ E models the voter’s ability to read information
from the code sheet. This communication is considered to be
secure, for example the voter reads the code sheet in a private
environment.

C. Protocol Specification

Protocol specification rules l
a−→ r ∈ RSpec consist of

setup rules defining the roles’ initial knowledge and honesty
assumptions, and rules defining the message exchange steps.
The setup rules must only use Fr facts in l and AgSt facts in
r. This suffices to specify the initial knowledge of the protocol
roles.

The message exchange rules must contain exactly one
AgSt(A, ,) fact in l, for an agent A, and may contain one or
more Fresh(A,), and Rcv (, A,) facts. They may contain
AgSt(A, ,) and Snd (A, ,) facts in r. This ensures that
these rules can only be used for communication. Additionally,
the message exchange rules may contain actions that are used

to verify security properties. These actions are Learn(A,),
Comm(A,), Secret(A, ,), Authentic(, A,), and Trust()
and will be discussed in Section III-D. These actions must
not, however, appear in the setup rules. Further protocol
specification details are given in Appendix B.

For ease of reading, we represent protocols in an extended
Alice & Bob notation from which the corresponding protocol
rules can be easily obtained. We illustrate this on an example
below. The extension of the Alice & Bob notation contains the
symbols in the LinkProp set. For instance, we write A ◦−→◦
B : m to express that a message m is to be sent from an agent
executing role A to an agent executing role B over an insecure
channel. To express that the message is sent over an authentic
channel, we write A •−→◦ B : m.

To specify the initial knowledge m of an agent ex-
ecuting role A, we write A : knows(m). To express that
the agent generates fresh constants m1, . . . ,mn, we write
A : fresh(m1, . . . ,mn) or A ◦−→◦ B : fresh(m1, . . . ,mn).m
when the generation is followed by a send event.

In general, an Alice & Bob specification leaves room
for different interpretations [4]. When such ambiguities arise,
we indicate both the message sent and the message pattern
expected to be received and separate them with “ / ”, as in
A ◦−→◦ B : m / m′. The variables in m′ determine how the
received message is parsed by an agent executing the role B.

Example 2. In the code voting protocol of Example 1, the
voter H possesses a personal code sheet D. The latter con-
tains the candidate names and corresponding codes, bound
to H and S. The election server S is initialized to know
the distributed code sheet D, the candidate names and the
corresponding codes as well as H to whom the code sheet
was distributed. Voter H first reads the tuple 〈cand , c〉 from the
code sheet, where cand represents the desired candidate and
c the corresponding code. Using his dishonest computer P , H
submits c to S. The election authority maps c back to cand .
The protocol is specified in Alice & Bob notation as shown
in Figure 6. The corresponding protocol rules RCodeV oting

D : knows(〈H,S, cand , c〉)
S : knows(〈H,D, cand , c〉)

D •−→• H : 〈S, cand , c〉
H ◦−→◦ P : c
P ◦−→◦ S : c

Fig. 6. Code Voting Protocol

are shown in Figure 7. The initial knowledge specified in
the Alice & Bob specification is set up in Rule (15). Each
of the three communication steps is specified by two rules:
one for the sender followed by one for the receiver. The rules
consume and produce AgSt facts that contain the agent’s
knowledge and keep track of the agent’s protocol execution.
The term ε denotes that the agent has no knowledge. Quoted
strings, such as ’D0’, are elements of Cpub and are used
to denote the agents’ protocol steps. The rules produce Snd
facts for sending messages and consume Rcv facts for the
received messages. The former are transformed into the latter
by the channel rules shown in Figure 4 and correspond to
the link properties specified in the Alice & Bob specification.
Rules (18) and (21) contain actions that are related to the

5

RCodeVoting =
{

[Fr(cand),Fr(c)] −→ [AgSt(D, ’D0’, 〈H,S, cand , c〉),AgSt(H, ’H0’, ε),AgSt(P, ’P0’, ε),AgSt(S, ’S0’, 〈H,D, cand , c〉)] (15)
[AgSt(D, ’D0’, 〈H,S, cand , c〉)] −→ [SndS(D,H, 〈S, cand , c〉),AgSt(D, ’D1’, 〈H,S, cand , c〉)] (16)
[AgSt(H, ’H0’, ε),RcvS(D,H, 〈S, cand , c〉)] −→ [AgSt(H, ’H1’, 〈D,S, cand , c〉)] (17)

[AgSt(H, ’H1’, 〈D,S, cand , c〉)] [Comm(H,cand),Secret(H,S,cand),Trust(D)]−−−−−−−−−−−−−−−−−−−−−−−−−−−→ [SndI(H,P, c),AgSt(H, ’H2’, 〈D,S, cand , c〉)] (18)

[AgSt(P, ’P0’, ε),RcvI(H,P, c)] −→ [AgSt(P, ’P1’, c)] (19)
[AgSt(P, ’P1’, c)] −→ [SndI(P, S, c),AgSt(P, ’P2’, c)] (20)

[AgSt(S, ’S0’, 〈H,D, cand , c〉),RcvI(P, S, c)]
[Learn(S,cand),Authentic(H,S,cand),Trust(D)]−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ [AgSt(S, ’S1’, 〈H,D, cand , c〉)]

}
(21)

Fig. 7. HISP specification of the code voting protocol.

protocol’s security claims and are defined in Section III-D. The
complete protocol specification in our model is then given by
RCodeV oting ∪RModel, where RModel contains Rule (1), the
sets AG and CH, defined in Section III-B, as well as standard
rules governing the adversary’s message deduction capability,
which are discussed in Appendix A.

D. Channels as Goals

In Section III-B2, we defined communication channels as a
means for agents to communicate. Here we define the notion of
a communication channel as a protocol goal. This provides us
with a formal meaning for statements asserting the existence or
non-existence of protocols providing secure channels in HISP
topologies. The alignment of the semantics of our HISP model
with the semantics of Tamarin is particularly significant here
because it allows us to give manual proofs of impossibility
results and use the Tamarin tool to obtain automatic proofs of
possibility results in the same protocol model. In particular,
our possibility results are proven for unbounded numbers of
interleaved protocol sessions and remain true for all equational
theories supported by Tamarin that include the standard theory
used here.

Our use of channels as goals has three aspects we highlight
here. First, we consider the communication of knowledge rather
than just the transmission of messages over a network. We
formally define this concept in Definition 3 and illustrate its
application thereafter. Second, to avoid protocols that trivially
satisfy security properties by never communicating a useful
message, we require that there exists a trace in which security-
relevant knowledge is communicated from one honest agent
to another. We therefore define the notion of providing a
communication channel. Finally, we consider as a special case
protocols in which a fresh constant generated by the sender
can be communicated. Such protocols are said to provide an
originating communication channel. We use this as a coarse,
but for our purposes sufficient, way to differentiate between
protocols that allow for the communication of an arbitrary
message and protocols that impose limits on the communicated
message, such as that it be a yes/no vote.

We first define what it means for a protocol to provide
a particular type of channel. A channel property is a pair of
predicates (p, q), each of which has domain P(G)∗ × Cpub ×
Cpub × M. A protocol provides a channel with a property
defined by (p, q) if (1) there exists a trace, two honest agents,
and a message, such that p is satisfied and (2) for all traces,

agents, and messages, q is satisfied. The existential requirement
p ensures that the protocol provides some given functionality,
such as communicating messages. The universal requirement
q specifies a safety property, such as confidentiality. In order
to reason about the (im-)possibility of secure communication,
we need both of these requirements.

Definition 2. Protocol R provides a channel with the property
(p, q) if

∃ tr ∈ TR(R), S,R ∈ Honest(tr),m ∈M : p(tr , S,R,m) ∧
∀ tr ∈ TR(R), S,R ∈ Honest(tr),m ∈M : q(tr , S,R,m).

We now define several channel properties, starting with
the properties related to communication of knowledge and
origination and concluding with security properties.

We define what it means for knowledge to be commu-
nicated as follows. We say that an agent S communicates a
message m in a trace, if the action Comm(S,m) appears in
the trace. This merely implies that S knows m, but there is no
guarantee that m is sent on the network. We say that an agent
R learns a message m in a trace, if Learn(R,m) appears in
the trace. This too implies that R knows m, but there is no
guarantee that R did not know m earlier in the trace. To say
that m is communicated from S to R in a trace means that
Comm(S,m) occurs before Learn(R,m) in the trace. In other
words, the agents S and R know m and S performs a protocol
step labeled Comm(S,m) before R performs a protocol step
labeled Learn(R,m).

Definition 3. A message m ∈M is said to be communicated
from an agent S to an agent R in a trace tr , denoted
communicate(tr , S,R,m), if

∃ tr ′, tr ′′ ∈ P(G)∗ : tr = tr ′ · tr ′′

∧ Comm(S,m) ∈ tr ′ ∧ Learn(R,m) ∈ tr ′′.

A communication channel is defined by the property
(pcom, qcom), where

pcom(tr , S,R,m) := communicate(tr , S,R,m),
qcom(tr , S,R,m) := >.

Note that in the definition above, the predicate > (true)
places no additional requirement on the set of traces. We
say that a protocol provides a communication channel if
the protocol satisfies the communication channel property.
Intuitively, this states that the protocol is indeed a functioning

6

communication protocol: it allows an honest agent to com-
municate a message to another honest agent. We will use
analogous terminology for the channel properties to be defined
in the remainder of this section.

Remark 1. For a protocol to provide a communication
channel, there must be a trace in which the Comm(S,m)
and Learn(S,m) actions occur in the given order. These
occurrences may, however, be coincidental. The requirement
that these actions are appropriately ordered in all traces is
given by the authenticity property below (Definition 6). The
purpose of the communication channel property is to ensure
the possibility that a protocol can transfer knowledge from
one agent to another. This weak condition combined with,
e.g., a confidentiality requirement, ensures that a protocol
does not trivially satisfy the confidentiality requirement by not
transferring any knowledge.

Note also that communicating a message from an agent S
to an agent R is more general than transmitting a message
from S to R. If R receives a message m from S, then
S has communicated m to R. However, a message can be
communicated without being sent, as the next example shows.

Example 3. Consider the code voting protocol of Example 2.
The human H communicates the candidate cand to the voting
server S by sending the code c. This is expressed in Rule (18)
of Figure 7 with the actions Comm(H, cand). When this rule
is applied in a protocol execution, the SndI(H,P, c) fact is
produced and the action Comm(H, cand) occurs in the trace.
Thus the message c is sent over the network. When Rule (21)
is applied, the RcvI(P, S, c) fact is consumed, thus the server
receives c from the network and Learn(S, cand) occurs in the
trace, and thus cand is learned by S. This is a valid step
because S has the pair (cand , c) in its knowledge as seen by
the AgSt(S, ’S0’, 〈H,D, cand , c〉) fact, which is consumed by
the same rule.

A protocol where the sender communicates a message by
sending its code limits the sender’s communication channel to
the messages on the code sheet. This is useful for applications
like code voting, but cumbersome for an email application
where senders communicate arbitrary messages. For email,
the shared code sheet would be better used to establish
a shared cryptographic key for securing subsequent email
communication. This, however, is a different protocol and is
not an option for humans who cannot perform encryption
without supporting technology. For this reason we define
the originating channel property to make the fundamental
distinction between protocols that allow for the communication
of a fresh constant generated by the sender and those that do
not. An originating channel represents the ability to generate
an arbitrary message.

Definition 4. We say that a message m originates with an
agent A in a trace tr , if m is a fresh term that A generates,
that is, if Fresh(A,m) ∈ tr . An originating channel is defined
by the property (porig, qorig), where

porig(tr , S,R,m) := Fresh(S,m) ∈ tr ,
qorig(tr , S,R,m) := >.

A protocol providing an originating channel allows agents
to generate fresh constants. The only protocol rule in our model

that has a Fresh(A, x) action is Rule (2). It is also the only
rule that allows honest agents to generate a fresh constant.

Remark 2. Non-originating channels are not limited to public
constants. A channel is non-originating for an agent if the
agent does not generate a fresh constant. This does not exclude
the use of fresh constants that the agent receives from another
agent, reads from code-sheets, or that are in the agent’s initial
knowledge.

We use the originating channel property together with
the communication channel property to model an agent’s
ability to communicate an arbitrary message. For instance, an
email protocol must provide a communication channel and an
originating channel with respect to the same message m.

We say that a protocol combines channel properties (p1, q1)
and (p2, q2) if it satisfies the property (p1 ∧ p2, q1 ∧ q2).
In this case, we combine the adjectives used to describe
the channel properties. For instance, we say that a protocol
provides an originating communication channel if it combines
an originating channel with a communication channel.

Example 4. The code voting protocol of Example 2 provides
a communication channel from H to S because there is a
trace tr satisfying communicate(tr , H, S, cand). The trace is
obtained by applying Rule (1) twice, followed by the Rules (15)
through (21), in that order, except that they are interleaved
with the Channel Rules (13) and (14) to transform the SndS
into the RcvS fact and Rules (6) and (7) to transform the two
SndI into the two RcvI facts. The protocol does not provide
an originating communication channel, because there is no
trace tr for which the communicate(tr , H, S, cand) predicate
holds and in which the Fresh(H, cand) action is produced.

Remark 3. If a message that originates with an agent (e.g.
an email) can be encoded as a sequence of (non-originating)
code-words, then non-originating channels can be used re-
peatedly to transmit the code-words. This means that the
protocol providing a non-originating channel must be executed
repeatedly. The number of repetitions depends on the number
of code-words that are needed the encode the message. In
contrast, a protocol providing an originating channel need
only be executed once to communicate the entire message. We
capture this difference in our symbolic model by distinguishing
between these two types of channels. This distinction is natural
for the HISP setting: For humans, the repeated execution of a
protocol to encode an arbitrary message by many code-words
is theoretically possible, but inconvenient and unrealistic in
practice, except in isolated military contexts.

The communication channel and originating channel prop-
erties defined above concern protocols’ functionality. We now
define confidentiality and authenticity of messages, which are
safety properties. A channel has the confidentiality property if
the adversary does not learn a specified message. To identify
the messages m that should remain confidential in a protocol,
we annotate a protocol rule with a Secret(S,R,m) action.

Definition 5. The confidentiality property is defined by
(pconf, qconf), where

pconf(tr , S,R,m) := Secret(S,R,m) ∈ tr
qconf(tr , S,R,m) := Secret(S,R,m) ∈ tr → !K(m) 6∈ tr .

7

A channel has the authenticity property for the agents
S and R, if whenever R learns m, then m was previously
communicated by S. To specify that a message m should
be authentically communicated in a protocol, we annotate
the protocol rule in which the message is learned with an
Authentic(S,R,m) action.

Definition 6. The authenticity property is defined by
(pauth, qauth), where

pauth(tr , S,R,m) := Authentic(S,R,m) ∈ tr

qauth(tr , S,R,m) := Authentic(S,R,m) ∈ tr

→ communicate(tr , S,R,m).

We call the combination of a confidential channel and an
authentic channel a secure channel.

Remark 4. We will henceforth only consider protocols that
provide a communication channel combined with other channel
properties. We will therefore omit the word “communication”
for the channels provided by the protocols.

Additional Channel Properties. One contribution of our
work is to characterize the settings in which secure communi-
cation channels exist, even when some communication partners
are dishonest. We therefore must explicitly state which roles of
a protocol are assumed to be executed by honest agents. This
is done by annotating a protocol rule with the action Trust(A),
where A is an agent.

We distinguish between the trust assumptions for confiden-
tiality and authenticity and therefore define two properties.

Definition 7. The trust assumption for confidentiality is de-
fined by the property (pctrust, qctrust), where

pctrust(tr , S,R,m) := ∃ T ∈ Cpub , i ∈ {1, . . . , |tr |} :
Trust(T) ∈ tr i ∧ Secret(S,R,m) ∈ tr i
∧ T ∈ Honest(tr)

qctrust(tr , S,R,m) := ∀ T ∈ Cpub , i ∈ {1, . . . , |tr |} :
Trust(T) ∈ tr i ∧ Secret(S,R,m) ∈ tr i
→ T ∈ Honest(tr).

The trust assumption for authenticity is defined by the property
(patrust, qatrust) which is identical to the property (pctrust, qctrust)
except for the action Authentic(S,R,m) in place of the action
Secret(S,R,m).

The two properties state that if a Secret(S,R,m) or
Authentic(S,R,m) action occurs with a Trust(T) action, then
the agent T is honest. We can use these properties to state that
whenever a confidentiality or authenticity claim is made, the
specified intended communication partners are assumed to be
honest. We achieve this statement with a relativization.

We say that a protocol provides the channel property
(p1, q1) relative to the channel property (p2, q2) if it satisfies
the property (p1 ∧ p2, q1 ∨¬q2). That is, both existential pred-
icates must be satisfied, and the universal predicate q2 implies
q1. For instance, the property (pconf ∧ pctrust, qconf ∨¬qctrust)
specifies that a protocol provides a confidential channel if the
sender’s trusted communication partners are honest.

Example 5. To verify that the code voting protocol from Exam-
ple 2 provides a confidential channel from H to S in the HISP

topology shown in Example 1, we must verify the property
(p1, q1) = (pcom ∧ pconf ∧ pctrust, (qcom ∧ qconf)∨¬qctrust).
If we let (p2, q2) denote the analogously defined property for
the authentic channel from H to S, then (p1 ∧ p2, q1 ∧ q2) is
the property that must be satisfied for the protocol to provide
a secure channel.

Note that we must also verify that the protocol is a valid
protocol for the HISP topology. This entails checking that
(1) all channels specified in the protocol RCodeV oting are
present in the HISP topology, (2) that the specified channel
properties match the topology’s corresponding link properties,
and (3) that the specified roles satisfy the corresponding node
properties. These are simple checks. First, in Rule (18) of
the code voting protocol, the action facts Comm(H, cand),
Secret(H,S, cand), and Trust(D) indicate that the agents H ,
S, and D in the protocol specification correspond, respectively,
to the roles H,S, and D in the HISP topology.

We verify that the agents D and H communicate via SndS
and RcvS facts matching the link label µ((D,H)) = •−→•
in the topology. The remaining channel facts (1) are verified
analogously.

To verify the node properties (2), we note that message
derivations specified for H involve only pairing and projection.

Finally, we verify that the trust assumptions (3) are correct:
P is the only agent marked dishonest in the HISP topology,
thus we must verify that agent P in the protocol specification
makes no security claims and is not indicated to be trusted.
Indeed, none of the actions in Rules (18) and (21) contain P
as an argument.

IV. COMPLETE CLASSIFICATION OF HISPS

The objective of a HISP is to provide a secure channel from
the human H to the server S or vice versa. In this section we
provide a complete classification of which HISP topologies
allow such protocols. We first prove two general impossibility
results concerning the establishment of confidential and au-
thentic channels between agents. Then we classify the HISP
topologies for which protocols exist that provide an originating
secure channel. Such protocols permit the communication
partners to securely exchange arbitrary messages. Afterwards,
we consider the general case of HISPs that provide secure
channels.

A. General Impossibility Results

The following two lemmas are impossibility results for
secret establishment when confidential or authentic channels
are available. They can be considered folklore, although, to the
best of our knowledge, there are no published proofs for their
statements. Impossibility results for secret establishment over
insecure channels have been proven by Schmidt et al. [25].

The first lemma states the topological conditions under
which no confidential channel from an honest agent S to an
honest agent R can be created: If one of the agents has no
initial knowledge, then there is no protocol that provides a
confidential channel from S to R, even if S may send messages
via authentic channels to R and R may send messages via
confidential channels to S.

8

Lemma 1. Let τ = (V,E, η, µ) be a communication topol-
ogy where S,R ∈ V are distinct roles such that η(S) =
(ΣS ,KS ,honest), η(R) = (ΣR,KR,honest) and KS = ∅
or KR = ∅. If the following two conditions are satisfied,
then there exists no protocol for τ that provides a confidential
channel from S to R.

1) ∀(a, b) ∈ E : a 6= b ∧ (a = S ∨ b = R)

→ µ(a, b) ∈ {◦−→◦, •−→◦}
2) ∀(a, b) ∈ E : a 6= b ∧ (a = R ∨ b = S)

→ µ(a, b) ∈ {◦−→◦, ◦−→•}

To prove Lemma 1, we map every trace where a message is
confidentially communicated from S to R to a trace where S
performs the same protocol steps, yet the adversary learns the
message by impersonating R to S. This is possible because
the messages from R to S are not authenticated. Thus, S
cannot distinguish between information that R sends to S and
information that the adversary sends. The technical details are
given in Appendix C.

The following lemma states the dual of the preceding
one: If an honest agent S has no access to an authentic (or
secure) channel and another honest agent R has no access to a
confidential (or secure) channel, then there is no protocol that
provides an authentic channel from S to R.

Lemma 2. Let τ = (V,E, η, µ) be a communication topol-
ogy where S,R ∈ V are distinct roles such that η(S) =
(ΣS ,KS ,honest), η(R) = (ΣR,KR,honest) and KS = ∅
or KR = ∅. If the following two conditions are satisfied,
then there exists no protocol for τ that provides an authentic
channel from S to R.

1) ∀(a, b) ∈ E : a 6= b ∧ (a = S ∨ b = R)

→ µ(a, b) ∈ {◦−→◦, ◦−→•}
2) ∀(a, b) ∈ E : a 6= b ∧ (a = R ∨ b = S)

→ µ(a, b) ∈ {◦−→◦, •−→◦}

Note that we can strengthen Lemmas 1 and 2 by relaxing
the empty initial knowledge condition on the agents. Instead
of requiring that one of the two agents S and R has an empty
initial knowledge, it suffices to make a restriction on terms
that contain fresh constants. More precisely, for one of the two
agents, say R, any fresh constant x occurring as a subterm of
a term in the initial knowledge of R is either known to the
adversary or no agent other than R has a term in his initial
knowledge that contains x as a subterm.

B. Originating Secure Channels

For a human to send an arbitrary message securely to a
remote server, we expect that the message must be input into
a trusted device. To prove this, we separate the secure channel
into its confidential and authentic components. There are no
surprises for the confidential channel: A human can send a
confidential message to a server if and only if the human
can input the message into a trusted device and there is a
communication path from the trusted device to the server.

Theorem 1. Let τ = (V,E, η, µ) be a HISP topology. There
exists a protocol for τ that provides an originating confidential
channel from H to S if and only if (H,D) ∈ E and

(D,S) ∈ E+. The following are all minimal graphs satisfying
these conditions.

H P S

D

(a)

H P S

D

(b)

H P S

D

(c)

Perhaps surprisingly, the possibilities for originating au-
thentic channels are less restrictive than for originating con-
fidential channels. As we now show, there are originating
authentic channels from a human to a server, where the human
receives a message from the trusted device instead of inputting
one into it.

Theorem 2. Let τ = (V,E, η, µ) be a HISP topology. Then
there exists a protocol for τ that provides an originating
authentic channel from H to S if and only if (H,S) ∈ E+,
there exists an edge between H and D, and there exists an
edge incoming to D as well as an edge outgoing from D. The
following are all minimal graphs satisfying these conditions.

H P S

D

(a)

H P S

D

(b)

H P S

D

(c)

H P S

D

(d)
H P S

D

(e)

H P S

D

(f)

The difference between the two theorems reflects the
human’s limitations. The human’s ability to generate fresh
messages and compare previously sent messages with received
messages suffices to guarantee originating authenticity for
certain HISP topologies, but it is insufficient for originating
confidentiality. The following example illustrates this differ-
ence.

Example 6. Let τ = (V,E, η, µ) be the HISP topology shown
in Figure 8 for the following scenario. A human user has a
device with a small display. This is represented by (D,H) ∈ E
in τ . The device is connected to and receives input from the
user’s computer, so (P,D) ∈ E. The user sends messages to
the server through the computer, therefore (H,P) ∈ E and
(P, S) ∈ E.

Figure 9 presents a protocol for this HISP topology that
provides an originating authentic, but not confidential, channel
from the human user to the remote server. Namely, the user
inputs his message m into the computer, which forwards it
to the device. The device displays m along with a message
authentication code (represented as a keyed hash) to the
user. The message authentication code is computed by the
device using a symmetric key kDS that the device shares with
the remote server. The user inputs the code mac into the
computer, which sends the message along with the code to the
remote server. The correctness of the originating authenticity
claim is verified by Tamarin. Hence the protocol provides
an originating authentic channel as our model is faithfully
represented by multiset rewriting rules within Tamarin. Since
the graph shown in Figure 8 is not a supergraph of any of
the graphs shown in Theorems 1 and 3, there is no protocol

9

H P S

D

◦−→◦

•−→• ◦−→◦

◦−→◦

Fig. 8. HISP topology.

D : knows(〈H,S, kDS〉)
S : knows(〈H,D, kDS〉)

H ◦−→◦ P : fresh(m).m
P ◦−→◦ D : m
D •−→• H : 〈m,h(〈kDS ,m〉)〉 / 〈m,mac〉
H ◦−→◦ P : mac
P ◦−→◦ S : 〈m,mac〉 / 〈m,h(〈kDS ,m〉)〉

Fig. 9. A protocol providing an originating authentic channel from H to S.

for this topology that provides a confidential channel in either
direction.

Combining Theorems 1 and 2 shows that the topology of
any HISP providing an originating secure channel from H to
S is a supergraph of one of the graphs shown in Theorem 1.

Corollary 1. Let τ = (V,E, η, µ) be a HISP topology.
There exists a protocol for τ that provides an originating
secure channel from H to S if and only if (H,D) ∈ E and
(D,S) ∈ E+.

A similar situation arises in the reverse direction. An
originating confidential channel from the server to the human
requires that the human receives the server’s message from the
trusted device.

Theorem 3. Let τ = (V,E, η, µ) be a HISP topology. There
exists a protocol for τ that provides an originating confidential
channel from S to H if and only if (D,H) ∈ E and
(S,D) ∈ E+. The following are all minimal graphs satisfying
these conditions.

H P S

D

(a)

H P S

D

(b)

H P S

D

(c)

Analogous to Theorem 2, the conditions for a human
to receive an originating authentic message from a server
are weaker than the conditions for originating confidential
messages.

Theorem 4. Let τ = (V,E, η, µ) be a HISP topology. Then
there exists a protocol for τ that provides an originating
authentic channel from S to H if and only if (S,H) ∈ E+,
there exists an edge between H and D, and there exists an
edge incoming to D as well as an edge outgoing from D. The
following are all minimal graphs satisfying these conditions.

H P S

D

(a)

H P S

D

(b)

H P S

D

(c)

H P S

D

(d)

H P S

D

(e)

H P S

D

(f)

The proofs of these theorems are in Appendix E. Theo-
rems 3 and 4 imply Corollary 2, which states that the topology
of any HISP that provides an originating secure channel from
S to H is a supergraph of one of three graphs shown in
Theorem 3.

Corollary 2. Let τ = (V,E, η, µ) be a HISP topology.
There exists a protocol for τ that provides an originating
secure channel from S to H if and only if (D,H) ∈ E and
(S,D) ∈ E+.

Note that a closer inspection of the proofs of the results
in this section shows that all four theorems hold even if no
initial knowledge is given to the human H . This can be seen
by inspecting the protocols used to prove the possibility results.

C. Secure Channels

In this section we classify all HISP topologies for which
there exist protocols that provide secure channels. As op-
posed to HISPs that provide originating secure channels, these
protocols may restrict the communication partners to a pre-
defined set of messages that can be securely exchanged, such
as codewords for candidates in an Internet voting system.
Due to the weaker requirements regarding the origin of the
exchanged messages, the set of HISP topologies for which
protocols exist providing a secure channel is a superset of the
former set of topologies. In the following example we sketch
a HISP that provides a secure channel but not an originating
secure channel.

Example 7. Suppose the human H needs to receive the result
of a medical test from a testing facility S. As this information is
sensitive, the human’s computing platform P must not learn
or modify this information. There are only few possible test
outcomes and the result can therefore be communicated to H
over a non-originating channel. To this end, H generates for
each possible outcome a random code word. Then H uses a
trusted device D to securely transmit the outcome/code word
pairs to S. Once the test result is available, S sends to H
via P the code word corresponding to the test result. Thus P
receives a code word, but does not learn the corresponding
test result. Since P does not know the other code words, it
cannot change the result. The channel is non-originating, since
S cannot communicate an arbitrary message to H , but only
the code words selected by H . This initial sketch of this HISP
can now be specified in detail and verified with Tamarin.

This example illustrates how our topology model and
characterization can systematically guide us to HISPs. We
discuss this design process in Example 8 after presenting the
characterization of the available HISP topologies.

We now classify all HISPs with respect to protocols pro-
viding secure channels from H to S and vice versa. We first
consider the case where H has no initial knowledge and then
discuss shared knowledge. Our main results are stated in the
following two theorems. Theorem 5 shows the four minimal

10

Condition Authentic Confidential

(D,H) 6∈ E

∧(H,D) 6∈ E

no, by
Lemma 3

no, by
Lemma 3

(D,H) 6∈ E

∧(H,D) ∈ E

∧(D,S) 6∈ E+

no, by
Lemma 4

no, by
Lemma 4

(D,H) 6∈ E

∧(H,D) ∈ E

∧(D,S) ∈ E+

yes, by
Lemma 6

yes, by
Lemma 6

(D,H) ∈ E
yes, by

Lemma 8
yes, by

Lemma 8

TABLE I. CLASSIFICATION OF ALL HISP TOPOLOGIES THAT
CONTAIN A PATH FROM H TO S .

Condition Authentic Confidential

(D,H) 6∈ E

∧(H,D) 6∈ E

no, by
Lemma 3

no, by
Lemma 3

(D,H) 6∈ E

∧(H,D) ∈ E

∧(D,H) 6∈ E+

no, by
Lemma 5

no, by
Lemma 5

(D,H) 6∈ E

∧(H,D) ∈ E

∧(D,H) ∈ E+

yes, by
Lemma 9

iff (H,S) ∈ E+

by Lemma 10

(D,H) ∈ E
yes, by

Lemma 7
yes, by

Lemma 7

TABLE II. CLASSIFICATION OF ALL HISP TOPOLOGIES THAT
CONTAIN A PATH FROM S TO H .

HISP topologies for which a protocol exists that provides a
secure channel from a human H to a server S.

Theorem 5. Let τ = (V,E, η, µ) be a HISP topology where
KH = ∅. Then there is a protocol for τ that provides a secure
channel from H to S if and only if τ either contains an edge
from D to H and a path from H to S or contains an edge
from H to D and a path from D to S. All minimal graphs
satisfying these conditions are shown below.

H P S

D

(a)

H P S

D

(b)

H P S

D

(c)

H P S

D

(d)

Proof: We prove the theorem by case distinction. Table I
classifies all HISP topologies that contain a path from H
to S. For all other topologies, no protocol that provides an
authentic, confidential, or secure channel from H to S can
exist, because no information can be communicated from H
to S. The cells state whether protocols providing authentic or
confidential channels from H to S exist under the conditions
shown in the first column. These statements are proven by the
lemmas referenced in the table, whose statements and proofs
are given in Appendices C and D.

Theorem 6 shows the seven minimal HISP topologies for
which a protocol exists that provides a secure channel from a
server S to a human H . Its proof is analogous to the proof
of Theorem 5 and follows from Table II and the lemmas
referenced therein.

Theorem 6. Let τ = (V,E, η, µ) be a HISP topology where
KH = ∅. Then there is a protocol for τ that provides a secure
channel from S to H if and only if τ either contains an edge
from D to H and a path from S to H or τ contains an edge
from H to D and a path from S to itself that includes D and

H . All minimal graphs satisfying these conditions are shown
below.

H P S

D

(a)

H P S

D

(b)

H P S

D

(c)

H P S

D

(d)
H P S

D

(e)

H P S

D

(f)

H P S

D

(g)

In the following example, we show how the minimal
topologies of Theorem 6 can guide the design of a protocol
that provides a secure channel from S to H .

Example 8. We return to the scenario of Example 7 where
medical test results should be securely communicated from S
to H . We are interested in a protocol where H can suggest
code words to be used for the test results. It follows from our
characterization that this requires a path from H to S and
excludes protocols based on the topologies (a)–(c).

Topology (d) suggests a protocol where H enters out-
come/code word pairs into a device D that is connected to
P . The code words are signed and encrypted by D and sent
to S via P . The code word corresponding to the test result is
sent from S to P , which displays it to H .

Topology (e) has the simplest protocol flow. If we assume
that postal mail is secure and that the medical test is a mail-
in test, then the topology suggests that D could be a paper
form provided with the test kit. The human fills in the form
with code words next to the possible test outcomes and sends
it with the kit to the testing facility. The resulting code word
is communicated back to the human as above.

Topologies (f) and (g) apply in a scenario where the
testing facility provides electronic data, but does not operate
a download server. The protocol starts identically to the one
outlined for topology (d). The results are sent back from S to
D via an out-of-band channel and are then displayed on P .

Note that Theorems 5 and 6 assume that the human H
has no initial knowledge. This may appear rather strong as, in
reality, humans know many things including PINs and pass-
words. The following theorem states the simple topological
condition for which HISPs providing secure channels exist
under the assumption that there are secret terms in the initial
knowledge of H and S. The only condition is that there exists
a communication path.

Theorem 7. Let τ = (V,E, η, µ) be a HISP topology. If H
and S share two secret fresh constants and there is a path
from H to S (from S to H) in τ then there exists a protocol
providing a secure channel from H to S (from S to H).

To see why this theorem is true, suppose that H and S
have the term 〈x, y〉 in their initial knowledge, where x and y
are fresh constants, not known to the dishonest agent P . Then
H sends x to securely communicate y to S. Such protocols are
of marginal interest in practice. In particular, x is a term that
can be used only once, and which a human would typically
read off of a code sheet. But code sheets are modeled in HISPs

11

as a supporting technology D and reading the code sheet is
represented by the edge (D,H).

V. RELATED WORK

Security ceremonies were informally introduced by Elli-
son [9], [26] as a generalization of security protocols. They
have given rise to several formal models that we discuss
below. Our model is both more abstract and more precise than
Ellison’s description of security ceremonies.

Bella and Coles-Kemp extend security ceremonies with
socio-technical elements such as a human agent’s belief system
and cultural values [1], [2]. They propose modeling security
ceremonies using five layers: (1) the security of the protocol
executed by the computers of the communicating partners; (2)
the inter-process communication of the operating system; (3)
human-computer interaction; (4) the user’s state of mind; and
(5) the influence of society on individuals. In [2], they formal-
ize layer (3) and give a case study verifying a user’s confidence
in the privacy assurance offered by a service provider in an
example ceremony. In contrast to Bella and Coles-Kemp’s
work, we prove general results about secure communication
scenarios that involve a human and his compromised computer.

Meadows and Pavlovic propose a logic of networks in-
volving humans, devices, and computers. They analyze various
authentication protocols [20] with respect to claimed security
guarantees, but they do not provide a formal attacker model.
Their formalism is comprehensive, but complex. In subsequent
work, they extend their logic to a “logic of moves” and use it to
analyze physical airport security procedures [17]. Similarly to
Meadows and Pavlovic, we provide a graphical model for the
communication topologies of security ceremonies. However,
our abstraction is simpler while supporting the modeling of the
communication topologies of security ceremonies in arbitrary
detail. The level of abstraction we use is both intuitive to
understand and straightforward to verify with existing protocol
verification tools. Moreover, we provide a comprehensive
formal attacker model for the verification of security properties
of protocols involving humans, devices, and computers.

Carlos et al. sketch a method to formalize human knowl-
edge distribution in security ceremonies [5]. In subsequent
work [6], they consider an adversary that is weaker than the
standard Dolev-Yao adversary in order to verify a Bluetooth
pairing ceremony under realistic conditions. Their results are,
however, specific to Bluetooth pairing ceremonies.

Other related research areas address the secure platform
problem [22], the problem of untrusted terminals [3], and
trusted paths [11], [28]. The first two deal with the problem of
ensuring that the user’s computing platform faithfully executes
a security protocol and does not leak confidential information
to any unintended third party. The third is the problem of
providing secure channels from an input device to a trusted
application and onward to an output device and focuses on
implementation details at the system level.

Regarding our formalization of insecure, authentic, and
confidential channels, Mödersheim and Viganò provide a se-
curity protocol model [19] based on abstract channels as
assumptions and goals. Their ideal channel model is related
to our channel rules in that it provides an abstract notation

for sending messages via authentic and confidential channels.
Whereas Mödersheim and Viganò implement their abstract
channels using asymmetric cryptography, our channel rules
directly specify the adversary’s interaction with the abstract
channels.

VI. CONCLUSIONS

We have introduced a formal model for security protocols
operating in an environment with humans, computers, and de-
vices as actors. The salient feature of our model is the commu-
nication topology, which is a labeled graph whose vertices and
edges represent the actors and their communication channels.
The vertex labeling represents the assumptions made about
the actors’ initial knowledge, computational capabilities, and
honesty. The edge labeling assigns channel assumptions (such
as being confidential, authentic, or insecure) to communication
links. These assumptions determine whether secure commu-
nication is possible between two nodes in the topology. We
have demonstrated the usefulness of our model by completely
characterizing the necessary and sufficient conditions for the
existence of HISPs, which is the class of security protocols
where a human securely communicates with a remote server
while using a compromised computer platform. Our model is
supported by Tamarin [18], a security protocol verification tool
and our examples show applications of our modeling approach
and its tool support.

Our characterization of HISPs answers the question of
which secure or insecure communication channels must be
available to establish a secure communication channel between
a human and a remote server. There are several related
questions that could be posed and our work paves the way
for finding their answers. For instance, we could distinguish
between different types of trusted devices, in terms of cost,
sophistication (paper versus smart cards), or levels of trust
that depend on whether secrets must be stored on the device.
We could also consider a wider variety of channel properties,
for example, what if the channel between human and trusted
device is authentic, but not confidential and the adversary
cannot replay messages on the channel? Furthermore, there are
different communication topologies that would benefit from a
similar analysis. An example is the problem of distributing
cryptographic keys and firmware updates to the large variety
of smart items that form the “Internet of Things”.

REFERENCES

[1] G. Bella and L. Coles-Kemp. Seeing the full picture: the case for
extending security ceremony analysis. In Proceedings of 9th Australian
Information Security Management Conference, pages 49–55, 2011.

[2] G. Bella and L. Coles-Kemp. Layered analysis of security ceremonies.
In D. Gritzalis, S. Furnell, and M. Theoharidou, editors, Information
Security and Privacy Research, volume 376 of IFIP Advances in
Information and Communication Technology, pages 273–286. Springer,
2012.

[3] I. Berta. Mitigating the attacks of malicious terminals. PhD thesis,
Budapest University of Technology and Economics, 2005.

[4] C. Caleiro, L. Viganò, and D. A. Basin. On the semantics of Alice &
Bob specifications of security protocols. Theor. Comput. Sci., 367(1-
2):88–122, 2006.

[5] M. C. Carlos, J. E. Martina, G. Price, and R. F. Custódio. A proposed
framework for analysing security ceremonies. In P. Samarati, W. Lou,
and J. Zhou, editors, SECRYPT 2012 - Proceedings of the International
Conference on Security and Cryptography, pages 440–445. SciTePress,
2012.

12

[6] M. C. Carlos, J. E. Martina, G. Price, and R. F. Custódio. An updated
threat model for security ceremonies. In 28th Symposium on Applied
Computing, pages 1836–1843. ACM, 2013.

[7] D. Chaum. SureVote: Technical overview. In Proceedings of the
workshop on trustworthy elections (WOTE’01), 2001.

[8] D. Dolev and A. Yao. On the security of public key protocols.
Information Theory, IEEE Transactions on, 29(2):198–208, 1983.

[9] C. M. Ellison. Ceremony design and analysis. IACR Cryptology ePrint
Archive, 2007:399, 2007.

[10] A. P. Felt, M. Finifter, E. Chin, S. Hanna, and D. Wagner. A survey of
mobile malware in the wild. In X. Jiang, A. Bhattacharya, P. Dasgupta,
and W. Enck, editors, SPSM’11, Proceedings of the 1st ACM Workshop
Security and Privacy in Smartphones and Mobile Devices, pages 3–14.
ACM, 2011.

[11] A. Filyanov, J. M. McCuney, A.-R. Sadeghiz, and M. Winandy. Uni-
directional trusted path: Transaction confirmation on just one device. In
IEEE/IFIP 41st Intl. Conf. on Dependable Systems & Networks (DSN),
pages 1–12. IEEE, 2011.

[12] S. Gajek. A universally composable framework for the analysis of
browser-based security protocols. In J. Baek, F. Bao, K. Chen, and
X. Lai, editors, Provable Security, volume 5324 of LNCS, pages 283–
297. Springer, 2008.

[13] T. Groß, B. Pfitzmann, and A.-R. Sadeghi. Browser model for security
analysis of browser-based protocols. In S. Vimercati, P. Syverson, and
D. Gollmann, editors, Computer Security – ESORICS 2005, volume
3679 of LNCS, pages 489–508. Springer, 2005.

[14] A. Herzberg and R. Margulies. Forcing Johnny to login safely. In
V. Atluri and C. Diaz, editors, Computer Security – ESORICS 2011,
volume 6879 of LNCS, pages 452–471. Springer, 2011.

[15] A. Hiltgen, T. Kramp, and T. Weigold. Secure internet banking
authentication. Security & Privacy, IEEE, 4(2):21–29, 2006.

[16] U. Maurer and P. Schmid. A calculus for secure channel establishment
in open networks. In D. Gollmann, editor, Computer Security –
ESORICS 94, volume 875, pages 173–192. Springer, 1994.

[17] C. Meadows and D. Pavlovic. Formalizing physical security procedures.
In A. Jøsang, P. Samarati, and M. Petrocchi, editors, Security and Trust
Management, volume 7783 of LNCS, pages 193–208. Springer, 2013.

[18] S. Meier, B. Schmidt, C. Cremers, and D. Basin. The TAMARIN
prover for the symbolic analysis of security protocols. In N. Sharygina
and H. Veith, editors, 25th International Conference on Computer
Aided Verification (CAV 2013), volume 8044 of LNCS, pages 696–701.
Springer, July 2013.

[19] S. Mödersheim and L. Viganò. Secure pseudonymous channels. In
M. Backes and P. Ning, editors, Computer Security – ESORICS 2009,
volume 5789 of LNCS, pages 337–354. Springer, 2009.

[20] D. Pavlovic and C. Meadows. Actor-network procedures. In R. Ramanu-
jam and S. Ramaswamy, editors, Distributed Computing and Internet
Technology, volume 7154 of LNCS, pages 7–26. Springer, 2012.

[21] M. Polychronakis, P. Mavrommatis, and N. Provos. Ghost turns zombie:
Exploring the life cycle of web-based malware. In Proceedings of the
1st Usenix Workshop on Large-Scale Exploits and Emergent Threats,
LEET’08, page 8. USENIX Association, 2008.

[22] R. Rivest. Perspective on Electronic voting, volume 2339 of LNCS,
chapter “The Business of Electronic Voting (Panel)”, pages 243–268.
Springer, 2001.

[23] M. Schläpfer and M. Volkamer. The secure platform problem: Taxon-
omy and analysis of existing proposals to address this problem. In
6th International Conference on Theory and Practice of Electronic
Governance, ICEGOV ’12, pages 410–418. ACM, 2012.

[24] B. Schmidt, S. Meier, C. Cremers, and D. Basin. Automated analysis
of Diffie–Hellman protocols and advanced security properties. In 25th
IEEE Computer Security Foundations Symposium, CSF 2012, pages
78–94. IEEE, 2012.

[25] B. Schmidt, P. Schaller, and D. Basin. Impossibility results for secret
establishment. In Proceedings of the 23rd IEEE Computer Security
Foundations Symposium, CSF 2010, pages 261–273. IEEE Computer
Society, 2010.

[26] UPnP Security Working Group. UPnPTM security ceremonies, October
2003.

[27] T. Weigold, T. Kramp, R. Hermann, F. Höring, P. Buhler, and
M. Baentsch. The Zurich Trusted Information Channel–an efficient
defence against man-in-the-middle and malicious software attacks.
In Trusted Computing-Challenges and Applications, volume 4968 of
LNCS, pages 75–91. Springer, 2008.

[28] Z. Zhou, V. D. Gligor, J. Newsome, and J. M. McCune. Building
verifiable trusted path on commodity x86 computers. In Security and
Privacy (S&P), 2012 IEEE Symposium on, pages 616–630. IEEE, 2012.

APPENDIX

The first two sections give details on the Tamarin
model [24] and our extensions. The remaining two sections
give proof details.

A. Tamarin Model Details

In this appendix we give full details of the Tamarin model.
For ease of reading, we repeat a few definitions made in the
main text.

a) Notation: The superscript b (bag) is used to denote
operations on multisets such as ∪b for multiset-union. Sb

denotes the set of finite multisets with elements from S. For a
sequence s, mset(s) denotes the multiset of its elements and
set(s) the corresponding set. A set S is also a multiset and
for a multiset M , set(M) denotes the corresponding set.

b) Term Algebra: The term algebra is order-sorted with
the sort msg and its two incomparable subsorts fresh and pub.
There are two countably infinite sets Cfresh and Cpub of fresh
and public constants, respectively, and we denote their union
by C. Let S := {fresh, pub,msg}. For each sort s ∈ S, there
is a countably infinite set Vs of variables. We write x:s to
denote that x ∈ Vs and we let V :=

⋃
s∈S
Vs.

A signature Σ is a set of function symbols, where each
function symbol is associated with an arity. The subset of n-ary
function symbols is denoted by Σn and we set Σ0 = Cfresh ∪
Cpub . Messages are elements of the term algebra T = T (Σ,V),
and ground terms are elements of M = T (Σ, ∅).

In this paper we assume that Σ = Σ0 ∪ Σ1 ∪ Σ2 ∪ Σ3,
where

Σ1 = {π1(), π2(), h(), pk()}
Σ2 = {〈 , 〉, senc(,), sdec(,),

aenc(,), adec(,), sign(,)},
Σ3 = {verify(, ,)}.

For i > 0, all functions in Σi are of sort msg× · · · ×msg →
msg. The function 〈 , 〉 represents the pairing of terms, and
π1 and π2 are the first and second projections, respectively.
The functions senc(,) and aenc(,) represent symmetric
and asymmetric encryption and sdec(,) and adec(,)
represent symmetric and asymmetric decryption, respectively.
The functions sign(,) and verify(, ,) represent signing
and verification of signatures. h() represents a hash function
and pk() corresponds to the public key for a given secret key.
For a, b ∈ T , true ∈ Cpub , we let E be the following set of
equations over Σ:

{ π1(〈a, b〉) = a, π2(〈a, b〉) = b,
sdec(senc(a, b), b) = a, adec(aenc(a,pk(b)), b) = a,
verify(sign(a, b), a,pk(b)) = true }.

13

The equational theory Eq(Σ, E) is the smallest congruence
containing all instances of the equations of E over Σ.

A position p is a (possibly empty) sequence of positive
natural numbers. The subterm t|p of t at position p is induc-
tively defined by t if p is empty and by (ti)|p′ if p = [i] · p′
and t = f(t1, . . . , tn) for f ∈ Σn and 1 ≤ i ≤ n. The set of
all subterms of t is denoted by St(t). The set of variables of
t is denoted by vars(t) := St(t) ∩ V .

c) Multiset term rewriting system: The Tamarin model
uses a multiset term rewriting system to represent all possible
protocol behaviors. The system states are represented as finite
multisets of facts. Facts are functions over T whose symbols
appear in the signature ΣFact (disjoint from Σ) defined below.
The set F consists of all facts F(t1, . . . , tn) such that ti ∈ T
and F ∈ Σn

Fact. The set of all ground facts, i.e., facts
F(t1, . . . , tn) such that ti ∈M, is denoted by G. Facts can be
linear or persistent. Linear facts model resources that can only
be consumed once, whereas persistent facts, prefixed by “!”,
model inexhaustible resources that can be consumed arbitrarily
often.

State transitions are effected by labeled multiset rewriting
rules. Each such rule is denoted by l

a−→ r with l, a, r ∈ F∗.
The elements in l, a, r are called the rule’s premises, actions,
and conclusions, respectively.

The labeled transition relation →R ⊆ Gb ×P(G)×Gb for
a set of multiset rewriting rules R is defined as:

l
a−→ r ∈ ginsts(R)

lfacts(l) ⊆b S pfacts(l) ⊆ set(S)

S
set(a)−→ R (S \b lfacts(l)) ∪b mset(r)

, (22)

where lfacts(l) is the multiset of all linear facts in l, pfacts(l)
is the set of all persistent facts in l, and ginsts(R) consists
of all ground instances of rules in R. Formally, ginsts(R) is
the set of all rules l a−→ r for which there exists a rule l′ a′

−→
r′ ∈ R with |l′| = |l|, |a′| = |a|, |r′| = |r|, and a substitution
σ : F → G such that ∀i ∈ {1, . . . , |l|} , j ∈ {1, . . . , |a|} , k ∈
{1, . . . , |r|} : σ(l′i) = li ∧ σ(a′j) = aj ∧ σ(r′k) = rk. The
transition rewrites the current state by replacing the facts in l
with the facts in r and is labeled with the facts in a.

For a set of multiset rewriting rulesR, the system behaviors
are given by the set of traces TR(R), defined as:

TR(R) := { [a1, . . . , an] | ∃S1, . . . , Sn ∈ Gb :

∅b a1−→R · · ·
an−→R Sn

∧∀i 6= j∀x : (Si+1 \b Si) = {Fr(x)} ⇒
(Sj+1 \b Sj) 6= {Fr(x)}}.

(23)
Fr facts may only be generated by a distinguished model-
specific rule (to be discussed in the next subsection). Thus,
the second conjunct ensures that each instance of the rule for
generating Fr facts is used at most once in a trace and therefore
each consumer of a Fr fact obtains a different fresh constant.
Hence, a trace tr ∈ TR(R) is a finite sequence of sets of
actions tr i ∈ P(G), i ∈ {1, . . . , |tr |}. We write b ∈ tr if
b ∈ tr i for some 1 ≤ i ≤ |tr |, that is, when the action b
occurs in a set of ground actions in the trace tr .

d) Adversary model: The network is controlled by a
Dolev-Yao adversary [8]. The adversary chooses whether to
deliver each message. He eavesdrops on, injects, and modifies
messages on channels. However, he can neither eavesdrop on
confidential (or secure) channels nor inject or modify messages
on authentic (or secure) channels. The message deduction rules
inMD represent his capability to receive, construct, and send
messages in a protocol execution:

MD := {[Out(x)]
!K(x)−−−→ [!K(x)], (24)

[!K(x)]
!K(x)−−−→ [In(x)], (25)

[]
!K(x:pub)−−−−−−→ [!K(x:pub)], (26)

[Fr(x)]
!K(x)−−−→ [!K(x)]} (27)

∪ {[!K(x1), . . . , !K(xk)]
!K(f(x1,...,xn))−−−−−−−−−−→ (28)

[!K(f(x1, . . . , xn))] | f ∈ Σn ∧ n > 0 }.

The !K fact appearing in all rules of MD is used to store and
observe the adversary’s knowledge in a trace and plays a role in
specifying secrecy properties.2 Rule (24) allows the adversary
to learn all terms that are produced with Out facts and rule (25)
allows the adversary to input any term in his knowledge into
an In fact. The Rules (26) and (27) represent the adversary’s
capabilities to learn public and freshly generated constants,
respectively. The set of Rules (28) allow the adversary to apply
any function in Σn, for n > 0, to known messages.

B. Extended Model Details

We provide here additional details on our model extensions.

The following definition summarizes all facts used in the
model.

ΣFact :=Σ1
Fact ∪ Σ2

Fact ∪ Σ3
Fact, where

Σ1
Fact := {Fr,Out, In, !K,Honest,Dishonest,Trust} ,

Σ2
Fact := {!Auth, !Conf,Fresh,Comm, Learn} ,

Σ3
Fact := {SndI,RcvI,SndA,RcvA,SndC,RcvC,SndS,RcvS}

∪ {!Sec,Secret,Authentic,AgSt} .

The set of all facts F is therefore

F := {f(t1, . . . , tn) | f ∈ Σn
Facts ∧ t1, . . . , tn ∈ T } .

We use the action Honest(A) to label an agent A honest and
Dishonest(A) to label the agent dishonest in a trace. Once an
agent is labeled honest, it cannot become dishonest or vice-
versa. In particular, if an agent A is labeled honest, then a
rule that contains the action Dishonest(A) cannot be applied.
This is enforced in Tamarin with an axiom. Trust is used to
label agents that are assumed to be honest for the purpose of
security properties, see Definition 7. These are agents whose
roles are marked honest in the communication topology.

We distinguish between model and protocol specification
rules, denoted by RModel and RSpec respectively. The former
are the fixed set of rules

RModel := {[] −→ [Fr(x:fresh)]} ∪MD ∪ CH ∪AG

2 For efficiency reasons, Tamarin distinguishes between !KU and !KD facts.
For simplicity, we refer to both of these as !K facts.

14

introduced in Section III-B and Appendix A. The latter specify
the security protocol. Recall that Rule (1) is the only rule
producing fresh constants and thereby creating Fr facts. By
Equation (23), every fresh constant is produced at most once in
a trace. Fresh constants can be obtained (generated) by honest
agents using Rule (2). Dishonest agents obtain fresh constants
from the adversary using Rule (5). The adversary can generate
fresh constants using Rule (27).

A protocol defines a setup and the behavior of a set of
roles. The corresponding protocol specification RSpec consists
of a finite number of setup rules and protocol rules. Setup
rules are used to initialize the protocol, i.e., to generate the
initial knowledge and to distribute it to the corresponding
protocol agents by generating the initial AgSt facts for all roles.
Formally, a setup rule l a−→ r is a rule where:

S1 Only Fr facts occur in l.
S2 The actions Learn, Comm, Secret, Authentic, and

Trust do not occur in a.

A role consists of a set of protocol rules, specifying the
sending and receiving of messages, branching and looping
conditions, and the generation of fresh constants. In what
follows, we only allow protocols where after the setup phase
all information is exchanged using the channels defined in our
channel abstraction model above. That is, information may not
flow from one agent to another in any way other than by one
of the channels defined in CH. A protocol rule l a−→ r is a rule
such that the following 5 conditions are satisfied.

P1 The facts in l, a, and r do not contain elements of
Cfresh as subterms.

P2 Only RcvI,RcvA,RcvC,RcvS, and Fresh facts and
exactly one AgSt fact occur in l.

P3 Only SndI,SndA,SndC,SndS, and AgSt facts occur
in r.

P4 If AgSt(A, step, kn) occurs in l, then:
(a) Every RcvI, RcvA, RcvC, RcvS, and Fresh
fact is of the form RcvI(B,A, x), RcvA(B,A, x),
RcvC(B,A, x), RcvS(B,A, x), and Fresh(A, x),
where B, x ∈ T .
(b) Every Learn, Comm, Secret, Authentic, SndI,
SndA, SndC, and SndS fact is of the form Learn(A, x),
Comm(A, x), Secret(A,B, x), Authentic(B,A, x),
SndI(A,B, x), SndA(A,B, x), SndC(A,B, x), and
SndS(A,B, x), where B ∈ Cpub , x ∈ T and x is
derivable from terms in Cpub , terms in Fresh and RcvI,
RcvA, RcvC, and RcvS facts occurring in l, and terms
in kn .
(c) Every AgSt fact in r is AgSt(A, step′, kn ′), where
step′ ∈ Cpub and kn ′ is derivable from terms in Cpub ,
terms in Fresh and RcvI, RcvA, RcvC, and RcvS facts
occurring in l, and terms in kn .

P5 vars(r) ⊆ vars(l) ∪ Vpub .

Remark. A protocol rule that contains a receive fact in its
premise and a send fact in its conclusion models the reception
and sending of messages as an atomic protocol execution step.
If the agent executing the protocol step is dishonest, then the
adversary may not be able to influence the message to be
sent. To model the general situation where reception and the
subsequent sending of messages are not atomic, two separate

rules must be specified, one for the reception of messages and
a corresponding update of the receiver’s state, and a second
one to specify the sending of messages. The adversary may
then reveal and modify a dishonest agent’s state after the
dishonest agent receives a message and before the agent sends
the subsequent message.

To be able to reconstruct all system states from a trace,
we add a unique action Ri to every rule in R. Formally, we
do this as follows. Let q be a sequence of all rules in R such
that every rule in R occurs exactly once in q. The action Ri

contains all variables of the rule qi in q as an argument. To this
end, we must map the elements of the set of variables in the
premises and conclusions to an ordered list. We denote such a
map by list . Thus the set of rules that allows us to reconstruct
all system states from a trace for a given protocol specification
R is given by

{l a−→ r | ∃i ∈ {1, . . . , |q|} : l
a′

−→ r = qi ∧
a = a′ · [Ri(list(vars(l) ∪ vars(r)))] }.

(29)

C. Proof Details: Impossibility Results

In this appendix we provide the proof details for all the im-
possibility lemmas of Section IV-A in the paper. Lemmas that
are first referenced and stated in this appendix are numbered
with letters.

Lemma 1. Let τ = (V,E, η, µ) be a communication topol-
ogy where S,R ∈ V are distinct roles such that η(S) =
(ΣS ,KS ,honest), η(R) = (ΣR,KR,honest) and KS = ∅
or KR = ∅. If the following two conditions are satisfied,
then there exists no protocol for τ that provides a confidential
channel from S to R.

1) ∀(A,B) ∈ E : A 6= B ∧ (A = S ∨ B = R) →
µ(A,B) ∈ {◦−→◦, •−→◦}

2) ∀(A,B) ∈ E : A 6= B ∧ (A = R ∨ B = S) →
µ(A,B) ∈ {◦−→◦, ◦−→•}

Proof: Suppose that S has an empty initial knowledge.
(The case when R has an empty initial knowledge is analo-
gous.) If there exists a protocol in τ that provides a confidential
channel from S to R, then there exists such a protocol in
τ ′ = (V,E, η, µ′), where

∀(A,B) ∈ E : µ′(A,B) =

•−→◦ if A = S ∧B 6= S

◦−→• if A 6= S ∧B = S

•−→• otherwise,

because every channel in τ ′ provides an equal or stronger
security property than the corresponding channel in τ .

We now reduce the case when the number of roles specified
in the protocol is greater than two to the case of two roles.
Consider the topology τ ′′ = (V ′′, E′′, η′′, µ′′), where V ′′ =
{S,R}, f : V → V ′′ is the function defined by

f(a) =

{
S if a = S

R otherwise,

and E′′ = {(f(a), f(b)) | (a, b) ∈ E}. We let η′′(S) = η(S),
η′′(R) = (Σ′′R,K

′′
R,honest), where Σ′′R =

⋃
A∈V \{S} ΣA and

15

K ′′R =
⋃

A∈V \{S}KA. Finally,

∀(A,B) ∈ E′′ : µ′′(A,B) =

•−→◦ if A = S ∧B 6= S

◦−→• if A 6= S ∧B = S

•−→• otherwise.

Again, if there exists a protocol in τ ′ that provides a con-
fidential channel from S to R, then there exists one in τ ′′.
This is because a protocol in τ ′ that provides a confidential
communication channel from S to R for all traces, also
provides such a channel for the particular trace in which S
is instantiated with an honest agent A ∈ Cpub and all roles
other than S are instantiated with an honest agent B ∈ Cpub .

Therefore it remains to prove the Lemma for τ ′′. Note that
the hypothesis of the Lemma is still satisfied for τ ′′.

Let tr be a shortest trace satisfying the confidentiality con-
dition (Definition 5) and the communication condition (Defi-
nition 3). Then S 6= R, Secret(S,R,m) ∈ tr , Comm(S,m) ∈
tr , and Learn(R,m) ∈ tr for some m ∈ M. If there is no
such trace, then we are done, since then the protocol does
not provide a confidential communication channel. Otherwise,
we have that !K(m) 6∈ tr . We exhibit a trace tr ′ in which
Secret(S,R,m) ∈ tr ′ and !K(m) ∈ tr ′. Let g be the sequence
of ground instances of rules which gives rise to the trace tr .
By Equation (29), we can obtain this sequence from the trace
tr by using the unique facts Ri appearing in the trace.

We construct a sequence of (ground) rewriting rules g′ from
g that give rise to a trace tr ′ for which the confidentiality
condition is not satisfied. To this end, we will replace rules
in g which contain AgSt(R, ,) by instantiations of rules in
MD and CH. In order for such a transformation to produce
a valid sequence of rewriting rules, we need to satisfy the
following two conditions:

• Facts consumed by a rule g′i must have been produced
by a rule g′j , for j < i.

• Every rule g′i is a ground instantiation of a protocol
rule in R.

We obtain the transformation from g to g′ by describing a
series of deletions and insertions performed on the sequence
g. For a rule gi in g, l(gi) refers to the premises of gi,
a(gi) to the actions, and r(gi) to the consequences. Thus,

gi = [l(gi)]
a(gi)−−−→ [r(gi)].

1) For ease of reference, we keep track of the corre-
spondence between the fresh terms in the knowledge
of agent R and the adversary’s fresh terms via the
partial map φ : Cfresh → Cfresh .

2) For every setup rule gi containing an
AgSt(R, step, kn) fact for some step, kn ∈ M
we make the following two insertions.
Insertion 1. For every fact Fresh(R, y) ∈ l(gi) there
are unique rules

gk = [] −→ [Fr(y)]

and
gj = [Fr(y)] −→ [Fresh(R, y)],

k < j < i, producing Fresh(R, y).

We insert an instantiation of the fresh facts rule [] −→
[Fr(x)] immediately after gk and an instantiation of
theMD rule [Fr(x)] −→ [!K(x)] immediately after gj .
We set φ(y) := x.
Insertion 2. For every public constant C:pub in R’s
knowledge kn , we insert a rule [] −→ [!K(C:pub)]
before gi.
After these insertions, we have a correspondence
between R’s initial knowledge and the adversary’s
knowledge. The modified sequence of rules remains
a valid sequence.

3) Let gi be the first instantiation of a role specification
rule in g that contains an AgSt(R, step, kn) fact
for some step, kn ∈ M. By P2 and P4 we have
only Fresh(R,), RcvA(S,R,), RcvS(R,R,), and
AgSt(R, ,) facts in l(gi). By P3 and P4 we have
only SndC(R,S,), SndS(R,R,), and AgSt(R, ,)
facts in r(gi). By P4 any Learn and Secret action in
a(gi) are of the form Learn(R,) and Secret(R, ,).
We delete the rule gi after having made the following
changes.
Change 1. For every Fresh(R, x) fact in l(gi), there
exists a rule
gj = [Fr(x)] −→ [Fresh(R, x)], j < i, producing that
fact. We replace gj by the rule [Fr(x)] −→ [!K(x)].
Thus every fresh term learned by R in g is learned
by the adversary in g′.
Change 2. For every RcvA(S,R,m) fact we insert
before gi the rule
[Out(〈S,R,m〉)] −→ [!K(〈S,R,m〉)], which is an
instantiation ofMD Rule (24), and two instantiations
of MD Rule (28) using the projecting functions in
order to arrive at the facts !K(m), !K(S), !K(R). Note
that there exists an Out(〈S,R,m〉) fact in r(gj) for
some j < i due to instantiations of CH Rules (8)
and (9) which are the source of the RcvA(S,R,m)
fact.
Thus every message received by R in g is learned by
the adversary in g′.
Change 3. By step 2 above (i.e. modifications of the
setup rules), P4(c), and previous applications of the
present step, all terms in AgSt(R, step, kn) ∈ l(gi)
that are derivable from kn , are also derivable from
the adversary’s knowledge up to substitution of fresh
constants y in the domain of φ by φ(y).
Change 4. For each SndC(R,S,m) fact in r(gi),
we can synthesize from the adversary’s knowledge
a message m̃ that is equal to m up to substitution of
fresh constants y in the domain of φ by their image
φ(y). To this end, we insert after gi instantiations of
MD Rule (28) to produce the fact !K(〈R,S, m̃〉). We
delete the corresponding rule gj =

[SndC(R,S,m)]
SndC(R,S,m)−−−−−−−−→ [!Conf(S,m)], j > i, if

it exists, and replace every subsequent rule
[!Conf(S,m), In(R)]

RcvC(R,S,m)−−−−−−−−→ [RcvC(R,S,m)]
with the rules

[!K(〈R,S, m̃〉)] !K(〈R,S,m̃〉)−−−−−−−−→ [In(〈R,S,m〉)]

and
[In(〈R,S,m〉)] −→ [RcvC(R,S,m)].

16

The latter of these rules is an instantiation of CH
Rule (12) and the former is an incorrect instantiation
ofMD Rule (25). This is due to a mismatch between
the adversary’s knowledge !K(〈R,S, m̃〉) and the
produced fact In(〈R,S,m〉). This is resolved in step
4 below.
Change 5. Note that each AgSt fact in r(gi) is of the
form AgSt(R, step, kn), where the terms step and kn
are derivable from !K facts up to substitution of fresh
constants in the domain of the φ function.
Change 6. For each Learn(R, x) action in a(gi),
we insert instantiations of MD Rule (28) after gi
in order to arrive at !K(x) (up to substitutions of
fresh constants in the domain of φ). This is possible,
since x is a term derivable from public constants,
messages in RcvA(S,R,m) facts and knowledge in
AgSt(R, step, kn) facts.
Change 7. We may ignore the SndS(R,R,m) and
RcvS(R,R,m) facts, since m is already derivable
from the adversary’s knowledge. We may ignore the
Secret(R, ,) actions in a(gi) since these concern
the confidentiality of messages sent by R, as opposed
to those sent by S. We may ignore all other actions
in a(gi) since they do not concern the confidentiality
property.

We repeat this step 3 as long as there are rules gi
containing AgSt(R, ,) facts in l(gi).

4) We exchange the fresh values y in the initial knowl-
edge of R acquired in the setup rules with the
corresponding fresh values φ(y) in the adversary’s
knowledge (!K(φ(y))) as follows.
For every setup rule gi containing a
AgSt(R, step, kn) fact and a Fresh(R, y) fact,
we replace in all terms the fresh constant y by the
fresh constant φ(y). We replace the unique rule gj ,
j < i, producing the fact Fresh(R, y) by the rule
[Fr(φ(y))] −→ [Fresh(R,φ(y))].
For every instantiation of aMD rule in g, we replace
in all terms all fresh constants φ(y) by y.

After the above replacements, we obtain a sequence of
rules and consequently a trace tr ′ in which the adversary
impersonates R. R does not perform any protocol steps other
than having its initial knowledge set up. We finally append the
rule [!K(m)]

!K(m)−−−−→ [In(m)] to g′ in order to have !K(m) ∈ tr ′.
Thus we have a trace where the adversary learns m, yet
Secret(S,R,m) ∈ tr ′.

Lemma 2. Let τ = (V,E, η, µ) be a communication topol-
ogy where S,R ∈ V are distinct roles such that η(S) =
(ΣS ,KS ,honest), η(R) = (ΣR,KR,honest) and KS = ∅
or KR = ∅. If the following two conditions are satisfied,
then there exists no protocol for τ that provides an authentic
channel from S to R.

1) ∀(A,B) ∈ E : A 6= B ∧ (A = S ∨ B = R) →
µ(A,B) ∈ {◦−→◦, ◦−→•}

2) ∀(A,B) ∈ E : A 6= B ∧ (A = R ∨ B = S) →
µ(A,B) ∈ {◦−→◦, •−→◦}

The proof idea for this lemma is the same as for the
preceding one. The adversary impersonates S to R. This is

possible, since messages from S to R are not authenticated.
Thus, R cannot distinguish between information that S sends
to R and information that the adversary sends. We omit the
technical details.

Lemma 3. Let τ = (V,E, η, µ) be a HISP topology where
KH = ∅ and no edge between H and D exists. Then there
exists no protocol for τ that provides a confidential channel
and there exists no protocol for τ that provides an authentic
channel from H to S or vice-versa.

The key idea for the proofs of Lemma 3 and the following
lemmas is that every trace establishing a confidential or au-
thentic channel that involves actions of D, can be transformed
into a valid trace with the same properties but not involving
D. Since the channels between H and S are insecure, by
Lemmas 1 and 2 neither confidential nor authentic channels
can be established between H and S.

Proof: Since there is no edge between H and D, all
communication channels to and from H are insecure.

Since there are no edges between H and D and all edges
between D and P are labeled insecure as are the edges between
S and P , we may include the D role in the S role while
maintaining the property that all channels between S and P are
labeled insecure. We thus obtain a protocol where all channels
to and from S are insecure.

Thus the hypotheses of Lemmas 1 and 2 are satisfied and
thus there is no protocol establishing a confidential or authentic
channel between H and S.

Lemma A. Let τ = (V,E, η, µ) be a HISP topology where
KH = ∅ and in which there are no outgoing edges from D.
Then there exists no protocol for τ that provides a confidential
channel and there exists no protocol for τ that provides an
authentic channel from H to S or vice-versa.

Proof: Since none of H , S, P receive any messages from
D, a protocol that provides a confidential or authentic channel
between H and S with such a role specification for D, also
provides such a channel without a role specification for D. By
Lemmas 1 and 2 no such protocol exists.

Lemma 4. Let τ = (V,E, η, µ) be a HISP topology with
KH = ∅, (H,D) ∈ E, (D,H) 6∈ E, and (D,S) 6∈ E+. Then
there exists no protocol for τ that (1) provides a confidential
channel or (2) provides an authentic channel from H to S.

Proof: Since (D,H) 6∈ E and (D,S) 6∈ E+, we have
(D,S) 6∈ E. We distinguish two cases, depending on whether
the edge (D,P) exists.

• (D,P) 6∈ E. Then there are no outgoing edges from
D and the statement follows from Lemma A.

• (D,P) ∈ E. Then there is no edge from P to S,
else there would be a path from D to S. It follows
that there is no communication path from H to S,
thus the protocol cannot provide a confidential nor an
authentic channel from H to S.

Lemma 5. Let τ = (V,E, η, µ) be a HISP topology with
KH = ∅, (H,D) ∈ E, (S,H) ∈ E+, and (D,H) 6∈ E+. Then

17

there exists no protocol for τ that (1) provides a confidential
channel or (2) provides an authentic channel from S to H .

Proof: Since there is no edge from D to H in τ , there are
only two possible paths from S to H , namely (S, P,H) and
(S,D, P,H). The second path, however, is impossible in τ ,
because it contains a path from D to H . It follows that there
is no outgoing edge from D in τ thus by Lemma A, there
cannot be a protocol for τ that provides a confidential or an
authentic channel from S to H .

D. Proof Details: Possibility Results

The following lemmas assert the existence of HISPs that
provide secure channels between H and S for the topolo-
gies not covered by the impossibility results above. Our
proofs embody protocols that we have verified using Tamarin.
Tamarin models of all protocol specifications are available
at http://www.infsec.ethz.ch/research/projects/hisp.html. Note
that in all protocols the human role H has an empty initial
knowledge. Lemmas that are first referenced and stated in this
appendix are numbered with letters.

Lemma 6. Let τ = (V,E, η, µ) be any HISP topology with
(H,D) ∈ E and (D,S) ∈ E+. Then there exists a protocol
for τ that provides an originating secure channel from H to
S, even if KH = ∅.

Proof: The following graphs consist of an acyclic path
from D to S and an additional edge (H,D) ∈ E.

H P S

D

(a)

H P S

D

(b)

H P S

D

(c)

We show a protocol for each of the three topologies.

(a) The following protocol communicates a message m,
originating with H , authentically and confidentially
from H to S using the path in case (a).

Protocol Lemma 6 (a)

H •−→• D : fresh(m).〈S,m〉
D •−→• S : 〈H,m〉

H first sends the fresh, secret message m together
with the name of the intended recipient S to D using
H •−→• D. Then, D passes the message and the
sender’s name H to S using D •−→• S.

(b) The following protocol transmits a message m, orig-
inating with H , authentically and confidentially from
H to S using the path in case (b) and a secret key
kDS shared between D and S. Recall that we specify
the initial knowledge using knows() statements.

Protocol Lemma 6 (b)

D : knows(〈S, kDS〉)
S : knows(〈D, kDS〉)

H •−→• D : fresh(m).〈S,m〉
D ◦−→◦ P : senc(〈H,m〉, kDS)/ciphertext
P ◦−→◦ S : ciphertext/senc(〈H,m〉, kDS)

The protocol executes as follows. H first sends the
fresh, secret message m and the intended recipients’s
name S to D using H •−→• D. Then, D encrypts m
and the sender’s name H using kDS and sends the
cipher-text to P . P sends the cipher-text to S where
it is decrypted.

(c) The following protocol transmits a message m, orig-
inating with H , authentically and confidentially from
H to S using the path in case (c) and a secret key
kDS shared between D and S.

Protocol Lemma 6 (c)

D : knows(〈H,S, kDS〉)
S : knows(〈H,D, kDS〉)

H •−→• D : fresh(m).〈S,m〉
D •−→• H : 〈m, senc(m, kDS)〉/〈m, ciphertext〉
H ◦−→◦ P : ciphertext
P ◦−→◦ S : ciphertext/senc(m, kDS)

The protocol executes as follows. H first sends the
fresh, secret message m and intended recipient’s
name S to D using H •−→• D. Then, D encrypts m
using kDS and sends the cipher-text and the message
back to H who inputs the cipher-text into P . P sends
the cipher-text to S where it is decrypted.

We used Tamarin to prove that these protocols provide an
originating secure communication channel from H to S.

Lemma 7 states that for HISP topologies containing an
edge from D to H , there is a protocol providing a secure
channel from S to H , if there is a path from S to H .

Lemma 7. Let (V,E, η, µ) be a HISP topology with (S,H) ∈
E+. If (D,H) ∈ E then there exists a protocol that provides
a secure channel from S to H , even if KH = ∅.

Proof: The following are all acyclic paths from S to H
together with an additional edge (D,H) ∈ E.

H P S

D

(a)

H P S

D

(b)

H P S

D

(c)

H P S

D

(d)

We show a protocol for each of the first three topologies. Since
case (d) is a supergraph of case (c), the protocol for case (c)
also applies to case (d).

(a) The protocol is based on codebook cryptography, fol-
lowing [7]. The protocol below transmits a predefined
message m securely from S to H .

Protocol Lemma 7 (a)

D : knows(〈H,S,m,h(m)〉)
S : knows(〈H,D,m,h(m)〉)

S ◦−→◦ P : h(m)/hash
P ◦−→◦ H : hash
D •−→• H : 〈S,m,h(m)/〈S,m, hash〉

The hash function h(m) represents the mapping,
shared between D and S, from a clear-text message
m to the code. After the protocol’s execution, H
compares the code supposedly received from S with

18

http://www.infsec.ethz.ch/research/projects/hisp.html

the tuple 〈m,h(m)〉 received from D. This represents
a lookup in the codebook.

(b) The following protocol provides an originating secure
communication channel from S to H using a secret
key kDS shared between D and S.

Protocol Lemma 7 (b)

D : knows(〈H,S, kDS〉)
S : knows(〈H,D, kDS〉)

S ◦−→◦ P : fresh(m).senc(m, kDS)/ciphertext
P ◦−→◦ D : ciphertext/senc(m, kDS)
D •−→• H : 〈S,m〉

S first submits the fresh, secret message m encrypted
with the key kDS to P using S ◦−→◦ P . P sends the
cipher-text to D, who decrypts the message and sends
m and its sender’s name S to H using D •−→• H .

(c) The following protocol provides an originating secure
communication channel from S to H using the secure
links S •−→• D and D •−→• H .

Protocol Lemma 7 (c)

S •−→• D : fresh(m).〈H,m〉
D •−→• H : 〈S,m〉

S first submits the fresh, secret message m together
with the intended recipient’s name H to D using
S •−→• D. Then, D passes m together with the
sender’s name S to H using D •−→• H .

(d) The same protocol as for case (c) can be applied
by omitting the additional edges (D,P) ∈ E and
(P,H) ∈ E.

We used Tamarin to prove that all three protocols above
provide a secure communication channel from S to H .

Lemma 8 states that for HISP topologies containing an
edge from D to H , there is a protocol providing a secure
channel from H to S, if there is a path from H to S.

Lemma 8. Let τ = (V,E, η, µ) be a HISP topology with
(H,S) ∈ E+. If (D,H) ∈ E then there exists a protocol for
τ that provides a secure channel from H to S, even if KH = ∅.

Proof: The following are all acyclic paths from H to S
together with an additional edge (D,H) ∈ E.

H P S

D

(a)

H P S

D

(b)

H P S

D

(c)

H P S

D

(d)

Cases (c) and (d) follow from Lemma 6. Protocols for the
remaining cases (a) and (b) are given below.

The following protocols each communicate a predefined
message m authentically and confidentially from H to S via
the paths in case (a) and (b), respectively. The hash function
h(m) represents the mapping from a clear-text message m
to the code. At the end of Protocol 8 (a), S compares the
code supposedly received from H with the corresponding tuple
〈m,h(m)〉.

Protocol Lemma 8 (a)

D : knows(〈H,S,m,h(m)〉)
S : knows(〈H,D,m,h(m)〉)

D •−→• H : 〈S,m,h(m)〉 / 〈S,m, hash〉
H ◦−→◦ P : hash
P ◦−→◦ S : hash / h(m)

Protocol Lemma 8 (b)

D : knows(〈H,S〉)
D •−→• H : fresh(m).〈m,h(m)〉 / 〈m,hash〉
H ◦−→◦ P : hash
P ◦−→◦ D : hash / h(m)
D •−→• S : 〈H,m〉

We used Tamarin to prove that both protocols provide a
secure communication channel from H to S.

Lemma 9. Let τ = (V,E, η, µ) be a HISP topology with
(S,H) ∈ E+ and (D,H) 6∈ E. If (H,D) ∈ E and
(D,H) ∈ E+, then there exists a protocol for τ that provides
an originating authentic channel from S to H , even if KH = ∅.

Proof: The minimal graphs satisfying the lemma’s hy-
pothesis are obtained as follows. There are two acyclic paths
from S to H with (D,H) 6∈ E. One satisfies (D,H) ∈ E+

and leads to case (c). The other leads to cases (a) and (b), since
there are two acyclic paths form D to H with (D,H) 6∈ E.

H P S

D

(a)

H P S

D

(b)

H P S

D

(c)

The following protocols provide an originating authentic chan-
nel from S to H for the three topologies. In each of the proto-
cols, S generates a fresh message m, which is communicated
to H , thus they provide an originating channel. Tamarin proves
that the channel is authentic.

Protocol Lemma 9 (a)

D : knows(〈H,S, kDS〉)
S : knows(〈H,D, kDS〉)

S ◦−→◦ P : fresh(m).〈m,h(〈kDS ,m〉)〉 / 〈m,hash〉
P ◦−→◦ H : 〈m,hash〉
H •−→• D : fresh(x).〈S, x,m, hash〉 / 〈S, x,m, h(〈kDS ,m〉)〉
D ◦−→◦ P : x
P ◦−→◦ H : x

Protocol Lemma 9 (b)

D : knows(〈H,S, kDS〉)
S : knows(〈H,D, kDS〉)

S ◦−→◦ P : fresh(m).〈m,h(〈kDS ,m〉)〉 / 〈m,hash〉
P ◦−→◦ H : 〈m,hash〉
H •−→• D : fresh(x).〈x,m, hash〉 / 〈x,m,h(〈kDS ,m〉)〉
D •−→• S : x
S ◦−→◦ P : x
P ◦−→◦ H : x

19

Protocol Lemma 9 (c)

D : knows(〈H,S〉)
S : knows(〈H,D〉)

S •−→• D : fresh(m).m
D ◦−→◦ P : m
P ◦−→◦ H : m
H •−→• D : fresh(x).〈S, x,m〉
D ◦−→◦ P : x
P ◦−→◦ H : x

Lemma 10. Let τ = (V,E, η, µ) be a HISP topology with
KH = ∅, (S,H) ∈ E+, (D,H) 6∈ E, (H,D) ∈ E, and
(D,H) ∈ E+. Then there exists a protocol for τ that provides
a secure channel from S to H if and only if (H,S) ∈ E+.

Proof: The minimal graphs satisfying the lemma’s hy-
pothesis are obtained from the graphs of Lemma 9 and the
additional condition (H,S) ∈ E+.

H P S

D

(a)

H P S

D

(b)

H P S

D

(c)

H P S

D

(d)

To see that (H,S) ∈ E+ is necessary, suppose that (H,S) 6∈
E+. The initial knowledge of H is empty and any fresh
constant that H generates cannot be known to S because
(H,S) 6∈ E+. Any message that H receives is known to P
because the only incoming edge to H is (P,H) ∈ E. Thus
every message sent by S and learned by H can be learned by
the adversary. It follows that every term t that can be derived
from the knowledge of H using pairing and projection and that
can be derived from the knowledge of S (using all functions
in Σ), can also be derived using the knowledge of P . Thus
there cannot be a protocol that provides a confidential channel
and consequently there cannot be a protocol that provides a
secure channel from S to H .

It remains to find a protocol that provides a secure channel
from S to H for each of the four minimal topologies when
KH = ∅. The protocols are given below.

Protocol Lemma 10 (a)

D : knows(〈H,S, h(〈kDS , D, S〉)〉)
S : knows(〈H,D, h(〈kDS , D, S〉)〉)

H •−→• D : fresh(x1, x2).〈S, x1, x2〉
D ◦−→◦ P : 〈S, senc(〈x1, x2〉,h(〈kDS , D, S〉))〉 / 〈S, ciphertext〉
P ◦−→◦ S : ciphertext / senc(〈x1, x2〉,h(〈kDS , D, S〉))
S ◦−→◦ P : x2
P ◦−→◦ H : x2

Protocol Lemma 10 (b)

D : knows(〈H,S〉)
S : knows(〈H,D〉)

H •−→• D : fresh(x1, x2).〈S, x1, x2〉
D •−→• S : 〈H,x1, x2〉
S ◦−→◦ P : x2
P ◦−→◦ H : x2

Protocol Lemma 10 (c)

D : knows(〈H,S, h(〈kDS , D, S〉)〉)
S : knows(〈H,D, h(〈kDS , D, S〉)〉)

H •−→• D : fresh(x1, x2).〈S, x1, x2〉
D ◦−→◦ P : 〈S, senc(〈x1, x2〉,h(〈kDS , D, S〉))〉 / 〈S, ciphertext〉
P ◦−→◦ S : ciphertext / senc(〈x1, x2〉,h(〈kDS , D, S〉))
S •−→• D : 〈H,x1〉
D ◦−→◦ P : x2
P ◦−→◦ H : x2

Protocol Lemma 10 (d)

D : knows(〈H,S〉)
S : knows(〈H,D〉)

H •−→• D : fresh(x1, x2).〈S, x1, x2〉
D •−→• S : 〈H,x1, x2〉
S •−→• D : 〈H,x1〉
D ◦−→◦ P : x2
P ◦−→◦ H : x2

We used Tamarin to prove that these protocols provide a
secure communication channel from S to H .

Lemma B. Let τ = (V,E, η, µ) be a HISP topology with
(S,D) ∈ E+ and (D,H) ∈ E. Then there exists a protocol
for τ that provides an originating secure channel from S to
H even if KH = ∅.

Proof: Below are all acyclic paths from S to D together
with an additional edge (D,H) ∈ E.

H P S

D

(a)

H P S

D

(b)

H P S

D

(c)

Case (c) is equal to case (c) in Lemma 7 where the given
protocol already provides an originating secure channel from S
to H . In the following we provide protocols for the remaining
cases (a) and (b).

The following protocol provides an originating secure
channel from S to H in case (a).

Protocol Lemma B (a)

D : knows(〈H,S, h(〈kDS , D, S〉)〉)
S : knows(〈H,D, h(〈kDS , D, S〉)〉)

S ◦−→◦ P : fresh(m).senc(〈S,D,H,m〉,h(〈kDS , D, S〉)) /
ciphertext

P ◦−→◦ H : ciphertext
H •−→• D : ciphertext / senc(〈S,D,H,m〉,h(〈kDS , D, S〉))
D •−→• H : 〈S, senc(〈S,D,H,m〉,h(〈kDS , D, S〉)),m〉 /

〈S, ciphertext,m〉

For case (b), we adapt the protocol as follows.

20

Protocol Lemma B (b)

D : knows(〈H,S, h(〈kDS , D,H, S〉)〉)
S : knows(〈H,D, h(〈kDS , D,H, S〉)〉)

S ◦−→◦ P : fresh(m).senc(〈S,D,H,m〉,h(〈kDS , D,H, S〉)) /
ciphertext

P ◦−→◦ D : ciphertext / senc(〈S,D,H,m〉,h(〈kDS , D,H, S〉))
D •−→• H : 〈S,m〉

In both cases, S first freshly generates the secret message m
and sends it encrypted with the key kDS to P using S ◦−→◦ P .
P sends the message to H in case (a) or directly to D in
case (b). The message is decrypted by D and sent to H using
D •−→• H .

We used Tamarin to prove that these protocols provide a
secure communication channel from S to H .

Lemma C. Let τ = (V,E, η, µ) be a HISP topology with
KH = ∅, (D,H) ∈ E, (H,D) 6∈ E, and (H,S) ∈ E+. If
there is an incoming edge to D, then there exists a protocol
for τ that provides an originating authentic channel from H
to S.

Proof: There must be an edge (H,P) ∈ E because
(D,H) ∈ E, (H,D) 6∈ E, and (H,S) ∈ E+. Since D has
an incoming edge, it must have either an incoming edge from
P or one from S. The first of the following two protocols
provides an originating authentic channel in the former case,
and the second in the latter case.

Protocol Lemma C (a)

D : knows(〈H,S, kDS〉)
S : knows(〈H,D, kDS〉)

H ◦−→◦ P : fresh(m).m
P ◦−→◦ D : m
D •−→• H : 〈m,h(〈kDS ,m, S,D,H〉)〉 / 〈m,hash〉
H ◦−→◦ P : hash
P ◦−→◦ S : 〈m,hash〉 / 〈m,h(〈kDS ,m, S,D,H〉)〉

Protocol Lemma C (b)

D : knows(〈H,S, kDS〉)
S : knows(〈H,D, kDS〉)

H ◦−→◦ P : fresh(m).m
P ◦−→◦ S : m
S •−→• D : 〈m,h(〈kDS ,m〉)〉
D •−→• H : 〈m,S,h(〈kDS ,m〉)〉 / 〈m,S, hash〉
H ◦−→◦ P : hash
P ◦−→◦ S : hash / h(〈kDS ,m〉)

E. Proof Details: Proofs of Theorems

Theorem 1. Let τ = (V,E, η, µ) be a HISP topology. There
exists a protocol for τ that provides an originating confidential
channel from H to S if and only if (H,D) ∈ E and (D,S) ∈
E+.

Proof: Let τ be a HISP topology such that (H,D) ∈ E
and (D,S) ∈ E+. By Lemma 6, there exists a protocol for τ

that provides an originating confidential channel H to S for
each of the three acyclic paths from D to S.

Conversely, let R be a protocol for τ that provides an
originating confidential channel H to S. Then there is a
trace in which a fresh constant m originating with H is
transmitted to S. Thus there must be a path from H to S.
Suppose (H,D) 6∈ E. Then the only outgoing edge from H is
(H,P) ∈ E. Since H can only perform pairing and projection,
any fresh constant m generated by H can only be paired with
other terms. Thus, if H sends a message of which m is a
subterm, the adversary can learn m. Thus there must be an
edge from H to D and a path from D to S.

Theorem 2. Let τ = (V,E, η, µ) be a HISP topology. Then
there exists a protocol for τ that provides an originating
authentic channel from H to S if and only if (H,S) ∈ E+,
there exists an edge between H and D, and there exists an
edge incoming to D as well as an edge outgoing from D.

Proof: We first show that the topological conditions are
necessary for the existence of a protocol providing an origi-
nating authentic channel. It is obvious that (H,S) ∈ E+ is a
necessary condition for a protocol to provide a communication
channel from H to S. We show by case distinction that there
must be an edge incoming to D as well as an edge outgoing
from D.

1) All edges adjacent to D are outgoing from D.
Then D never learns any fresh constant m generated
by H . Thus m is never a subterm of any message sent
from D to H . Thus for every message m′ sent from
H to P , the adversary may compute all projections of
m′ and substitute each m by a fresh constant m̃, then
pair the terms up again. For all messages received
by H from P , the adversary replaces in the same
manner all projections to m̃ by m. Thus S learns
m̃ whereas H sends m. Since m originates with
H , S cannot distinguish between terms involving
m and terms involving m̃. Since H cannot perform
any functions other than pairing and projections, H
cannot distinguish terms that are obtained by applying
any other function to m from terms that are obtained
by applying such functions to m̃. It follows that there
is no protocol that provides an originating authentic
channel.

2) There are no edges to or from D.
If there is a protocol that provides an originating
authentic channel when there are no edges to or from
D, then there is one in which there are outgoing edges
from D. This contradicts Case 1.

3) All edges adjacent to D are incoming to D.
If all edges adjacent to D are incoming to D, then
there is no protocol that provides an originating au-
thentic channel, otherwise there would be one without
a role specification for D which is impossible by Case
2.

If there are no edges between D and H , we can combine the
roles of D and S, since H communicates with both through
P . Then, by the reasoning in Case 1 above, there cannot be
an originating authentic channel from H to S.

Conversely, consider all the HISP topologies such that
(H,S) ∈ E+ and there exists an edge between H and D

21

and there exists an edge incoming to D as well as an edge
outgoing from D. There are two types of protocols that provide
an originating authentic channel from H to S, depending on
the edge(s) between H and D.

• (H,D) ∈ E. Since there is a path (H,S) ∈ E+

and an outgoing edge from D, there must be a path
(D,S) ∈ E+. It follows from Lemma 6 that there
exists a protocol that provides an originating authentic
channel from H to S.

• (D,H) ∈ E and (H,D) 6∈ E. Then there exists a
protocol that provides an originating authentic channel
from H to S by Lemma C.

Theorem 3. Let τ = (V,E, η, µ) be a HISP topology. There
exists a protocol for τ that provides an originating confidential
channel from S to H if and only if (D,H) ∈ E and (S,D) ∈
E+.

Proof: Let τ be a HISP topology such that (D,H) ∈ E
and (S,D) ∈ E+. By Lemma B, there is a protocol for τ that
provides an originating confidential channel S to H for each
of the three acyclic paths from S to D.

Conversely, let R be a protocol for τ that provides an
originating confidential channel S to H . Then there is a
trace in which a fresh constant m originating with S is
transmitted to H . Thus there must be a path from S to H .
Suppose (D,H) 6∈ E. Then the only incoming edge to H is
(P,H) ∈ E. Since H can only perform pairing and projection,
any fresh constant m learned, but not generated by H can only
be learned as a singleton or paired with other terms. Thus,
if H receives a message of which m is a subterm and H
learns m, then the adversary can learn m. Thus there must
be an edge from D to H . Suppose now that there is no path
(S,D) ∈ E+. Then there are only outgoing edges from D,
because there is a path S to H and an edge (D,H). Thus m
is not in D’s knowledge, since it originates with S and there
is no communication path from S to D. Thus, as above, since
H can only perform pairing and projecting of terms, any fresh
constant m learned by H and generated by S can be learned
by the adversary. Thus there must be a path (S,D) ∈ E+.

Theorem 4. Let τ = (V,E, η, µ) be a HISP topology. Then
there exists a protocol for τ that provides an originating
authentic channel from S to H if and only if (S,H) ∈ E+,
there exists an edge between H and D, and there exists an
edge incoming to D as well as an edge outgoing from D.

Proof: We first show that the topological conditions are
necessary for the existence of a protocol providing an origi-
nating authentic channel. It is obvious that (S,H) ∈ E+ is a
necessary condition for a protocol to provide a communication
channel from S to H . We show by case distinction that there
must be an edge incoming to D as well as an edge outgoing
from D.

1) All edges adjacent to D are outgoing from D.
Then D never learns any fresh constant m generated
by S. Thus m is never a subterm of any message sent
from D to H . Thus for every message m′ sent from
S to P , the adversary may compute all projections

of m′ and substitute each m by a fresh constant
m̃, then pair the terms up again. For all messages
sent by H to P , the adversary replaces in the same
manner all projections to m̃ by m. Thus H learns
m̃ whereas S sends m. Since m originates with
S, H cannot distinguish between terms involving
m and terms involving m̃. Since H cannot perform
any functions other than pairing and projections, H
cannot distinguish terms that are obtained by applying
any other function to m from terms that are obtained
by applying such functions to m̃. It follows that there
is no protocol that provides an originating authentic
channel.

2) There are no edges to or from D.
If there is a protocol that provides an originating
authentic channel when there are no edges to or from
D, then there is one in which there are outgoing edges
from D. This contradicts Case 1.

3) All edges adjacent to D are incoming to D.
If all edges adjacent to D are incoming to D, then
there is no protocol that provides an originating au-
thentic channel, otherwise there would be one without
a role specification for D which is impossible by Case
2.

If there are no edges between D and H , we can combine the
roles of D and S. Then, by the reasoning in Case 1 above,
there cannot be an originating authentic channel from S to H .

Conversely, consider all the HISP topologies such that
(S,H) ∈ E+ and there exists an edge between H and D
and there exists an edge incoming to D as well as an edge
outgoing from D. There are two types of protocols that provide
an originating authentic channel from S to H , depending on
the edge(s) between H and D.

• (D,H) ∈ E. Since there is a path (S,H) ∈ E+

and an incoming edge to D, there must be a path
(S,D) ∈ E+. It follows from Lemma B that there
exists a protocol providing an originating authentic
channel from S to H .

• (H,D) ∈ E and (D,H) 6∈ E. Then there must be a
path (D,H) ∈ E+, since there is an outgoing edge
from D. By Lemma 9, all such HISP topologies have a
protocol that provides an originating authentic channel
from S to H .

22

	Introduction
	Communication Topology Model
	General Communication Topology Model
	Human-Interaction Security Protocols

	Security Protocol Model
	Background
	Notation
	Multiset Term Rewriting System

	Model Extensions
	Node Properties
	Link Properties
	HISP Topology

	Protocol Specification
	Channels as Goals

	Complete Classification of HISPs
	General Impossibility Results
	Originating Secure Channels
	Secure Channels

	Related Work
	Conclusions
	References
	Appendix
	Tamarin Model Details
	Extended Model Details
	Proof Details: Impossibility Results
	Proof Details: Possibility Results
	Proof Details: Proofs of Theorems

