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Abstract
There is now an increasingly large number of proposed concordance measures available
to capture, measure and quantify different notions of dependence in stochastic processes.
However, evaluation of concordance measures to quantify such types of dependence for dif-
ferent copula models can be challenging. In this work, we propose a class of new methods
that involves a highly accurate and computationally efficient procedure to evaluate concor-
dance measures for a given copula, applicable even when sampling from the copula is not
easily achieved. In addition, this then allows us to reconstruct maps of concordance mea-
sures locally in all regions of the state space for any range of copula parameters. We believe
this technique will be a valuable tool for practitioners to understand better the behaviour
of copula models and associated concordance measures expressed in terms of these copula
models.

Keywords Concordance measures · Copula functions · Copula infinitesimal generators ·
Martingale problem · Multidimensional semimartingales decomposition approximations ·
Semimartingales decomposition · Tensor algebra

Mathematics Subject Classification (2010) 47N30 · 60B15 · 46N30 · 62G32 · 62H86

In Dalessandro and Peters (2017) and Dalessandro and Peters (2016) the authors developed
a novel class of functional copula representations for dependence that can be viewed as a
reinterpretation of Sklars’ well known copula representation theorem of multivariate depen-
dence. This is achieved in a manner that allows one to characterize any copula dependence
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function via a unique map to a generalized Gaussian copula function. This unique mapping
is obtained through the quantification of local dependence properties of the reference cop-
ula model over a discretized representation. Furthermore, the authors also demonstrated that
such a representation is proven to be exact as the discretization interval of the target copulas
support diminishes, with known convergence rate as studied in detail in Dalessandro and
Peters (2017). In this manuscript we extend and develop this representation for the purpose
of calculating and evaluation concordance measures, which can be written as functionals of
copula models. These can include concepts such as multivariate upper negative (positive)
dependence, lower negative (positive) dependence, negative (positive) dependence; multi-
variate negative (positive) quadrant dependence; multivariate association, co-monotinicity,
stochastic ordering; regression dependence negative (positive) and extreme dependence,
asymptotic tail dependence and intermediate tail dependence; as well as other concepts such
as directional dependence, see Joe (1990, 1997) and Nelsen (2002). Measuring the depen-
dence between random variables has long been of interest to statisticians and practitioners
alike. A history of the development of dependency measures can be found in Mari and Kotz
(2001). One should realise that in general, the dependence structure between two random
variables can only be captured in full by their joint probability distribution, and thus any
scalar quantity extracted from this structure must be viewed as a representation of some
feature of the dependence.

Scarsini (1984) gives the following intuitive definition of dependence:

Dependence is a matter of association between X and Y along any measurable func-
tion, i.e. the more X and Y tend to cluster around the graph of a function, either
y = f (x) or x = g(y), the more they are dependent.

The choice of dependence measure is influenced by the type of dependence one seeks
to study, such as lower left quadrant, upper right quadrant, etc. However, in nontrivial
multivariate distributions, it is not possible to capture all of the possible combinations of
dependence patterns within a single dependence measure. For this reason there is now an
increasingly large number of proposed concordance measures available to capture, measure
and quantify different notions of dependence in stochastic processes. The study of such
measures of dependence began in pairwise constructions in the works of Cambanis et al.
(1976), Tchen (1980) and Yanagimoto and Okamoto (1969). Where they demonstrated that
an ordering on discrete bivariate distributions, which formalized the notion of concordance,
was shown to be equivalent to stochastic ordering of distribution functions with identical
marginals. These notions were then generalised in multivariate settings by for instance Joe
(1990) and Scarsini (1984) with the latter introducing a formal axiomatic representation
of multivariate concordance measures given in Proposition 1. A detailed overview of these
concepts is provided in Cruz et al. (2015).

Definition 1 Consider the following basic definitions for permutation and symmetry, used
throughout.

• Symmetries: a symmetry of [0, 1]d is a one-to-one, onto map � : [0, 1]d �→ [0, 1]d of
form �(x1, . . . , xd) = (u1, . . . , ud) where for each i one has ui = xki or 1 − xki and
where (k1, . . . , kd) is a permutation of (1, . . . , n);

• Permutation: the map � is a permutation if for each i one has ui = xki ;• Reflection: the map � is a reflection if for each i one has ui = xi or ui = 1 − xi .
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– Elementary reflections: an elementary reflection of the i-th component,
denoted �i is given by

�i(x1, . . . , xd) = (x1, . . . , xi−1, 1 − xi, xi+1, . . . , xd)

• Symmetry Length: the length of a symmetry is denoted by |�| and corresponds to the
number elementary reflections required to obtain it.

We can now proceed to provide the general form of axioms for specification of a
multivariate concordance measure as detailed in Scarsini (1984).

Proposition 1 (Multivariate Concordance Measures) A general concordance measures �
is a function attaching to all d-tuples of continuous r.v.’s (X1, X2, . . . , Xd) defined on a
common probability space, when d ≥ 2, a real number � (X1, X2, . . . , Xd) satisfying:

• Normalization: � (X1, X2, . . . , Xd) = 1 if each Xi is a.s. an increasing function of
every other Xj and � (X1, X2, . . . , Xd) = 0 if X1, . . . , Xd are independent;

• Monotonicity: If X1, . . . , Xd is less concordent than Y1, . . . , Yd
then� (X1, X2, . . . , Xd) < � (Y1, Y2, . . . , Yd);

• Continuity: If Fk is the joint distribution of (Xk1, . . . , Xkd) and F the distribution of
(X1, . . . , Xd) and one has convergence in the sequence Fk → F as k → ∞, then
� (Xk1, . . . , Xkd) → � (X1, . . . , Xd);

• Permutation Invariance: If (i1, . . . , id ) is a permutation of (1, . . . , d)
then�

�
Xi1 , . . . , Xid

� = � (X1, . . . , Xn);
• Duality: � (−X1, . . . ,−Xn) = � (X1, . . . , Xn);
• Reflection Symmetry:

�
�1,...,�d=±1 � (�1X1, . . . , �dXd) = 0 where the sum is over 2d

vectors of the form (�1X1, . . . , �dXd) with �i ∈ {−1, 1};
• Transition: There exists a sequence {rd} for d ≥ 2 such that every d-tuple of continuous

r.v.’s (X1, . . . , Xd) satisfies

rd−1� (X2, . . . , Xd) = � (X1, . . . , Xd) + � (−X1, X2, . . . , Xd)

In addition, there is an increasing number of copula models aimed at modelling depen-
dence and in many cases there is no clear and intuitive correspondence between the
magnitude of a copula’s parameters and the dependence structure they create. Furthermore
the form of concordance and the strength of that concordance measure in different dimen-
sions as a function of the value of the parameters of the copula model. We view the work
created in this manuscript as a useful class of representations and tools that can help study
such features in non-trivial copula models.

In Taylor (2007) they provided a representation of the axioms of a concordance mea-
sure from Scarsini (1984) early work, rewritten explicitly in terms of copula models. This
provides a link between these measures of dependence and the copula model, however a
good understanding of the strength or significance of a concordance measure as a func-
tion of the copula model parameters is not well understood and difficult to study at present.
The main reason for this is that often the evaluation of these concordance measures for dif-
ferent copula models can be very challenging and typically does not admit simple closed
form solutions except in some special well known cases. There are many copula families
in which a framework such as the one we propose in this manuscript will facilitate effi-
cient and computationally accurate methods to gain an understanding of the relationships
between different notions of concordance and the copula models parameters.
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Therefore, the aim of this paper is to develop a class of numerical approximations that
practitioners can utilise to study locally in the state space of the multivariate random vec-
tor two important features: firstly the effects of parametric specifications of dependence in
the form of different copula models and their local induced concordance structures; and
secondly the role of each parameter in the copula model specifications in varying the con-
cordance measure strength locally in the state space. This should be achievable for any
copula model and any desired concordance measure. To achieve these goals we extend the
class of methods developed in Dalessandro and Peters (2017) and Dalessandro and Peters
(2016) by developing a highly accurate and computationally efficient procedure to evaluate
concordance measures for a given copula.

In Dalessandro and Peters (2017) a theoretical framework for tensor representation is
developed and theoretical convergence properties are proven along with computational rates
of convergence and complexity. Then in Dalessandro and Peters (2016) they propose a
generic model for approximating any target copula function which will allow us to develop
a clear and efficient characterization of their properties locally in any desired region of the
state space (support of the target copula model). This characterization admits a accurate
reconstruction of a given copula that we will demonstrate in this paper allows one to then
utilise to accurately calculate a wide range of concordance measures of dependence both
locally and globally in the support of the given target copula model. We note that we present
all required quantities from these two papers in this manuscript to make this paper stand
alone.

We recall that a copula is simply a multivariate probability distribution for which the
marginal probability distribution of each variable is uniform (Nelsen 1999). Copulas are
often used in high-dimensional statistical applications as they allow one to separate out the
modelling and estimation of the distribution of dependent random variables by estimating
first the marginals and then capturing the dependence structure through estimation of a
copula function.

Outline of Contributions In Section 1 we will recall briefly the core results of the approach
developed in Dalessandro and Peters (2016) to construct an approximation of a copula dis-
tribution. This involves a decomposition of the representation of the copula according to a
tensor algebraic method of construction based on continuous Markov chains approximation
of generalized diffusions. The link then to the copula approximation is that the general-
ized diffusion is constructed to admit a density at time t which satisfies the desired copula
or dependence structure to be studied. In this manner, we can construct through approxi-
mations of the generalised diffusion with a copula structure between the marginals of the
process, any desired static copula model approximation that will be of relevance to statis-
tical modelling in understanding relationships between copula parameters and concordance
structures present.

In this paper we extend these results to utilise the copula model decompositions to evalu-
ate efficiently and locally in the state space of the random vector a wide range of multivariate
concordance measures of dependence. To achieve this in Section 2 we present the rela-
tionship between concordance measures and copula models and then introduce our tensor
algebraic approximations for a range of multivariate concordance measures for different
copula families. This allows us to study these concordance measures as a function of the
copula parameters to better understand how the copula parameters induce dependence and
what type of dependence is present for these copula models. This is far from trivial to under-
stand in the grouped, generalized and skewed Student’s t-copula cases and the Archimax
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cases. We finish with illustrations of approximations of concordance measures for multivari-
ate rank correlations, directional dependences, intermediate tail dependence and asymptotic
tail dependence measures.

1 Approximation Scheme for a Copula via a Tensor Decomposition

In this section we will explain how to perform the representation of a target copula distri-
bution through a tensor approximation of generalized diffusions, which will form the basis
for all the constructions derived for concordance measures. The methodology is based on
results derived in detail in Dalessandro and Peters (2017) and then developed for copula
modelling in Dalessandro and Peters (2016) and which we briefly recall in Appendix A.

We denote by x := (x1, . . . , xd) ∈ Rd a d-dimensional vector, and inequalities x ≤ z
are intended componentwise, i.e., xi ≤ zi for all i = 1, 2, . . . , d . Let X(n)

t a d-dimensional
Markov chain with d ≥ 2, specifically with X(n1)

t , X(n2)
t , . . . , X(nd )

t marginal chains, each
with support X k = {x(k)

1 , x(k)
2 , . . . , x(k)

nk } ⊂ R, where n1, n2, . . . denotes the number of
corresponding chains’ states. Therefore

X(n)
t : X → Rd , (1.1)

with X = �d
i=1X i ∈ Rd denoting the d-dimensional tensor space and n = n1 · · · nd .

We will use the equivalent notation X(n1,n2,...,nd )
t for the Markov chain X(n)

t . We denote
the Markov chain joint distribution function by

F (n)
t (x) = P (n)

t (X(n)
t ≤ x), x ∈ X ⊂ Rd , (1.2)

with marginal distribution functions

F (nk)
t (xk) = P (nk)

t (X(nk)
t ≤ xk), xk ∈ R, k = 1, . . . , d . (1.3)

We specify the approximated copula function as the joint distribution function of the
Markov chain

U(n)
t = F (n)

t (X(n)
t ) (1.4)

with marginal chains U(nk)
t = F (nk)

t (X(nk)
t ), for k = 1, . . . , d , each with support Uk =

F (nk)
t (Xk) = {u(k)

1 , u(k)
2 , . . . , u(k)

nk } ⊂ [0, 1], where F (nk)
t denotes the application of the

distribution function of the Markov chain X(nk)
t to each point, for all k = 1, . . . , d .

We denote the approximated copula function by C(n) : U → [0, 1], where U =�d
i=1 Ui ⊂ [0, 1]d is the discretized unit hypercube, such that

F (n)
t (x) = C(n)(F (n1)

t (x1), . . . , F
(nd )
t (xd)), for all x ∈ X ∈ Rd . (1.5)

Moreover if u := (u1, . . . , ud) ∈ U ⊂ [0, 1]d is a d-dimensional vector in the unit
hypercube, we have that

C(n)(u) = F (n)
t (F−1,(n1)

t (u1), . . . , F
−1,(nd )
t (ud)). (1.6)

We denote by c(n)(u; �c) and C(n)(u, �c) the copula density and the copula distribution
function respectively, for all vectors u ∈ U ⊆ [0, 1]d with copula parameters’ set �c.
Then according to Dalessandro and Peters (2016), we calculate the copula as

c(n)(u) = P (n)
t (x; {�, �(u)})
P (n)

t (x; {�, 0})
, for u ∈ U, for x = F−1,(n)(u) (1.7)
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with t = 1, and {�, �(u)} denoting the set of the Markov chain parameters with �(u) : U →
[−1, 1] the local correlation function. Note that every coordinate vector u in the discretized
hypercube U may exhibit a specific mapped local correlation, �(u) ∈ [−1, 1].
In particular the parameters’ set �c ofC(n)(u) = C(n)(u, �c), the copula distribution function
approximated on the unit hypercube U in Eq. 1.6, are linked to the Markov chain distribution
function by the relation

C(n)(u; �c) = F (n)
1 (u; {�, �(u)}), for all u. (1.8)

Given a target copula distribution function C := Ctarget, and C(n)
target(u; �c), its discrete eval-

uation on the unit hypercube points u ∈ U, the equivalent representation in a tensor space
is obtained by locally solving the following problem

min
�(u)

���C(n)
target(u; �c) − F (n)

1 (x; {�, �(u)})
���
2
for all u. (1.9)

Equation 1.9 is of key importance in our approach because it allows us to link the often
complex and not so intuitive target copula parameters set �c to the local Gaussian correlation
parameter set �(u). In this way the copula parametric dependence structure is explained
and displayed through an equivalent representation by means of local Gaussian correlation
coefficients �(u).
A practical way to solve (1.9) is to compute the local likelihood with respect to each local
Gaussian correlation parameter

min
�(u)

��� log
�
C(n)
target(u; �c) − C(n)(u; {�, �(u)})

����
2
, for all u ∈ U. (1.10)

where Ctarget can be any target copula function. The copula distribution function C(n) =
C(n)(u; {�, �(u)}) is evaluated in all points u = (u1, . . . , ud) ∈ U and its value is of a
Gaussian copula function with parameter �(u) (Figs. 1 and 2).

Fig. 1 The left plot reports the copula distribution function C(n)
target belonging to Student-t copula, evaluated

on the unit square U := �2
i=1 Ui ∈ [0, 1]2 and with parameters �c = {� = 0.5, � = 5}. The number of

states used in this example is n1 = n2 = 35. This represents the discretized target copula distribution, or
the copula distribution we seek to approximate. The right end side plot reports the error from solving (1.10)

across the unit square U, namely min�(u)

���C(n)
target(u; �c) − C(n)(u; {�, �(u)})

���
2
for all u ∈ U
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Fig. 2 The plot on the left end side reports �(u) for all u ∈ U from solving (1.10) which represent the
local Gaussian correlations equivalent to the Student t-copula parameters �c = {� = 0.5, � = 5}. This plot
is the visualization of the dependence structure of the target Student t-copula by means of local Gaussian
correlation parameters �(u) for all u ∈ U. Each point coordinate u = (u1, u2) on the discretized copula
support U is uniquely characterized by a Gaussian correlation value �(u1, u2) which gives the magnitude of
the dependency between the marginals. The plot on the right side displays the calculated Student-t copula
density c(u, {�, �(u)}) function of the Gaussian local correlations �(u) for all u ∈ U

1.1 Properties of the Approximated Local Gaussian Copula c(n)

In this section we present some important properties of the approximated local Gaussian
copula function c(n) which makes our proposed methodology to mimic approximated tar-
get copulas extremely appealing when dealing with calculations involving copulas and
specifically the concordance measures.

In particular:

1. We give another explanation to the way we construct the copula approximation. We
prove that the approximating function c(n) is interpretable the approximating density or
Radon-Nikodym derivative of the approximated measure P (n) with respect to P (n)⊥,
where the notation for the approximated density P (n) and approximated uncorrelated
density P (n)⊥ is as described in Appendix A, specifically see Eq. A.9.

2. The local minimizer in Eq. 1.10 always admits a solution.

Remark 1.1 (Orthogonality of the tensor basis) By construction the approximated local
copula density function c(n) is defined on a orthogonal basis, which is the basis resulting
from the tensor product of the constituent operators. In fact each operator matrix used in its
calculation is orthogonal by construction, see Appendix A. Furthermore we construct the
copula over the support X which may be represented as union of disjoint subsets {Bj }, i.e.
X = �d

i=1X i = 	n
j=1 Bj , where each set Bj as coordinate vector point x in the space

X. If we then set B0 = {x = (x(1)
0 , . . . , x(d)

0 )}, B1 = {x = (x(1)
1 , . . . , x(d)

1 )}, . . . , Bn =
{x = (x(1)

n1 , . . . , x(d)
nd )}, therefore creating a countable and ordered sequence of sets spanning
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the whole discretized support X then it is straightforward to obtain the copula distribution
functions as the cumulative sum over all the sets, i.e.

C(n)(Bz) =



j≤z

c(n)(Bj ) (1.11)

In order to prove the above properties we first need to remind some basic definitions of the
density and conditional distribution of a copula.

Definition 2 Let F1, . . . , Fd be continuous marginal distributions. Let C be a copula
distribution

C(u) = F(F−1
1 (u1), . . . , F−1

d (ud)) (1.12)

When the copula distribution C and the joint distribution F are both differentiable, the joint
density function P satisfies

c(u) = P(F−1
1 (u1), . . . , F−1

d (ud))

P1(F−1
1 (u1)) · · ·PdF−1

d (ud))
= c(F1(x1), . . . , Fd(xd)) (1.13)

with c denoting the copula density which is linked to the distribution C by

c(u) = 	d

	u1 . . . dud
C(u). (1.14)

Therefore the copula density is the ratio of the joint density P(x), x ∈ Rd and the density
under independence which is equivalent to the product of the marginal density function
P1(x1) · · · Pd(xd). It is therefore possible to interpret the copula as the adjustment that we
need to make to convert the independence pdf into the joint pdf.

However this adjustment can also have another interpretation: a Radon-Nikodym (R-N)
derivative. In our specific case it will be a R-N derivative for the discrete measure P (n)

constructed through the local Gausian CTMC approximation of Dalessandro and Peters
(2017) which is summarized in Appendix A.

If in Eq. 1.13 we set P(u) = P(F−1
1 (u1), . . . , F−1

d (ud)) and P ⊥(u) =
P1(F−1

1 (u1)) · · ·PdF−1
d (ud)) for convenience of notation then

P(u) = c(u)P ⊥(u). (1.15)

Let us give some more insights about the interpretation of Eq. 1.15 in a more general
mathematical setting and the way the copula c(n)(u) is constructed in our proposed model.

For this purpose X = (X,F) is a measurable space, and we shall refer to the elements of
F simply as measurable sets omitting the � -algebra F . All subsets of X and all functions
on X appearing below are measurable unless otherwise indicated.

Definition 3 (Radon-Nikodym Theorem) Let µ and � be two continuous measures on X,
with � is � -finite and µ absolutely continuous with respect to �. Then there exists a positive
function such that

µ(B) =
�

B
f d� (1.16)

for all subsets B of X. The function f is unique in the sense that if µ(B) = �
B gd� for all

B then f = g. The function f is called the Radon-Nikodym derivative or density of µ with
respect to � and is denoted by dµ

d� .
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Note that a necessary and sufficient condition that the Radon-Nikodym derivative f be
integrable is that µ is � -finite. If we restrict the Radon-Nikodym derivative f to the space
(X,G) with G ∈ F a � -subalgebra, the Radon-Nikodym derivative is

dµ
d�

|G = 1

P(G)

�

G
f dµ = E[f |G]. (1.17)

We also remind the law of total expectation which plays an import role in the way we
construct the approximated copula density.

Definition 4 If X is a random variable whose expected value is E[X], and if {Bj }, i =
1, 2, . . . is a finite or countable partition of the sample space, then

E[X] =



j

E[X|Bj ]P(Bj ) (1.18)

We are now in a position to explain what is the relationship between a R-N derivative 

and all its restrictions gj = E[
|Bj ] over disjoint sets {Bj }, i = 1, 2, . . ., and we do this in
the discrete settings of the copula c(n).

Proposition 2 (Construction of the Approximated Copula cn) The copula c(n) : U →
[0, ∞) in Eq. 1.15 is the approximating density or R-N derivative of the approximated mea-
sure P (n) with respect to P (n)⊥. Furthermore c(n) it is the results of the averaging of R-N
gj = E[
|Bj ] which are the restriction of c(n) on disjoint set Bj spanning X = �

i X i .

Proof From Eq. 1.15 we have that the copula density c(n) is interpretable as R-N deriva-
tive of the approximated correlated measure P (n) with respect to the absolutely continuous
measure P (n)⊥ for all sets in U. Equivalently for the approximated copula c(n) we have that
P (n)(A) = E[1Ac(n)] for A ∈ X . We then observe that in our framework the density sup-
port X = 	n

j=1 Bj can be represented as the union of countable disjoint sets Bj . Therefore
we can apply the law of total expectation to the discrete R-N derivative and obtain:

E[1Ac(n)] = E



j

E[c(n)1Bj ]
P(Bj )

1Bj

�
=



j

E[c(n)1Bj ] = gjE[1Bj ] (1.19)

being the variable gj is measurable with respect to Bj .

In our proposed framework we approximate the first two moments of each conditional
variable gj = E[
|Bj ] with the first two moments of a conditional normal variable. Details
of the local construction of each approximated conditional variable are in Appendix A.

Using Eq. 1.19 we can calculate a local conditional value, which is Gaussian in our case,
matching the local target copula value, and this is done by means of the local minimizer of
Eq. 1.10. The existence of the local minimizer is explained by the above properties of the R-
N derivative. The fact that in this setting always exists a bounded R-N derivative linking the
two densities, and the approximation of the restricted R-N derivative to a conditional Gaus-
sian density, guarantees the existence of a local Gaussian copula value and its corresponding
correlation �(u).

Theorem 1 [Fréchet-Hoeffding bounds, see Embrechts et al. 2001] If C is a d-dimesional
copula, then for every u ∈ [0, 1]d , the Fréchet-Hoeffding inequality is

Wd(u) ≤ C(u) ≤ Md(u) (1.20)
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where the functions Wd(u) and Md(u) defined on [0, 1]d are as following:

Wd(u) = max(u1 + . . . + ud − d + 1, 0)
Md(u) = min(u1, . . . , ud).

In particular the function Md is a d-dimensional copula for all d , however Wd is not a
copula for d > 3.

Proposition 3 (Existence of the Minimizer of Eq. 1.10) Given a target d-dimensional
copula distribution C with parameters set �c, which we denote by Ctarget(u; �c) and a gen-
eralized local Gaussian copula C(n) defined on the discretized hypecube U we have that the
local minimizer

min
�(u)

���C(n)
target(u; �c) − C(n)(u; {�, �(u)})

���
2

(1.21)

always exists for all u ∈ U.

Proof We observe that by the Fréchet-Hoeffding bounds Theorem 1 we have that for all
u ∈ U

Wd(u) = C(n)(u; {�, −1}) ≤ C(n)(u; {�, �(u)}) ≤ C(n)(u; {�, 1}) = Md(u) (1.22)

However we have that such bounds are valid for any copula and in particular

Wd(u) ≤ Ctarget(u; �c) ≤ Md(u) (1.23)

Therefore for any given coordinate point u ∈ U it is always possible to find a correlation
value �(u) ∈ [−1, 1] which minimizes the local minimizer of Eq. 1.21.

1.2 Direct Measure of Directional Dependence

In this section we show how our framework gives immediate measure of directional
dependence. At this purpose we recall some basic definitions.

Definition 5 [Directional Dependence] The pair (U1, U2) is directionally dependent in joint
behaviour if

E[U1|U2 = w] �= E[U2|U1 = w] (1.24)

Directional dependence can be expressed in terms of regression using a copula distribution
function, see Sungur (2005).

Definition 6 (Directional Dependence through regression, see Sungur 2005) Let (U1, U2)
denote a pair of random variables whose marginal distributions have uniform distribution
on [0, 1] and the joint distribution is a copula function C(u1, u2). Let Cu2(u1) denote the
conditional distribution of U1 given U2 = ū

Cu2(u1) = P(U1 ≤ u1|U2 = ū) = 	C(u1, u2)
	u2

. (1.25)

The copula regression function of U2 on U1 is the conditional expectation of U1 given
U2 = ū, which can be expressed by the copula as

rU1|U2(ū) := E[U1|U2 = ū] = 1 −
� 1

0
Cu2(u1)du1. (1.26)
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The directional dependence fromU2 toU1 is defined by using the copula regression function
on U1 as

�2
U2→U1

= V ar(rU1|U2(ū))
V ar(U1)

= E[(rU1|U2(ū) − 0.5)2]
1/12

= 12E[(rU1|U2(ū))2] − 3 (1.27)

which can be interpreted as the proportion of total variance of U1 that has been explained
by the copula regression function rU1|U2(ū).

We can immediately calculate (1.26) in our framework which can be rewritten in terms of
approximated local Gaussian copula as

r(n)
U1|U2

(ū) = 1 −



i

C(n)
u(2) (u1i )�u(1). (1.28)

where

C(n)
u(2)

j
(u(1)

i ) = 1

�u(2)
j

�
C(n)(u(1)

i , u(2)
j + �u(2)

j ) − C(n)(u(1)
i , u(2)

j )
�

(1.29)

with Uk = {u(k)
1 , u(k)

2 , . . . , u(k)
nk } the discretized support of the uniform marginals as intro-

duced above in Eq. 1.4, and �u(k)
i = u(k)

i+1 − u(k)
i . Note that each support grid Uk is not

uniformly spaced.

2 Understanding Relationships Between Copula Parameter(s)
and ConcordanceMeasures

In this section we discuss the relationship between concordance measures of dependence
and the copula representations presented in the previous section. In particular we illus-
trate how to utilise such copula representations to develop a clearer understanding of the
relationship between a copula parameter and different measures of concordance which
can be generally applied to any form of dependence model captured by a copula. The
choice of dependence measure or concordance measure is influenced by the type of depen-
dence one seeks to study, such as: multivariate upper negative (positive) dependence, lower
negative (positive) dependence and negative (positive) dependence; multivariate negative
and positive quadrant dependence; multivariate association, co-monotonicity and stochastic
ordering; positive and negative regression dependence; and extreme dependence, tail depen-
dence and intermediate tail dependence. We start by discussing recent relationships between
general notions of concordance measures between random variables and their characteriza-
tion through copula parametric models. We recall first a general definition of a concordance
measure for a random vector.

Definition 7 (Concordance Measures for Random Vectors) A pair of random variables are
concordant if ‘large’ values of one tend to be associated with ‘large’ values of the other and
‘small’ values of one with ‘small’ values of the other. Analogous definitions of discordance
are available in reverse directions.
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There are numerous ways of mathematically trying to quantify this statement, so conse-
quently, many measures of concordance are available. Such a definition, offers the intuition
behind the need for measuring and quantifying concordance. However, from a statistical per-
spective a more formal understanding of concordance measures was mathematically stated
with regard to copula models in the recent works of Taylor (2007). This selection of axioms
that are desirable for a concordance measure to satisfy are based on the copula character-
ization of the earlier framework originally developed by Scarsini (1984) and presented in
Proposition 1. In Taylor (2007) the following axioms for general concordance measures �
specified generically via copula C are detailed below in Proposition 4.

Proposition 4 (Multivariate Concordance Measures via Copula) Consider a sequence of
maps �d : Cop(d) �→ R and a sequence of numbers {rd}, such that if A, B,C and Cm are
d-copulas and n ≥ 2 then:

• Normalization:�
�
Md� = 1 and �

�
�d� = 0.

• Monotonicity: If A <st B and A ≤st B then �d (A) ≤ �d (B)
• Continuity: If Cm → C, then �d (Cm) → �d (C) as m → ∞.
• Permutation Invariance: If (i1, . . . , id ) is a permutation of (1, . . . , d) then

�(c(ui1 , . . . , uid )) = �(c(u1, . . . , ud).
• Duality: �d(c(1 − u1, . . . , 1 − ud) = �d(c(u1, . . . , ud))
• Reflection Symmetry:

�
∈Rd

�d
�
C� = 0, where  is a reflection,  ∈ Rd is an

element of the subgroup of reflections in the group of symmetries under composition
S([0, 1]d).

• Transition:

rn�d (C) = �n+1 (E) + �n+1 (E(1 − u1, u2, . . . , ud))

whenever E is an (d + 1)-copula s.t. C(u1, . . . , ud) = E(1, u1, . . . , ud).

Although we know these general relationships between the axioms that describe con-
cordance and dependence structures in general and we now know them in general terms as
specified by a statistical model in the form of a copula, it still remains a real challenge to
evaluate and understand these relationships with regard to model parameters for a given cop-
ula model. We aim to address this challenge using the representations of copula developed
previously in the paper.

We note that one can also state the following theorem regarding the properties of
concordance measures that satisfy these axioms, see details in Taylor (2007).

Theorem 2 (Properties of Concordance Measures Satisfying Proposition 4)
Consider the d-copula that is permutation symmetric ie. C� = C for all permuations � of
[0, 1]d . Then for all measures of concordance � and for all symmetries  and � of [0, 1]d
one has

�d(C) = �d(C� ) (2.1)

whenever || = |� | or || + |� | = d

Recall: symmetry length | · | corresponds to the number elementary reflections required
to obtain it.



Methodology and Computing in Applied Probability

Corollary 1 For all d ≥ 2 and for all symmetries  and � of [0, 1]d such that || = |� | or
|| + |� | = d one has

�d(M) = �d(M� ). (2.2)

where M is the d-Frechet-Hoffding Upper Bound copula under permutation.

With regard to copula models there are numerous measures one can consider that satisfy
all or some subset of such axioms. Typically, the evaluation of these concordance mea-
sures and the understanding of the relationship between these concordance measures and
the copula parameter(s) is non-trivial and changes as a function of both dimension and cop-
ula parameter(s) value highly non-linearly. In this section we first discuss some important
examples of concordance measures and then we detail how the framework developed pre-
viously may be utilise to provide a natural framework for evaluation of such measures,
thus providing the necessary understanding of the relationships between the copula family,
copula parameter(s) and the behavior of the concordance measure.

2.1 Functional Copula Mapping for Approximation of General Multivariate
Concordance Measures

Arguably the most widely known and utilised measure of dependence, Pearson’s Prod-
uct Moment Correlation Coefficient, was developed by Karl Pearson, see Pearson (1896),
building on Sir Francis Galton’s approach using the median and semi-interquartile range,
see Galton (1894). Pearson’s correlation coefficient is a measure of how well the two ran-
dom variables can be described by a linear function. The other popular measures often used
in practice when considering notions of pairwise dependence are Spearman’s � (Spear-
man 1904), Kendall’s � (Kendall 1938) and Blomqvist’s � (Blomqvist 1950). In the case
of Spearman’s � it is a measure that assesses how well the dependence between two ran-
dom variables can be described by a monotonic function. As such it is equivalent to the
Pearson’s correlation coefficient between the ranked variables. In addition, one can con-
sider Spearman’s rho and Kendall’s � each as a simple scalar measures of dependence that
depend on the copula of two random variables but not on their marginal distributions. As
noted in Fredricks and Nelsen (2007), one can consider Spearman’s � as forming a mea-
sure of average quadrant dependence, while Kendall’s � is a measure of average likelihood
ratio dependence. In the case of Blomqvist’s � the generalized form is discussed in any
dimension in Joe (1990), Dolati and Úbeda-Flores (2006), and Nelsen (2002) where it is
shown to be expressed directly in terms of a copula distribution function. However, unlike
Kendalls � and Spearmans � which are functionals integrated against the copula distribu-
tion, the Blomqvists � is simple to evaluate given the copula distribution function. It simply
requires the evaluation of the copula distribution at a point ū = [1/2, . . . , 1/2]. We there-
fore focus below on the evaluation of functionals with regard to the constructed copula and
demonstrate how to evaluate these efficiently.

First we observe the following results for Spearman’s and Kendall’s Rank correlations,
both can be specified directly in terms of a copula distribution in both the bivariate and
multivariate settings. We begin with the specification of multivariate Spearman rank.
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2.1.1 Multivariate Spearman Rank Correlation Approximations

Definition 8 (Spearman’s Rank Correlation via Copula) The bivariate Spearman’s Rank
Correlation can be expressed explicitly via the bivariate copula C according to

� = 12
�

[0,1]

�

[0,1]
u1u2dC (u1, u2) − 3. (2.3)

In addition, a general multivariate extension of Spearman’s Rank Correlation is devel-
oped for d-dimensional loss random vectors and given below, see details in Nelsen
(2002).

Definition 9 (Multivariate Spearman’s Rho via Copula) Consider the d-copula given by C,
then Spearman’s Rho concordance measure of dependence is given by

�(C) = h(d)

2d

�

[0,1]d
C(u)du − 1

�
= h(d)


2d

�

[0,1]d
�(u)dC(u) − 1

�
(2.4)

where h(d) = d+1
2d−(d+1) is the normalizing factor derived such that the maximum correlation

is equal to 1.

Definition 10 (Multivariate Generalized Spearman’s Rho via Copula) Consider the d-
copula given by C and the permuted copula C� , then the generalized Spearman’s Rho
concordance measure of dependence is given according to

�d(C) = �d

��

[0,1]d
�
C + C� � d�d − 1

2d−1

�
(2.5)

where one has �d = (d+1)2d−1

2d−(d+1) and �d is the d-Independence Copula.

From this definition of the generalized Spearman’s Rho rank correlation, we can also
define the local as well as the constrained versions of the state-space rank correlation.

Definition 11 (Local and Constrained Multivariate Generalized Spearman’s Rho via Cop-
ula) Consider the d-copula given by C and the permuted copula C� , then the local
generalized Spearman’s Rho concordance measure of dependence for vectors u localized in
some sub-space u ∈ � ⊂ [0, 1]d is given according to

�d(C; �) = �d

��

�

�
C + C� � d�d − 1

2d−1

�
(2.6)

where one has �d = (d+1)2d−1

2d−(d+1) and �d is the d-Independence Copula. The constrained
version of the Spearman’s Rho is then given for vectors u constrained in some sub-space
u ∈ � ⊂ [0, 1]d according to

��d(C; �) = �d

��

�

��C + �C� � d��d − 1

2d−1

�
(2.7)

where one has �d = (d+1)2d−1

2d−(d+1) and ��d is the d-Independence Copula. Where the �C notation
refers to the copula distribution given after renormalization by the truncation according to

�C(B;�) =
�

B

c(u)
C (�)

du (2.8)
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for all sets B ∈ �.

An example where such a correlation measure is of interest arises when one considers
intermediate and extremal dependence measures, such as the following illustrative bivariate
examples where given a pair of uniform variable such that (U1, U2) ∼ C (u1, u2) and one
wishes to evaluate the truncated correlation or restricted correlations given for instance by

E [U1U2|U1 > u1, U2 > u2] = �
[0,1]

�
[0,1] u1u2dC(u1u2|U1 > u1, U2 > u2)

E[U1U2|U1 ≤ u1, U2 > u2] = �
[0,1]

�
[0,1] u1u2dC(u1u2|U1 ≤ u1, U2 > u2).

(2.9)

The important observation is that in general it can be very difficult to evaluate such quanti-
ties even using Monte Carlo procedures, as sampling the conditional or constrained copulas
is a great challenge in many families of copula. In the the following we specify an efficient
approximation based on the general functional copula mapping developed previously.

Proposition 5 (Approximating Local and ConstrainedMultivariate Generalized Spearman’s
Rho via Functional Copula Mappings) Consider the d-copula given by C which is dis-
cretely approximated by the functional copula mapping given by C(n)(u) for all vectors
u ∈ Uk , k = 1, . . . , d , and C(n)� represents the functional copula mapping of the permuted
copula C obtained after permuting the base mimicking local Gaussian copula mapping
C(n). Then one has the functional approximations to the localized generalized Spearman’s
Rho concordance measure of dependence in some sub-space � ⊆ U ⊂ [0, 1]d is given
according to

�(n)
d (C(n); �)

= �d
�

u∈�
�
C(n)(u) + C(n)� (u)

��d
i=1(u − u′) − �d

2d−1

(2.10)

where one has �d = (d+1)2d−1

2d−(d+1) and u′ ∈ � is the neighbour of u.
The constrained version of the Spearman’s Rho is then given for vectors u ∈ �̄ ⊆ U,
therefore for vectors in a constrained some sub-space �̄ ⊂ [0, 1]d according to

��(n)
d (C; �̄)

= �d
�

u∈�̄
��C(n)(u) + �C(n)� (u)

� 1
Card{U∩�̄}

�d
i=1(u − u′) − �d

2d−1
(2.11)

where one has �d = (d+1)2d−1

2d−(d+1) and where the �C(n) notation refers to the functional copula
mapping distribution given after renormalization by the truncation according to

�C(n)(B; �̄) =



u∈�̄∩B

c(n)(u)
�

u∈�̄ c(n)(u)
(2.12)

for all sets B ∈ �̄.

2.1.2 Understanding Multivariate Spearman’s Rank Correlations in Copula Parameter
Space

We illustrate the approximation of the multivariate form of Spearman’s rank correlation for
a range of different copula models: skewed Student’s t-copula; Archimax; and the Clayton
copula member of the Archimedean class. Note, we adopt identical parameterizations for
these copula models as detailed in Dalessandro and Peters (2016). Furthermore, the accu-
racy of the reconstruction via the mimicking local Gaussian copula mapping for a general
class of copula is detailed in Appendix A and further studied in detail with regard to the
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accuracy of this approximation for each of these specified copula families in Section 3 of
Dalessandro and Peters (2016).

The first study we illustrate is to demonstrate the accuracy of our approximation method
for evaluation of multivariate Spearman’s rank correlation. To achieve this we consider one
of the few cases which involves a non-trivial copula model that admits an explicit closed
form relationship between the copula parameter and Spearman’s rank correlation. This is
the 2-dimensional Archimedean copula with the Clayton generator function. We illustrate
below in Fig. 3 the exact Spearman’s Rho rank correlation as a function of � the Clayton
copula parameter and we plot our approximation for a range of copula parameter values
as crosses. The local Gaussian copula distribution C(n) mimicking the parametric Clayton
copula is obtained through the mapping (1.21) on a unit square U = U1 ⊗ U2, with n1 =
n2 = 200 discretization points. The approximated Spearman’s Rho �(n)

d (C(n); U) is then
computed following proposition 5, where the distribution C(n) is integrated over the set U.
The resulting approximated correlation measure is compared with the closed form and it
proves to be very accurate.

Next we illustrate how this decomposition can be used to study the behaviour of the cop-
ula parameter(s) and the effect varying such parameters will have on the resulting induced
concordance measure of interest which in this case will first correspond to the multivariate
rank correlation.

In a 2-dimensional illustration, we first consider the skewed Student’s t-copula model.
We present the case of two different values of skew parameter � ∈ {1, 2} and we demon-
strate the range of the multivariate Spearman’s rho rank correlation as a function of the

Fig. 3 Spearman’s Rho for a Clayton copula with parameter �. Solid line is the exact rank correlation as
a function of the copula parameter � ranging from � = 0 to � = 30, whilst the crosses represent the
approximated Spearman’s rank correlation �(n)

d (C(n); U) obtained using the mapped local Gaussian copula
distributions C(n). Several Clayton copula mappings CClayton(�) �→ C(n) have been calculated each one
corresponding to a specific value of the Clayton copula parameter � ∈ [0, 30]. The values of the approxi-
mated rank correlation �(n)

d (C(n); U) coefficients are in line with the closed form ones and they exhibit also

the desired asymptotic behaviour �(n)
d → 1 as � � 1
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degree of freedom parameter � and the correlation parameter �. Below in Fig. 4 we display
the results of the mapping

Cskewed t-copula(u; {�, �, �}) → C(n) → �(n)
d (C(n); U) for � ∈ {1, 2} , � ∈ [−1, 1], � ∈ [10, 30].

(2.13)

Firstly, we learn from this analysis that as the skewness parameter � increases, the Spear-
man’s rank correlation surface as a function of correlation � and degree of freedom � goes
from a concave to a convex relationship. Furthermore, this inversion of the correlation sur-
face in the parameter space of � and � is more pronounced at extreme correlations for small
degrees of freedom �, compared to the Gaussian like tail cases, which begin to arise as �
increases. In addition, we see from this analysis that as the skewness parameter � increases,
there is a tendency for the model to more readily attain the maximal Spearman’s rank cor-
relation of 1 uniformly in the correlation parameter � as the degree of freedom parameter
� increases. We conjecture from this analysis that as � ↓ 0 the maximal attainable Spear-
man’s rank correlation is strictly less than 1 and ordered in the maximal correlation attained
in the parameter � for any given �.

In the next illustration, see Fig. 5, we demonstrate how the multivariate Spearman rank
correlation behaves for the Archimax copula which we constructed using a Pickands func-
tion parameterised by � and � parameters and a Clayton generator with parameter � . Even
for the 2-dimensional illustration example we present, very little is known about the Spear-
man’s rank correlation for such models as a function of the parameters in this increasingly
popular Archimax model. Again, we illustrate the behavior of the Spearman’s rank corre-
lation for different fixed values of the Clayton copula parameter, as we vary the Pickands
distortion function parameters.

We observe from this study several interesting features. Firstly, there is a lower bound
for the Spearman’s rank correlation for these models which is uniform across the parameter
space for the Pickands distortion function parameters � and �. Secondly, this lower bound
increases in magnitude towards the maximum of 1 as the Clayton generator parameter �
increases. Thirdly, we observe from this analysis that the maximal values of Spearman’s
rank correlation for a given combination of (�, �) lie on the line � = � for any give Clayton
generator parameter � .

Fig. 4 Approximated Spearman’s Rho �(n)
d (C(n); U) for a skewed t-copula with parameters �, � and

correlation �
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