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Abstract 

Endomicroscopy is an emerging imaging modality, that facilitates the acquisition of in vivo, in situ optical 

biopsies, assisting diagnostic and potentially therapeutic interventions. While there is a diverse and constantly 

expanding range of commercial and experimental optical biopsy platforms available, fibre-bundle 

endomicroscopy is currently the most widely used platform and is approved for clinical use in a range of clinical 

indications. Miniaturised, flexible fibre-bundles, guided through the working channel of endoscopes, needles 

and catheters, enable high-resolution imaging across a variety of organ systems. Yet, the nature of image 

acquisition though a fibre-bundle gives rise to several inherent characteristics and limitations necessitating novel 

and effective image pre- and post-processing algorithms, ranging from image formation, enhancement and 

mosaicing to pathology detection and quantification. This paper introduces the underlying technology and most 

prevalent clinical applications of fibre-bundle endomicroscopy, and provides a comprehensive, up-to-date, 

review of relevant image reconstruction, analysis and understanding/inference methodologies. Furthermore, 

current limitations as well as future challenges and opportunities in fibre-bundle endomicroscopy computing are 

identified and discussed. 

Keywords: Fibre bundle endomicroscopy; confocal laser endomicroscopy; imaging; image restoration; image 

analysis; image understanding;  

 

 Introduction 1.

The emergence of miniaturised optical-fibre based endoscopes has enabled real-time imaging, at cellular 

resolution, of tissues that were previously inaccessible through conventional endoscopy. Fibre-bundle 

endomicroscopy (FBEµ), the most prevalent endomicroscopy platform, has been clinically deployed for the 

acquisition of in vivo, in situ optical biopsies in a wide and ever-increasing range of organ systems 

predominantly in the gastro-intestinal, urological and the respiratory tracts. Customarily, a coherent fibre bundle 

is guided through the working channel of an endoscope (or a needle) to a region of interest and intravenous or 

topical dyes are employed to augment tissue fluorescence, enhancing the emitted signal of the imaged structure. 

Endomicroscopy has the potential to assist diagnostic and interventional procedures by aiding targeted sampling 

and increasing diagnostic yield and ultimately reducing the need for histopathological tissue biopsies and any 

associated delays. To date, the most widespread use of FBEµ (along with fluorescent dyes, such as fluorescein) 

is in the gastro-intestinal (GI) tract (Fugazza et al., 2016; Wallace and Fockens, 2009; Wang et al., 2015). In 

particular, FBEµ has been employed in the upper GI tract (East et al., 2016) to detect (i) structural changes in 

the oesophagus mucosa associated with squamous cell carcinoma and Barrett’s oesophagus, and (ii)  polyps and 

neoplastic lesions as well as gastritis and metaplastic lesions in the stomach and duodenum. In the lower GI 

tract, fibre-endomicroscopy has been utilised to (i) detect colonic neoplasia (Su et al., 2013) and malignancy in 

colorectal polyps (Abu Dayyeh et al., 2015), as well as to (ii) assess the activity and relapse potential of 

Inflammatory Bowel Disease (IBD) (Rasmussen et al., 2015; Salvatori et al., 2012).  

In pulmonology, the auto-fluorescence (at 488nm) generated through the abundance of elastin and collagen has 

enabled the exploration of the distal pulmonary tract as well as the assessment of the respiratory bronchioles and 

alveolar gas exchanging units of the distal lung without the need for exogenous contrast agents. Clinical studies 

have demonstrated the ability of FBEµ to image a range of pathologies including (i) changes in cellularity in the 

                  



alveolar space as indicator of acute lunge cellular rejection following lung transplantation (Yserbyt et al., 2014), 

(ii) cross-sectional and level of fluorescence changes in the alveolar structure in emphysema (Newton et al., 

2012; Yserbyt et al., 2017), and (iii) elastic fibre distortion (Yserbyt et al., 2013) and neoplastic changes in 

epithelial cells (Fuchs et al., 2013; Thiberville et al., 2007; Thiberville et al., 2009) in bronchial mucosa.  

Other clinical applications of FBEµ include (but are not limited to) imaging (i) structural epithelial changes 

observable in bladder neoplasia (Sonn et al., 2009) as well as upper tract urothelial carcinoma (Chen and Liao, 

2014), (ii) pancreatobiliary strictures as well as in pancreatic cystic lesions (catheter and/or needle based 

endomicroscopy), detecting potential malignancy (Karia and Kahaleh, 2016; Smith et al., 2012), (iii) the 

oropharyngeal cavity, differentiating between healthy epithelium, squamous epithelium and squamous cell 

carcinoma (Abbaci et al., 2014), and (iv) brain tumours (surgical access), such as glioblastoma, providing 

immediate histological assessment of the brain-to-neoplasm interface and hence improving tumour resection 

(Mooney et al., 2014; Pavlov et al., 2016; Zehri et al., 2014). Furthermore, there has been an effort to develop 

molecularly targeted fluorescent probes, such as peptides (Burggraaf et al., 2015; Hsiung et al., 2008; Staderini 

et al., 2017), antibodies (Pan et al., 2014) and nanoparticles (Bharali et al., 2005), that can bind and amplify 

fluorescence in the presence of specific type of tumours (Hsiung et al., 2008; Khondee and Wang, 2013; Pan et 

al., 2014), inflammation (Avlonitis et al., 2013), bacteria (Akram et al., 2015b) and fibrogenesis (Aslam et al., 

2015). Such fluorescent probes will give rise to molecular FBEµ, enhancing the imaging and the diagnostic 

capabilities of the technology and significantly augmenting utility. 

The proliferation of probe-based confocal laser endomicroscopy (pCLE) in clinical practice, along with the 

emergence of novel, FBEµ architectures and molecularly targeted fluorescent probes necessitate the 

development of highly sensitive imaging platforms, as well as a range of custom, purpose specific image 

analysis and understanding methodologies that will assist the diagnostic process. This review provides a brief 

summary of the available endomicroscopic imaging platforms (Section 2), along with an overview of the state-

of-the-art in fibre-bundle endomicroscopic (FBEµ) image computing methods, namely image reconstruction 

(Section 3), analysis (Section 4) and understanding/inference (Section 5). Owing to its more widespread 

dissemination, this review paper concentrates in FBEµ image computing. Yet, a small number of relevant image 

analysis and understanding techniques developed and assessed for other endomicroscopy platforms, offering 

viable solutions for FBEµ have also been included. Current limitations in FBEµ image computing as well as 

future challenges and opportunities are also identified and discussed (Section 6).  

 Technology overview 2.

To date, four endomicroscopic imaging platforms, all exploiting different fundamental optical imaging 

technologies, have been commercialised for clinical use (NinePoint, Olympus, Pentax, Mauna Kea, Zeiss). 

While this review paper concentrates on fibre bundle based systems, a brief description of the currently 

available endomicroscopic imaging platforms, both commercial and research based, is provided. 

NinePoint Medical (Bedford, Massachusetts, USA) developed the NVisionVLE platform, a Volumetric Laser 

Endomicroscopy (VLE) (Bouma et al., 2009; Vakoc et al., 2007; Yun et al., 2006) device that can acquire in-

vivo, high-resolution (7µm), volumetric data of a cavity (e.g. the gastro-intestinal tract) through a flexible, 

narrow diameter catheter (<2.8mm). VLE combines principles of endoscopic Optical Coherence Tomography 

(OCT) (Tearney et al., 1997), along with Optical Frequency-Domain Imaging (OFDI) (Yun et al., 2003) to 

                  



acquire a sequence of cross-sectional images 100-fold faster than conventional OCT, while maintaining the 

same resolution and contrast. Similar non-commercial OFDI technology has been employed by Tethered 

Capsule Endoscopy (TCE) to provide an imaging alternative for the gastro-intestinal tract (Gora et al., 2013).  

Olympus Medical Systems Co. (Tokyo, Japan) developed a range of prototype endocytoscopes (Hasegawa, 

2007), white-light, flexible, contact endoscopes that can image at cellular resolution (up to >1000x 

magnification). These, now discontinued, prototypes incorporated a miniaturised Charged-Coupled Device 

(CCD) sensor, the associated objective lenses and an adjacent light source at the distal end of the endoscope. All 

imaging at the endoscope/tissue contact layer was achieved via light scattering. Olympus provided a variety of 

options, from (i) full endoscope integration, to (ii) stand-alone, probes that could fit through a 3.7mm endoscope 

working channel (Ohigashi et al., 2006; Singh et al., 2010). An alternative non-commercial implementation, 

replacing the miniature sensor with a flexible, coherent fibre bundle enabling imaging at the proximal end of the 

fibre (Hughes et al., 2013), as well as a range of adaptations to achieve true reflectance endomicroscopy while 

avoiding back-reflections (Hughes et al., 2014; Liu et al., 2011; Sun et al., 2010) have been proposed.  

Confocal laser endomicroscopy (CLE) employs a miniaturised optical fibre to acquire 2D images, 

predominantly fluorescent, across the examined tissue structure. Inspired from benchtop confocal microscopy 

(Minsky, 1988), a low-power laser signal (typically at 488nm), focused to a single, finite point within the 

specimen, is scanned across a two-dimensional imaging plane, generating a 2D image commonly referred to as 

an optical section. Optical fibres are typically used for relaying light and may act as bi-directional pinholes, 

rejecting light outside the focal point, reducing the associated image blurring. There are currently, numerous 

experimental and two commercial CLE platforms with clinical utility, namely endoscope-based (eCLE) and 

probe-based (pCLE) endomicroscopy. A number of review papers (Jabbour et al., 2012; Oh et al., 2013) provide 

insight into the current CLE instrumentations. In brief, eCLE integrates a miniaturised confocal scanner into the 

distal tip of a device using a single core fibre (Delaney et al., 1994; Harris, 1992, 2003). Piezoelectric or 

electromagnetic actuators can be used to generate the 2D scanning pattern. The tissue signal generated at each 

individual (scanning) location is transferred through the single-core fibre to a detector and associated processing 

unit at the proximal end, where the image is accumulated and reconstructed after each complete scan. A clinical 

eCLE platform was developed by Pentax Medical (Tokyo Japan), integrating the confocal scanning facility into 

a conventional endoscope. This now discontinued device had a 12.8mm diameter and enabled the acquisition of 

optical sections at a 500x500µm field of view and 0.7µm lateral resolution. Optiscan (Melbourne, Australia) has 

recently developed a pre-clinical eCLE platform, comprising of a 4mm diameter standalone micro-endoscope 

with a <0.5µm lateral resolution (highest commercially available resolution) and a 475x475µm field of view. 

The acquisition frame-rate in both devices is dependent on the associated acquisition aspect ratio and Z-stack 

depth (single vs multiple frames), with typically reported values ranging between 0.8 to 6 frames per second (for 

a single frame). Carl Zeiss Meditec (Jena, Germany) has recently developed a digital biopsy tool for 

neurosurgery (Leierseder, 2018) based on the underlying Optiscan eCLE technology (475x267µm FOV at 

488nm excitation). A number of alternative, non-commercial experimental architectures utilising distal based 

scanning have been proposed, including (i) high speed imaging (Shi and Wang, 2010) via parallel distal 

scanning through a multi-core fibre; (ii) dual-axis imaging (Wang et al., 2003), separating the illumination and 

collection paths and enabling 2D (Liu et al., 2007), 3D (Ra et al., 2008) and multi-colour (Leigh and Liu, 2012) 

imaging capabilities with improved optical sectioning (axial resolution); and (iii) two-photon imaging (So et al., 

                  



2000; Wu and Li, 2010), employing multiple, less energetic photons to induce transition of the imaged 

fluorescent structure to the desired excitation state, improving the resulting imaging resolution, penetration 

depth and reducing potential tissue photodamage. 

Probe-based confocal laser endomicroscopy (pCLE) utilises a multicore imaging fibre-bundle for the acquisition 

of 2D optical en face sections of a tissue structure. Confocal scanning takes place at the proximal end of the 

fibre and is relayed by the fibre bundle. Each individual core within the bundle, often combined with a pinhole, 

rejects light outside the focal plane. Compared to eCLE, the optical setup for pCLE results in a substantially 

smaller distal endomicroscope as well as higher acquisition frame rates. In contrast, the imaging depth is fixed 

(and smaller) by the distal optics and the lateral resolution is determined (limited) by the inter-core distance of a 

particular multicore fibre bundle and distal optics design. (Gmitro and Aziz, 1993; Rouse et al., 2004; 

Sabharwal et al., 1999) proposed an early implementation of pCLE with (Dubaj et al., 2002; Le Goualher et al., 

2004b) introducing refinements for real-time confocal scanning in biomedical applications. Mauna Kea 

Technologies (Paris, France) developed the Cellvizio pCLE imaging platform along with a wide range of 

compatible multi-core fibre probes with diameters as small as 0.3mm, and, excluding magnification from distal 

optics, approximate lateral resolution of 3.3µm and field of views between 300 and 600µm. Additional distal 

optics can be used to improve the imaging resolution to approximately 1µm, at the expense of field of view 

(240µm) and diameter (<3mm). The probes’ miniature sizes enable use through the working channel of most 

commercially available endoscopes as well as some needles/catheters, while the relevant high data acquisition 

rate (>12fps) enables real-time imaging of moving structures, resulting in Cellvizio (pCLE) being the most 

widely used endomicroscopy platform approved for clinical use. A rapidly growing volume of alternative, non-

commercial experimental architectures is being developed, including (i) right-angle stage attachment for 

standard desktop confocal microscopes (ii) line-scanning confocal endomicroscopy (Hughes and Yang, 2015, 

2016), improving the acquisition frame rate without compromising substantially image quality; (iii) flexible and 

low-cost endomicroscopy architectures (Hong et al., 2016; Krstajić et al., 2016; Pierce et al., 2011; Shin et al., 

2010), employing LED, widefield illumination; (iv) structured illumination endomicroscopy (Bozinovic et al., 

2008; Ford et al., 2012b; Ford and Mertz, 2013), providing out-of-focus background rejection without beam 

scanning; (v) oblique back-illumination endomicroscopy (Ba et al., 2016; Ford et al., 2012a; Ford and Mertz, 

2013), collecting phase-gradient images of thick scattering samples; and (vi) multi-spectral imaging (Bedard and 

Tkaczyk, 2012; Cha and Kang, 2013; Jean et al., 2007; Krstajić et al., 2016; Makhlouf et al., 2008; Rouse and 

Gmitro, 2000; Vercauteren et al., 2013; Waterhouse et al., 2016). These alternative architectures, along with 

pCLE can be grouped under the term Fibre-Bundle Endomicroscopy (FBEµ), which, due to its more widespread 

dissemination, is the technology primarily deliberated throughout this study.  

 Image reconstruction 3.

The nature of image acquisition through coherent fibre bundles is a source of inherent limitations in FBEµ 

imaging. Coherent fibre bundles are comprised of multiple (>10.000) cores that (i) have variable size and shape, 

(ii) are irregularly distributed across the field of view, (iii) have variable light transition properties, including 

coupling efficiency and inter-core coupling spread, and (iv) have spatiotemporally variable auto-fluorescent 

(background) response at certain imaging wavelengths. Such properties directly limit the imaging capabilities of 

the technology. There has therefore been a substantial interest in the development of effective and efficient 

                  



approaches to reconstruct FBEµ images, attempting to compensate for these inherent limitations. Table 1 

provides an overview of the most relevant image reconstruction studies applicable to FBEµ, while Figure 1 

provides characteristic examples of the associated imaging limitations.  

 Honeycomb effect 3.1.

The most visually striking, and limiting artefact, arising from the transmission of the imaged scene through a 

coherent fibre bundle, is the so-called honeycomb effect. The honeycomb effect, illustrated in Fig. 1, is a 

consequence of the light being guided from the distal to the proximal end of the individual cores comprising the 

fibre-bundle but not through the surrounding cladding. Each core, while usually imaged across multiple pixels, 

contains intensity information on a single, discrete position within the imaged scene. Consequently, the resulting 

raw image data is a high-resolution rectangular matrix representation of a low-resolution, irregularly-sampled 

scene. Several studies have attempted to supress/remove the honeycomb effect in fibred endoscopy, generating 

continuous, high-resolution image sequences.  

Throughout the years, a number of approaches employing band-pass filtering in the Fourier domain have been 

proposed (Dickens et al., 1998; Dickens et al., 1997, 1999; Dumripatanachod and Piyawattanametha, 2015; Ford 

et al., 2012b; Han et al., 2010; Lee and Han, 2013b; Maneas et al., 2015; Rupp et al., 2007; Winter et al., 2006). 

Band-pass filters employing a range of different kernels, static and adaptive (derived from the core distribution 

across the bundle) were typically combined with a range of pre- and post-processing approaches to enhance the 

performance of suppressing the core honeycomb pattern. Band-pass filtering provides a simple and efficient 

approach to suppress/remove the honeycomb structure from fibred endoscopic images. However, given the 

irregularly distributed cores in most modern miniaturised fibrescopes, identifying suitable thresholds in the 

frequency domain that would remove the honeycomb effect (usually high frequency component) without 

blurring the underlying imaged structure (usually lower frequency component) can be inherently challenging.  

 
Fig. 1. Examples illustrating properties of coherent fibre bundles that limit the imaging capabilities of fibred endoscopy. (a) 
Scanning Electron Microscopy (SEM) image of commercial coherent fibre bundle (FIGH-30-650S, Fujikura), along with (b) 
a uniform, flood illumination (520nm) image of the same fibre bundle, using widefield endomicroscopy (Krstajić et al., 
2016). The variable size and shape, as well as irregular distribution of the cores is apparent in both (a) and (b). (c) Binary 

                  



mask and associated Delaunay triangulation of cores, identified within a uniformly illuminated image, similar to (b). (d) 
Intensity profile across the five cores highlighted in (c) illustrating the variations of coupling efficiency amongst different 
neighbouring cores. (e) Example inter-core coupling spread at 520nm, as measured by (Perperidis et al., 2017b). (f) Example 
raw widefield endomicroscopy image of auto-fluorescent alveoli structures from an ex-vivo, human lung. The imaged 
structured is heavily corrupted by the intrinsic characteristics of the imaging fibre bundle, highlighting the need for effective 

image reconstruction approaches. Images (a-b), (c) and (e) have been reproduced (cropped) from Figures 6, 7 and 8 
respectively of “Characterization and modelling of inter-core coupling in coherent fiber bundles” by (Perperidis et al., 
2017b) under CC BY 4.0. 

In contrast to band-pass filtering, interpolating amongst the irregular core lattice effectively removes the 

undesired honeycomb structure while retaining the original image content at the core locations. To accurately 

identify the locations of each individual core, a uniformly illuminated calibration image is required. Local 

maxima and the Circular Hough Transforms (CHT) are amongst the wide range of off-the-shelf solutions for 

identifying core locations. Suggested interpolation methods (Elter et al., 2006; Le Goualher et al., 2004a; Rupp 

et al., 2007; Rupp et al., 2009; Vercauteren et al., 2006) include (i) C0 continuous nearest neighbour, 

triangulation-based and natural-neighbour based linear interpolations, (ii) C1 continuous Clough-Tocher 

interpolation (Amidror, 2002) and a Bernstein-Bezier extension to natural neighbours (Farin, 1990), and (iii) C2 

continuous Radial basis functions (Amidror, 2002), b-spline approximation (Lee et al., 1997) and recursive 

Gaussian filter (Deriche, 1993) adaptation of Shepard’s interpolation. (Zheng et al., 2017) attempted to refine 

the results of a bilinear interpolation using a rotationally invariant adaptation of Non-Local Means (NLM) 

filters. Moreover, (Winter et al., 2007) proposed an extension of the core interpolation approach for single chip 

colour cameras, suppressing any false colour moiré patterns. While higher order continuity generated smoother 

images, a property that can be desirable in particular applications, the associated reconstruction accuracy was 

shown  (Rupp et al., 2009) to be only marginally superior to simple C0  algorithms. On the other hand, for 

simple Voronoi Tessellation based approaches, all calculations could be performed once, at the calibration stage, 

generating look up tables to be employed during the subsequent image reconstruction task. Consequently, by 

generating comparable results with less computational complexity, makes such linear interpolation approaches 

more attractive candidates for real-time applications.  

Superposition or compounding of spatially misaligned and partially decorrelated images is an approach that has 

been effective in the enhancement of medical ultrasound images (Perperidis et al., 2015; Rajpoot et al., 2009). In 

fibred endoscopy, movement of the fibre tip in successive frames accommodates the acquisition of information 

from the regions previously masked by the fibre cladding. Hence, by effectively aligning the imaged structures 

and combining a sequence of shifted frames (i) the honeycomb structure can be suppressed/eliminated, (ii) the 

imaging resolution can be increased. Numerous attempts have examined the effect of different shift patterns, 

altering the location of the core pattern with respect to the imaged structure, and superposition methods, such as 

deriving the average or maximum intensity of the aligned images on fibreoscopic images (Kyrish et al., 2010; 

Lee and Han, 2013a; Lee et al., 2013; Rupp et al., 2007). Alternatively, (Cheon et al., 2014a, b; Vercauteren et 

al., 2006; Vercauteren et al., 2005) employed the random movements during data acquisition, as would be 

expected in a realistic clinical scenario, to create an enhanced composite image. The approach was first 

introduced as part an image mosaicing framework (see Section 4.1) with the main effort being placed in 

devising an accurate and efficient approach for the alignment of consecutive images. While small translational 

movements can be efficiently and potentially accurately estimated in real-time, in a realistic scenario with, 

image distortions as well as elastic and sometimes large structural deformations between consecutive frames, the 

accurate real-time alignment and compounding can be an eminently challenging task. Increased acquisition 

                  



frame rate can potentially reduce the deformations between consecutive frames, making their effective 

alignment more realisable. However, increasing the acquisition frame rate can have detrimental effect in the 

signal to noise ratio and associated imaging limits of detection.  

Recently, several more “sophisticated”, iterative methods have been proposed for the reconstruction of fibred 

endoscopic images and the removal of the associated fixed honeycomb pattern. (Han and Yoon, 2011) employed 

a Bayesian approximation algorithm to decouple the honeycomb effect. (Liu et al., 2016), based on the 

empirical observation that natural images tend to be sparse in the wavelet domain, employed l1 norm 

minimisation in the wavelet domain to remove the honeycomb pattern. (Han et al., 2015) employed an efficient, 

non-parametric iterative compressive sensing technique for inpainting the cladding regions, without the need of 

any prior information with regards to the underlying core structure. Limited evaluation (on USAF resolution 

targets and some biological data) demonstrated the potential of such iterative approaches in image 

reconstruction, removing the honeycomb artefact as well as fibre bundle defects, while maintaining the spatial 

resolution and considerably increasing the image contrast and contrast to noise ratio (CNR). However, the 

current algorithm implementations are considered computationally expensive, making them unsuitable for real 

time applications. Nevertheless, accelerated, parallel processing though state-of-the-art Graphical Processing 

Units (GPU) could potentially enable the real-time implementation of such iterative approaches. 

Table 1. Overview of reconstruction approaches for fibred endoscopic imaging. 

Topic References Methodology Comments 

Honeycomb 

effect & Fourier 

domain filters 

(Dickens et al., 1998; Dickens et al., 

1997, 1999) 

Manual band-reject filters with “high-boost” filter. Simple to implement, 

and computationally 

efficient approaches that 

suppress the honeycomb 

structure. 

However, inherently 

susceptible to blurring 

the imaged structures. 

(Han et al., 2010) Histogram equalisation with Gaussian low-pass filter. 

(Rupp et al., 2007; Winter et al., 

2006)  

Low pass filter using alternative (circular, star-shaped), 

rotationally invariant kernels. 

(Lee and Han, 2013b)  Gaussian based, notch reject filter, eliminating periodic, 

high-frequency components. 

(Ford et al., 2012b)  Iteratively blurring (low pass) cladding regions while 

maintaining core intensities. 

(Dumripatanachod and 

Piyawattanametha, 2015) 

Efficient with 2 1D top-hat filters (equivalent to square 

kernel). 

Honeycomb 

effect & core 

interpolation 

(Elter et al., 2006; Le Goualher et al., 

2004a; Rupp et al., 2007; Rupp et al., 

2009) 

C0-2
 continuous interpolation methods on irregular core 

lattice. 

Simple and efficient 

approaches capable on 

maintaining the original 

core information.  

Successfully employed 

in clinical/commercial 

systems. 

(Zheng et al., 2017)  Enhancement of interpolated (bilinear) images using 

rotationally invariant Non-Local Means. 

(Winter et al., 2007) Correcting for variable core PSF overlap over a colour-

sensor’s Bayer pattern, suppressing false colour moiré 

patterns. 

Honeycomb 

effect & image 

superimposition 

(Rupp et al., 2007) Integrate the core locations of 4 shifted and aligned 

images, interpolate revised grid. 

Capable of removing the 

honeycomb structure 

and increase the 

effective resolution of 

the acquired data.  
(Kyrish et al., 2010; Lee and Han, 

2013a; Lee et al., 2013) 

Compounding images shifted (translation stage) with a 

range of predetermined patterns. 

                  



(Cheon et al., 2014a, b; Vercauteren 

et al., 2006; Vercauteren et al., 2005) 

Aligning (compensating for random movements) and 

combining consecutive frames. 

Developing real-time 

elastic registration 

approaches is a major 

challenge. 

Honeycomb 

effect & 

iterative 

reconstruction 

(Han and Yoon, 2011) Maximising the posterior probability in a Bayesian 

framework (Markov Random Fields). 

Preliminary studies, 

successful at removing 

honeycomb structures. 

Not necessarily improve 

reconstruction error to 

interpolation. 

Computationally costly 

due to iterative nature. 

(Liu et al., 2016) l1 norm minimisation (using iterative shrinkage 

thresholding - IST) in the wavelet domain. 

(Han et al., 2015) Efficient, non-parametric iterative compressive sensing 

for inpainting cladding regions. 

Variable 

coupling & 

background 

response 

(Ford et al., 2012b; Le Goualher et 

al., 2004a; Zhong et al., 2009) 

Affine intensity transform incorporating dark and 

bright-field information at each core. 

Capable of supressing 

(in real time) the effect 

of spatio-temporally 

variable coupling and 

background response. 

Successfully employed 

in clinical/commercial 

systems. 

(Savoire et al., 2012) Blind calibration exploring neighbouring core 

correlation to recursively (online) derive gain and offset 

coefficients in each core. 

(Vercauteren et al., 2013) Multi-colour extension of (Le Goualher et al., 2004a) 

dealing with geometric and chromatic distortions. 

Cross coupling (Perperidis et al., 2017a) Quantifying (and integrating into a linear model) cross 

coupling within fibre bundles. 

Effective in supressing 

the effect of cross 

coupling.  

Computationally costly 

for real-time scenarios. 

(Karam Eldaly et al., 2017)  Deconvolution and image reconstruction, reducing the 

effect of inter-core coupling. 

 Variable coupling and background response 3.2.

Coherent fibre bundles comprise of a large number cores, commonly in excess of 5000. To reduce the effect of 

inter-core coupling, neighbouring cores tend to be of variable size and shape. A consequence of this core 

irregularity is the variable coupling efficiency observed across the fibre bundle. Furthermore, some imaging 

fibre bundles have exhibited an intrinsic, background auto-fluorescent response at certain imaging wavelengths 

(e.g. 488nm). Auto-fluorescence, as with coupling efficiency, is also associated with the shape and size of each 

individual core. These innate fibre properties have a detrimental effect in imaging quality. Consequently, 

explicit calibration procedures have been developed in an attempt to supress their effect in fibred endoscopic 

imaging. (Le Goualher et al., 2004a) proposed an off-line calibration process, utilising (i) an image of the fibre 

auto-fluorescent background (dark-field), as well as (ii) an image of a uniformly fluorescent medium (bright-

field). More specifically, for every frame during data acquisition, geometric distortions caused by the resonant 

scanning mirrors were compensated and the intensity at each core location was normalised using an affine 

intensity transformation combining the dark and bright-field information. (Ford et al., 2012b; Zhong et al., 

2009) extended the (Le Goualher et al., 2004a) approach, introducing additional normalisation terms to partially 

compensate for camera bias, ambient background light and occasional system realignment. (Vercauteren et al., 

2013) adapted the off-line calibration approach in (Le Goualher et al., 2004a) to deal with the distortion 

compensations (geometric and chromatic) for multi-colour acquisition. In particular, chromatic distortions were 

estimated and compensated by a symmetric and robust version of the Iterative Closest Point algorithm relying 

on orthogonal linear regression.  

The aforementioned studies assumed constant gain (coupling efficiency) and offset (background auto-

fluorescence) for each individual core. However, medium-dependent and slow time-varying coefficient 

deviations can introduce a static noise pattern on the acquired images. (Savoire et al., 2012) explored the high 

                  



correlation of signals between neighbouring cores to develop a blind on-line calibration process. For every core 

in the bundle, (i) linear regression on a temporal window estimated the relative gain and offset coefficients for 

the associated neighbouring core-pairs, (ii) regularised inversion derived the core’s actual gain and offset 

parameters. To compensate for slow time-varying coefficient changes, the process was performed recursively 

over temporal windows sufficiently large to enable a robust inversion process.  

 Inter-core coupling 3.3.

Inter-core coupling is another limitation in coherent fibre bundles, resulting in blurring of the imaged structures 

and consequently a worsening in the associated limits of detection in FBEµ. Inter-core coupling has been 

studied both experimentally (Chen et al., 2008; Wood et al., 2017) and within the theoretical framework of 

coupled mode theory (Ortega-Quijano et al., 2010; Reichenbach and Xu, 2007; Wang and Nadkarni, 2014), 

providing (i) insights on the factors affecting cross talk, and (ii) solutions/recommendations for optimal design, 

selection and optimisation of fibre bundles. Yet, due to the trade-off between cross coupling and core density, 

cross coupling can be suppressed yet not eliminated through optimal fibre design. In a recent study, (Perperidis 

et al., 2017a), introduced a novel approach for measuring, analysing and quantifying cross coupling within 

coherent fibre bundles, in a format that can be integrated into a linear model of the form        with   

being the recorded image,   the original signal,   the convolution operator modelling the spread of light, and   

an additive observation noise. (Karam Eldaly et al., 2017) employed this linear model and demonstrated the 

potential of both optimisation-based and simulation-based approaches in reconstructing FBEµ data and reducing 

the effect of inter-core coupling. However, the computational requirements of the proposed methodology limit 

their current suitability in real-time clinical applications.  

 Image analysis 4.

Analysis of the acquired data and quantification of the imaged structures and potential pathologies is an 

imperative component to the development of Computer Aided Diagnosis (CAD) systems. Such systems can 

capitalise on the real-time, optical biopsy capabilities of the technology. Yet, the underlying imaging 

technology, along with the nature of the clinical data acquisition, generating a steady stream of high resolution 

images with constricted Field of View (FOV), impose a series of inherent restrictions/challenges to the 

development of image analysis methodologies. To date, image analysis research for FBEµ can be broadly 

categorised into (i) mosaicing (Table 2), and (ii) quantification (Table 3) methods. However, the literature 

appears to be heavily unbalanced, concentrating predominantly on the task of mosaicing frame sequences to 

extend the associated FOV.  

 Mosaicing 4.1.

The miniaturisation of imaging fibre bundles in FBEµ constraints the effective field of view (potentially 

<500µm) and thus limits sampling diversity, which have implications for navigation, target tissue identification 

and scene interpretation. To address these inherent limitations, multiple, partially overlapping frames acquired 

over time can be aligned and combined (stitched) into a single frame with extended field of view. The process 

has been referred to as image mosaicing. Over the years, there has been considerable research in the 

development of image mosaicing approaches (Ghosh and Kaabouch, 2016), employed in a range of applications, 

including endoscopic imaging (Bergen and Wittenberg, 2016). Yet, generic mosaicing approaches do not deal 

with the inherent properties and limitations of endomicroscopy as described in (Vercauteren 2006). Notably, 

                  



FBEµ is a direct contact imaging technique. The interaction of a moving rigid fibre-bundle tip with soft tissue 

may result in non-linear deformations of the imaged structures. A model of probe-tissue interaction for FBEµ 

was proposed in (Erden et al., 2013). Furthermore, in laser scanning based FBEµ platforms, an input frame does 

not represent a single point in time. Instead, each sampling point is acquired at a slightly different point in time, 

resulting in potential deformations when imaging fast moving objects. Finally, the imaged tissue structures are 

sampled through a sparse, irregularly distributed fibre bundle. Hence, due to these non-linear deformations, 

motion artefacts and irregular sampling of the input frames, there has been a substantial research interest in the 

development of custom mosaicing approaches optimised for endomicroscopic data. The proposed 

methodologies, some currently used in clinical practice, range from simple real-time, to more intricate post-

procedural solutions, for either free-hand and/or robotically driven mosaicing platforms. Table 2 and Fig. 2 

provide an overview of FBEµ mosaicing techniques and characteristic examples of the derived mosaics. 

Early mosaicing approaches were post-procedural and addressed both rigid and elastic deformations (Fig. 2). 

(Vercauteren et al., 2006; Vercauteren et al., 2005) were the first studies to identify the necessity for custom 

mosaicing approaches in endomicroscopy. (Vercauteren et al., 2006) provided a hierarchical framework of 

frame-to-reference transformations (on the original, sparsely sampled data) to iteratively derive a globally 

consistent rigid alignment, while compensating for motion induced distortions, as well as for non-rigid 

deformations. Scattered data approximation was employed to reconstruct a continuous, regularly sampled image 

from the sparsely sampled inputs merged into a common reference. The proposed method, currently used as part 

of Mauna Kea’s post-procedural analysis software, was tested on phantom and in vivo data producing smooth 

mosaics with extended field of view and enhanced resolution (due to image reconstruction on partially 

overlapping, irregularly sampled images – see Superposition in Section 3.1). (Loewke et al., 2007a) decomposed 

the problem into similar components, compensating for global (rigid) as well as local (elastic) transformations 

(incorporating the effect of motion distortions), maximising the certainty of the registration, both global and 

local, as an integrated optimisation problem. Averaging of overlapping pixels as well as multi-resolution 

pyramid blending were tested on both simulated as well as in-vivo data, producing mosaics with smooth image 

transitions and sharp edges across the imaged structures. Finally, (Hu et al., 2010) adopted a different approach, 

employing elastic registration of consecutive frames based on optical flow of robust image features and blending 

the mosaiced frames into a super-resolved image through a Maximum a Posterior (MAP) estimation technique. 

However, very limited FBEµ data (1 mosaic) were provided for the assessment of the technique.  

The complex and descriptive models employed by the preceding methodologies have a direct effect on their 

computational requirements and consequently their real-time capability. Real-time mosaicing can provide much 

needed feedback, guiding the data acquisition process, ensuring a smooth continuous path over the desired 

region of interest (Fig. 2). (Vercauteren et al., 2008) proposed an early real-time mosaicing algorithm, 

integrating translation and distortion (due to finite scanning speed) to a single rigid transformation (estimated 

through a fast, normalised cross correlation matching algorithm) followed from a simple “dead leaves” model 

for image blending. A very similar approach of aligning consecutive frames was employed by (Bedard et al., 

2012). (Loewke et al., 2008) adopted a two-stage pair-wise registration between consecutive frames, (i) 

obtaining an initial translation estimate through optical flow on easily trackable features, and (ii) refining the 

estimate through a gradient descent on cross correlation approach. A multi-resolution pyramid blending 

algorithm was also employed recombining overlapping regions to a composite image. To achieve real-time 

                  



performance, these approaches needed to make certain assumptions and hence be subjected to a number of 

inherent limitations, such as the inability to compensate for global, accumulative alignment errors as well as any 

elastic deformations. A potential solution to these limitations, which has been adopted by both (Loewke et al., 

2011) and by Mauna Kea Technologies, is employing a two-stage mosaicing strategy, including real-time 

mosaicing for live image acquisition, followed from a more accurate, post-procedural reconstruction.  

Most mosaicing approaches for FBEµ have assumed a roughly static scene imaged with a moving field of view. 

However, this is not always the case in clinical applications with mosaicing removing dynamic information that 

can be of potential clinical use. (He et al., 2010) proposed a method compensating for a range of movements, 

both operator induced as well as due to respiratory and cardiac motions, stabilising the field of view for 

improved monitoring of dynamic structural changes. In (Mahé et al., 2015) dynamic video sequences on static 

mosaics were integrated, enabling the FOV extension without the associated loss of dynamic structural changes 

throughout the acquisition. A two-stage approach, of static mosaicing followed by stitching of the associated 

video segments was employed to reduce computational load. Visual artefacts at the seams across the mosaic 

were suppressed using a gradient-domain decomposition. Dynamic mosaics (infinite loops) from six organs 

(oesophagus, stomach, pancreas, bladder, biliary duct and colon) with various conditions were produced and 

clinically assessed by four experts. The produced visual summaries indicated higher level of consistency with 

the original data compared to static mosaicing.  

Mosaicing techniques for FBEµ have, for the most part, concentrated in aligning and blending images with no a 

priori information on the acquisition trajectory, based exclusively on topology inference through the changes on 

the imaged structures. Such approaches call for large overlap amongst adjacent frames and, for effective, 

smooth results, can be computationally expensive. There has therefore been interest in incorporating such a 

priori trajectory information in the mosaicing process. (Loewke et al., 2007b) utilised feedback from a robotic 

arm determining the five degree-of-freedom position and orientation of its end-effector (along with projective 

geometry) as an initial global rigid alignment amongst a frame sequence. (Vyas et al., 2015) replaced the robotic 

arm with a six degree-of-freedom electromagnetic sensor positioned at the tip of the fibre-bundle in a proof-of-

principle study. The positioning feedback from the sensor acted as a coarse global alignment followed from a 

fine tuning similar to (Vercauteren et al., 2008). In (Mahé et al., 2013) they used weak prior knowledge of the 

trajectory (spiral scan) to derive spatio-temporal associations within the frame sequence, linking overlapping 

frames from successive branches of the spiral scan and estimating optimal transforms similar to (Vercauteren et 

al., 2006). While these approaches have been reported to improve the efficiency and/or the robustness of the 

mosaicing process, they require additional actuators/sensors at the tip of the fibre bundle, either to drive or to 

provide feedback on the scanning path. Such hardware additions are currently limiting their suitability for 

endoscopic applications, necessitating for future miniaturisation of the relevant technologies.  

The previous studies described above dealt predominantly with free hand movements for producing an extended 

field of view through image mosaicing. While free-hand mosaicing is a very valuable tool, the ability to create 

customised scanning paths, ensuring a full imaging coverage of the region of interest, is also highly desirable. A 

number robotised distal scanning tips have been proposed (Erden et al., 2014; Rosa et al., 2013; Rosa et al., 

2011; Zuo et al., 2015; Zuo et al., 2017b) facilitating customised and structured mosaic acquisition paths (such 

as spiral and raster scans) for FBEµ (Fig. 2). While a diverse set of architectures has been proposed, the plurality 

                  



of solutions catered mostly for Minimal Invasive/Laparoscopic Surgery applications, with some prototypes 

suitable for endoscopic applications (Zuo et al., 2017a). Further miniaturisation is therefore imperative for 

facilitating robotically controlled scanning in endoscopy. In robotised scanning, the complex 3D surface of 

many of the examined structures, along with the lack of haptic feedback may result in loss of contact, or 

excessive contact/pressure between the fibre bundle and the imaged structure. (Giataganas et al., 2015) created 

an adaptive probe mount that could maintain constant (low force magnitude) contact between the tissue and the 

imaging probe. Furthermore, the direct contact of the hard tip of the fibre bundle with the soft tissue can lead to 

tissue deformations, resulting in accumulative deviation off the desired path throughout a scan. There have been 

studies attempting to understand this soft tissue behaviour and provide feedback to the robotised scanner in an 

attempt to compensate for the anticipated path deviations. The feedback can be (i) through determining the 

loading-distance prior an automated scan and compensating respectively by adjusting the scan path (Erden et al., 

2013), or (ii) through visual servoing (Rosa et al., 2013), estimating the imaged path in real-time through the 

mosaiced image data and adjusting accordingly to meet the desired scan path. While further research and 

development, especially in their miniaturisation is necessary, robotic scanning is anticipated to serve as a key 

milestone to the adoption of image mosaicing in a wide range of clinical endoscopic and laparoscopic 

procedures. Yet, the detailed discussion on such robotised scanning approaches is beyond the scope of this 

paper. (Zuo and Yang, 2017) has produced a thorough review on endomicroscopy for robot assisted 

intervention, providing details and discussion on a wide range of relevant studies. 

                  



 

Fig. 2. Examples of mosaics employing a range of motion/deformation compensation algorithms as well as motorised 
acquisition path control. (a-c) Mosaics of a silicon wafer using (a) local only, (b) local and motion distortion, and (c) global 
and motion distortion compensation; (d-e) Mosaics of mouse brain blood vessels using (d) local and (e) global motion and 

deformation compensation. While local, rigid frame alignment can generate mosaics in real-time, global and non-linear 
motion and deformation compensation is required for more accurate, continuous mosaics. (f-g) Global mosaic (circular ROI 
in (g) matching FOV in (f)) of human mouth mucosa where the accurate alignment and reconstruction can result in denoised 
and super-resolved images. (h-j) Customised and structured mosaic acquisition paths (such as spiral. raster and square 
scans). Images reproduced and adapted (cropped/resized) from: (a-c) and (f-g) (Vercauteren et al., 2006); (d-e) (Loewke et 
al., 2011), (h) (Erden et al., 2014), (i) (Rosa et al., 2013), (j) (Erden et al., 2013). 

 

                  



Table 2. Overview of mosaicing approaches for fibred endoscopic imaging. 

Topic References Methodology Comments 

Image based, real-time (Bedard et al., 2012; 

Vercauteren et al., 2008) 

Local rigid alignment through normalised 

cross correlation matching.  

Simple, local, rigid 

registration based on image 

similarity maximisation. 

Provide valuable real-time 

feedback during data 

acquisition for effective 

mosaic generation. 

Certain assumptions and 

model simplifications 

required for achieving real 

time performance. 

(Loewke et al., 2008) Local rigid alignment through feature based 

optical flow refined via gradient descent on 

normalised cross correlation. 

Image based, post-

procedural 

(Vercauteren et al., 2006; 

Vercauteren et al., 2005) 

Hierarchical framework of frame-to-reference 

transformations (on the original, sparsely 

sampled data) to derive a globally consistent 

rigid alignment, while compensating for 

motion distortions, elastic deformations. 

Global alignment seen as an estimation 

problem on a Lie group. 

More complex models 

dealing with a range of local 

and global, rigid and elastic 

image transformations.  

Post-procedural approaches 

with real-time capacity 

compromised due to the 

underlying complex 

registration models. (Loewke et al., 2011; 

Loewke et al., 2007a) 

Compensating for global (rigid) as well as 

local (elastic) transformations (including 

motion distortion. Fixed correspondence 

between images were replaced with a Gaussian 

Potential representing the amount of certainty 

in the registration. Global and local 

deformation potentials were maximised in an 

integrated optimisation problem 

(Hu et al., 2010) Elastic registration of consecutive frames 

based on optical flow of robust image features 

(RANSAC strategy on Lucas-Kanade tracker. 

A Maximum a Posterior (MAP) estimation 

based image blending generated super-

resolved images. 

Image based, dynamic 

imaging 

(Mahé et al., 2015) Dynamic mosaic obtained by solving a 3D 

Markov Random Field. Two-stage approach, 

of static mosaicing followed by stitching of the 

associated video segments. 

Generating mosaics that 

maintain temporal 

information in the form of 

infinite loops.  

External input based (Loewke et al., 2007b) Initial rigid alignment using feedback from a 

robotic arm determining the five degree-of-

freedom position/orientation of the fibre tip. 

Actuators/sensors provide 

feedback on the scanning 

path improving the 

efficiency and/or the 

robustness of mosaicing. 

Hardware additions are 

limiting their suitability for 

endoscopic applications. 

(Vyas et al., 2015) Initial rigid alignment using feedback from a 

six degree-of-freedom electromagnetic sensor 

positioned at the tip of the fibre-bundle. 

(Mahé et al., 2013) Weak a-priori knowledge of the trajectory 

(spiral scan) used to derive spatio-temporal 

associations within the frame sequence. A 

hidden Markov model notation and a Viterbi 

algorithm was recovered the optimal frame 

associations, feeding a modification of the 

mosaicing algorithm by (Vercauteren et al., 

2006) to estimate the optimal transform. 

 

 Quantification  4.2.

Aside from image mosaicing, there have been a limited number of image analysis studies for FBEµ images. 

These studies have predominantly concentrated on the detection and quantification of particles and structures 

                  



that can act as indicators of pathological or physiological processes in the circulatory system, oropharyngeal, 

gastrointestinal and pulmonary tracts. For the most part, empirical, ad hoc observations, combined with simple, 

off-the-shelf image analysis approaches, have been employed. This section along with Table 3 and Fig. 3 

provide a brief overview of the most relevant image analysis/quantification studies for fibred endomicroscopic 

data. 

 
Fig. 3. Examples of image analysis performed on a range of organ systems. (a-b) Segmentation of intestinal villi, and (c-d) 
detection of goblet cells within the villi. (e) Detection of intestinal crypts in colorectal polyps as a first step towards 
automated classification between benign and dysplastic epithelial tissue. (f-g) Detection of fluorescent stained bacteria, 
appearing as bright dots in (f), in the alveolar space of ovine distal lung. Images reproduced and adapted (cropped/resized) 
from: (a-b) (Boschetto et al., 2015b); (c-d) (Boschetto et al., 2015a); and (g) (Prieto et al., 2016). 

In the circulatory system, (Savoire et al., 2004) proposed a method to estimate the velocity of Red Blood Cells 

(RBC) within micro-vessels from a single endomicroscopic frame, exploiting the skewing artefact introduced on 

fast moving RBC due to the relatively slow scanning speed of the vertical axis component (resulting in circular 

RBCs appearing ellipsoidal). (Perchant et al., 2007) developed algorithms to track and align a region of interest 

over consecutive frames for cell traffic analysis and blood velocity estimation. (Huang et al., 2013) examined 

the variability in stained cardiac tissue structures imaged through FBEµ as a means for intraoperatively 

identifying nodal tissue in living rat hearts with potential application to neonatal open-heart surgery. In the 

orapharyngeal tract, (Mualla et al., 2014) identified the borders and locations respectively of epithelial cells in 

the mucosa layer of vocal chords as the first step to analysing and quantifying structural changes.  

                  



Table 3. Overview of quantification approaches for fibred endoscopic imaging. 

Organ (System) Quantifying References Methodology Comments 

Circulatory  Red blood cell 

velocity. 

(Savoire et al., 2004) Thresholding and line-fitting (M-

estimators) translated (through 

trigonometry) to RBC velocity. 

Inventive use of known and 

quantifiable artefact in raster 

scanning imaging systems 

for deriving physiological 

information.  

Preliminary results with 

uncertain clinical relevance. 

(Perchant et al., 2007) ROI tracking and alignment through 

(i) scanning distortion compensation, 

and (ii) global affine registration, for 

blood velocity estimation through 

spatio-temporal correlation. 

Feasibility study.  

Preliminary results with 

uncertain clinical relevance. 

Oropharyngeal Epithelial cells in 

vocal chords. 

(Mualla et al., 2014) Watershed segmentation (borders) 

and local minima detection (location). 

Empirical, ad-hoc approach 

employing off-the-shelf 

image analysis methods.   

Limited data can potentially 

lead to poor generalisation of 

the proposed methodology. 

Gastro-intestinal Intestinal crypts in 

Inflammatory Bowel 

Disease. (eCLE) 

(Couceiro et al., 2012) Detecting (local maxima), segmenting 

(ellipse fitting on edge detection) and 

quantifying (number, connectivity). 

Empirical, ad-hoc 

approaches employing off-

the-shelf image analysis 

methods  

Heuristic parameter 

estimation, hard thresholds 

and limited data can 

potentially lead to poor 

generalisation of the 

proposed methodologies. 

Intestinal crypts in 

colorectal polyps. 

(Prieto et al., 2016) Contrast enhancement, thresholding 

(Otsu’s) and morphological filters 

(erosion, centre of mass, circularity). 

Goblet cells in villi. 

(eCLE) 

(Boschetto et al., 2015a) Detecting (matched filters), 

segmenting (Voronoi diagrams) cells 

and identifying (hard threshold) 

goblet cells within the villi. 

Intestinal villi. 

(eCLE) 

(Boschetto et al., 2015b) Detect via morphological filters (top-

hat, morphological reconstruction and 

closing) and quad-tree decomposition. 

 

 (Boschetto et al., 2016b) Subdivide to superpixels, extract 

features and classify through Random 

Forests to generate a binary 

segmentation map. 

Employing established data 

driven approaches with 

reasonable size of data, 

resulting on better 

generalisation potential. 

Pulmonary Alveoli sacs in mice 

distal lung.  

(Namati et al., 2008) Segmenting (optimum separation 

thresholding) and quantifying (8-point 

connectivity) alveolar sacs. 

Limited data and uncertain 

translatability to human 

alveoli sacks due to their 

large size relative to the 

limited field of view. 

Stained mesenchymal 

stem cells in rat lungs. 

(Perez et al., 2017) Contrast stretch, denoise (opening), 

threshold and count (connected 

component analysis). 

Empirical, ad-hoc approach 

employing off-the-shelf 

image analysis methods.   

Stained bacteria in 

distal lung. 

(Karam Eldaly et al., 

2018) 

Outlier detection using a hierarchical 

Bayesian model along with a MCMC 

algorithm based on Gibbs sampler. 

More elaborate approaches, 

adopting model-based and 

data-driven methodologies.  

They have potential for good 

generalisation and translation 

to clinical applications. 

Stained bacteria and 

cells in distal lung. 

(Seth et al., 2017, 2018) Bacterial and cellular load using 

spatio-temporal template matching 

with a radial basis functions network. 

                  



In the gastrointestinal tract, (Couceiro et al., 2012) developed a methodology that employed off-the-shelf 

algorithms for segmenting and quantifying intestinal crypts in endomicroscopic images as a potential indicator 

for Inflammatory Bowel Disease. Similarly, (Prieto et al., 2016) employed crypt detection as a first step towards 

automated classification between benign and dysplastic epithelial tissue in colorectal polyps. (Boschetto et al., 

2015a; Boschetto et al., 2016b; Boschetto et al., 2015b) attempted to semi-automatically analyse and quantify 

fluorescent endomicroscopic images of the gastro-intestinal mucosa, as a first step to assist diagnosis and 

monitoring of Celiac Disease. (Boschetto et al., 2016b; Boschetto et al., 2015b) proposed methodologies for 

segmenting intestinal villi, while (Boschetto et al., 2015a) proceeded in detecting and segmenting cells within 

the villi and differentiating between columnar and goblet cells of the epithelium.  

Finally, in the pulmonary tract, (Namati et al., 2008) analysed mice distal lung images  and automatically 

quantified the number and size of alveolar sacs. (Perez et al., 2017) applied a sequence of off-the-shelf image 

processing operations to count fluorescently labelled Mesenchymal Stem Cells injected into rat lungs, as a 

potential indicator for lung repair in radiation induced lung injury. (Karam Eldaly et al., 2018) employed a fully 

unsupervised, hierarchical Bayesian approach for detecting bacteria labelled with a (green) fluorescent smart-

probe (Akram et al., 2015a) within the, highly auto-fluorescent (also green) distal lung. The algorithm was an 

extension of (McCool et al., 2016) for denoising along with outlier detection and removal in sparsely, irregularly 

sampled data. Such fully unsupervised approches offer a flexible and consistent methodology to deal with 

uncertainty in inference when limited amount of data or information is available. (Seth et al., 2017, 2018) 

quantified bacterial and cellular load in the human lung adopting and adapting a learning-to-count (Arteta et al., 

2014) approach, employing a multi-resolution, spatio-temporal template matching scheme using radial basis 

functions network.  

 Image understanding 5.

Another component of the image computing pipeline is the higher-level understanding and exploitation of the 

acquired, reconstructed and sometimes processed data, in an attempt to extract clinically and biologically 

relevant information, and consequently guide the diagnostic process. Due to the nature of FBEµ data acquisition 

in a clinical setup, a large volume of continuous frame sequences is generated, sometimes surpassing 1000 

frames per video. These video sequences include uninformative/corrupted frames, off-target frames outside the 

examined anatomic structure and/or region of interest, as well as a range of on-target frames from healthy and 

pathological structures. This large, and sometimes very diverse, data volume acts as a major bottleneck in the 

analysis and quantification of the data, increasing the required human/computational resources, and potentially 

diluting the objectiveness of associated clinical procedure. The main body of FBEµ image understanding 

research to date can be broadly categorised into frame (i) classification (Tables 4-5 and Fig. 4), and (ii) content-

based retrieval methods (Table 6).  

 Image classification 5.1.

Classification of frames on pre-determined, clinically defined cohorts based on their content is currently the 

most investigated area of FBEµ image computing research. An abundance of studies have applied binary as well 

as multi-class classification on endomicroscopic images of a range of organ systems in an attempt to identify 

cancer in ovarian epithelium (Srivastava et al., 2005; Srivastava et al., 2008), abnormalities in distal lung 

alveolar structures (Desir et al., 2012a; Désir et al., 2010; Desir et al., 2012b; Hebert et al., 2012; Heutte et al., 

                  



2016; Koujan et al., 2018; Petitjean et al., 2009; Saint-Réquier et al., 2009), informative frames in brain 

(Izadyyazdanabadi et al., 2017a; Izadyyazdanabadi et al., 2017b) and pulmonary videos  (Leonovych et al., 

2018; Perperidis et al., 2016), cancerous nodules in the airways (Gil et al., 2017; He et al., 2012; 

Rakotomamonjy et al., 2014) and distal lung (Seth et al., 2016), pathological epithelium in the oropharyngeal 

cavity (Aubreville et al., 2017; Jaremenko et al., 2015; Vo et al., 2017) , changes in oesophageal epithelium in 

cases of Barrett’s oesophagus (Ghatwary et al., 2017; Hong et al., 2017; Veronese et al., 2013; Wu et al., 2017), 

adenocarcinoma (Ştefănescu et al., 2016), colorectal polyps (André et al., 2012b; Zubiolo et al., 2014) and celiac 

disease (Boschetto et al., 2016a) in intestinal epithelium, neoplastic tissue in breast nodules (Gu et al., 2017), as 

well as two types of common brain tumours, glioblastoma and meningioma (Kamen et al., 2016; Murthy et al., 

2017; Wan et al., 2015). Methodologically, most of the aforementioned studies employed the same basic 

structure, defining a hand-crafted feature space descriptive of the underlying imaged structure, training a range 

of classifiers, to distinguish between pre-determined frame categories. For organs/structures that do not exhibit 

any auto-fluorescence at the imaging wavelengths, fluorescence dyes such as methylene blue and fluorescein, 

and molecular probes (He et al., 2012) were employed to generate the necessary fluorescent signal.  

Table 4. Overview of classification approaches for fibred endoscopic imaging employing traditional machine learning. 

Organ (System) Classifying References Methodology Comments 

Pulmonary Distal lung 

alveolar 

abnormalities. 

(Desir et al., 2012a; 

Désir et al., 2010; Desir 

et al., 2012b; Hebert et 

al., 2012; Heutte et al., 

2016; Koujan et al., 

2018; Petitjean et al., 

2009; Saint-Réquier et 

al., 2009) 

Features: First Order Statistics, 

GLCMs, LBPs, SIFT, Scattering 

Transform, FREAK, ORB, 

Homomorphic filters, Structural 

Information (Canny and Sobel Edge 

Detectors), Sparse - Irregular LBPs, 

LQPs, HOGs, LDPs, Homogeneity, 

Spatial Frequency, Fractal Texture, 

Intensity, Wavelet and CNN 

Features. 

Classifiers: K-NN, SVMs, SVM-

RFE, Gaussian Mixture Models, 

LDA, QDA, Random Forests, 

Generalised Linear Model, 

Gaussian Processes, Boosted 

Cascade of Classifiers, Neural 

Networks. 

Multiclass: One-vs-all and one-vs-

one ECOCs, binary tree 

classification, Recursive SVM tree 

and Naïve Bayes.  

Other: Pruning trees for non-

detection; feature selection (i.e. 

SDA, FSS and PCA) for 

dimensionality reduction; visual 

coding (Bag of Words, Sparse 

Coding and Fisher Kernel Coding) 

and classification on mosaics for 

enhanced classification 

performance. 

Simple and effective 

methodologies performing 

in most part binary 

classification. Results are 

positive indicating the 

potential strength of simple 

approaches in classifying 

endomicroscopic images.  

Primary limitations include 

(i) the limited scope of the 

classification, for example 

health VS pathological, 

when endomicroscopic 

sequences contain a 

plethora of frame classes, 

and (ii) the limited number 

of images used for training, 

testing and evaluation, 

making the proposed 

methodologies susceptible 

to a range of biases. 

Informative frames 

within videos. 

(Leonovych et al., 2018; 

Perperidis et al., 2016) 

Cancerous nodules 

in airways and 

distal lung. 

(He et al., 2012; 

Rakotomamonjy et al., 

2014; Seth et al., 2016) 

Gastro-

intestinal 

Oesophagus 

epithelial changes. 

(Ghatwary et al., 2017; 

Veronese et al., 2013; 

Wu et al., 2017) 

Intestinal 

adenocarcinoma. 

(eCLE)  

(Ştefănescu et al., 2016) 

Colorectal polyps. (André et al., 2012b; 

Zubiolo et al., 2014) 

Celiac disease. 

(eCLE) 

(Boschetto et al., 2016a) 

Oropharyngeal Pathological 

epithelium. 

Jaremenko et al., 2015; 

Vo et al., 2017) 

Brain Brain tumours 

(glioma and 

meningioma). 

(Kamen et al., 2016; 

Wan et al., 2015) 

Ovaries Epithelial changes (Srivastava et al., 2005; 

Srivastava et al., 2008) 

                  



 
Fig. 4. Examples of structural changes observed in OEM images across variety of organ systems and conditions. These 
structural changes have been used to classify/detect a range of clinically relevant pathologies. (a-c) Difference in tissue 
structure in the alveoli structures of the distal lung, indicating (a) healthy and (b) pathological elastin strands, as well as (c) 
alveoli sacs flooded with cells. (d-f) Difference between (a) healthy and (c) cancerous oral epithelium, along with (b) an 
example of oral epithelium with limited textural information where classification can be challenging. (g-i) Difference 

between (g-h) Glioblastoma and (i) Meningioma brain tumour images. (j-k) Difference between (j) healthy colon mucosa 
and (k) adenocarcinoma (Ştefănescu et al., 2016). Images (d-f) have been reproduced (cropped) from Figure 6 of “Automatic 
Classification of Cancerous Tissue in Laserendomicroscopy Images of the Oral Cavity using Deep Learning” by (Aubreville 
et al., 2017) under CC BY 4.0. Images (g-i) have been reproduced (cropped) from Figure 3 of “Automatic Tissue 
Differentiation Based on Confocal Endomicroscopic Images for Intraoperative Guidance in Neurosurgery” by (Kamen et al., 
2016) under CC BY 4.0. Images (j) and (k) have been reproduced (cropped) from Figures 2 and 3 respectively of “Computer 
Aided Diagnosis for Confocal Laser Endomicroscopy in Advanced Colorectal Adenocarcinoma” by (Ştefănescu et al., 2016) 
under CC BY 4.0. 

Commonly used feature descriptors include (i) first order image statistics, (ii) structural information through 

Skeletonisation, Sobel and Canny Edge Detectors, etc. (iii) Haralick’s texture parameters derived through Gray 

Level Co-occurrence Matrices (GLCM), (iv) Local Binary Patterns (LBP) and their variation of Local Quinary 

Patterns (LQP), and (v) Scale Invariant Feature Transforms (SHIFT). Other less adopted descriptors employed 

as discriminative features include (i) spatial frequency based features extracted at Fourier domain (Srivastava et 

al., 2005; Srivastava et al., 2008), (ii) fractal analysis (Ştefănescu et al., 2016), (iii) Scattering transform 

(Rakotomamonjy et al., 2014; Seth et al., 2016), (iv) Fast Retina Keypoint (FREAK) (Wan et al., 2015), (v) 

Oriented FAST and rotated BRIEF (ORB) (Wan et al., 2015), (vi) Histogram of Oriented Gradients (HOG) (Gu 

et al., 2016; Vo et al., 2017), (vii) textons (Gu et al., 2016), (viii) Local Derivative Patterns (LDP) (Vo et al., 

2017), as well as (ix) features extracted from Convolutional Neural Networks (CNN) prior to the fully 

                  



connected layer employed for computing each class score (Gil et al., 2017; Vo et al., 2017). (Leonovych et al., 

2018) introduced Sparse Irregular Local Binary Patterns (SILBP), an adaptation of LBPs taking into 

consideration the sparse, irregular sampling imposed by the imaging fibre bundle on FBEµ images. Feature 

spaces combining two or more of the above descriptors are also frequent, with descriptors customarily extracted 

from the whole image, yet in some cases, regular or randomly distributed sub-windows/patches have been used, 

either on their own, or in conjunction to the whole image feature space. 

A number of well-established classifiers have been assessed, including (i) k-Nearest Neighbours (kNN) (André 

et al., 2012b; Desir et al., 2010; Hebert et al., 2012; Saint-Réquier et al., 2009; Srivastava et al., 2005; Srivastava 

et al., 2008), (ii) Linear and Quadratic Discriminant Analysis (LDA and QDA) (Leonovych et al., 2018; 

Srivastava et al., 2005; Srivastava et al., 2008), (iii) Support Vector Machines (SVM) and their adaptation with 

Recursive Feature Elimination (SVM-RFE) (Desir et al., 2010; Desir et al., 2012b; Jaremenko et al., 2015; 

Leonovych et al., 2018; Petitjean et al., 2009; Rakotomamonjy et al., 2014; Saint-Réquier et al., 2009; Vo et al., 

2017; Wan et al., 2015; Zubiolo et al., 2014), (iv) Random Forests (RF) and variants such as Extremely 

Randomised Trees (ET) (Desir et al., 2012a; Heutte et al., 2016; Jaremenko et al., 2015; Leonovych et al., 2018; 

Seth et al., 2016; Vo et al., 2017), (v) Gaussian Mixture Models (GMM) (He et al., 2012; Perperidis et al., 

2016), (vi) Boosted Cascade of Classifiers (Hebert et al., 2012), (vii) Neural Networks (NN) (Ştefănescu et al., 

2016), (viii) Gaussian Processes Classifiers (GPC), and (ix) Lasso Generalised Linear Models (GLM) (Seth et 

al., 2016). Most studies employed leave-k-out and k-fold cross validation to assess the predictive capacity of the 

proposed methodology on limited, pre-annotated frames. In an attempt to enhance the classification performance 

and/or reduce the computational workload required for training and testing, some studies incorporated additional 

steps in the classification pipeline. In particular, feature selection (dimensionality reduction in feature space) 

such as Stepwise Discriminant Analysis (SDA), Forward Sequential Search (FSS), and Principal Component 

Analysis (PCA) were also used (Perperidis et al., 2016; Srivastava et al., 2005; Srivastava et al., 2008) prior to 

the classification process. Furthermore, visual coding schemes, such as Bag-of-Words, Fisher Kernel Coding 

and Sparse Coding (Kamen et al., 2016; Vo et al., 2017; Wan et al., 2015), as well as reduction of non-detection, 

minimising the incorrectly classified images through rejection mechanisms (Desir et al., 2012a; Heutte et al., 

2016), have been investigated.  

Classification of endomicroscopic images has predominantly concentrated in binary cases, with a very limited 

number of studies having attempted multi-class classification (Boschetto et al., 2016a; Ghatwary et al., 2017; 

Hong et al., 2017; Koujan et al., 2018; Veronese et al., 2013; Wu et al., 2017; Zubiolo et al., 2014). To this end, 

(Boschetto et al., 2016a) employed a multi-class Naïve Bayes classifier. (Koujan et al., 2018) adopted the One-

Versus-All (OVA) Error Correcting Output Codes (ECOC), a popular method (along with other ECOCs such as 

One-Versus-One and Ordinal) for multi-class classification using binary classifiers. (Ghatwary et al., 2017; 

Veronese et al., 2013) tackled the multi-class problem as a pre-determined sequence (tree) of binary 

classifications (through SVM), while (Zubiolo et al., 2014) employed graph theory tools (minimum cut) to 

recursively estimate the optimal associated bi-partitions (large SVM margin). Hierarchical (tree) binary 

classifications can potentially reduce the classification complexity from linear for OVA to logarithmic. (Wu et 

al., 2017) improved the performance of multi-class classification performance incorporating unlabelled images 

through an adaptation of semi-supervised approach called Label Propagation method introduced by  (Zhou et al., 

2003). 

                  



Table 5. Overview of classification approaches for fibred endoscopic imaging going beyond traditional machine learning. 

Organ (System) Classifying References Methodology Comments 

Pulmonary Cancerous nodules 

in airways. 

(Gil et al., 2017) Unsupervised classification 

(compensating for limited data 

availability) using graph 

representation and community 

detection algorithms.  

Early FBEµ classification 

approaches going beyond 

the traditional machine 

learning pipeline, 

exploring methods such as 

Convolutional Neural 

Networks (off the self as 

well as custom), transfer 

learning, unsupervised 

learning and multi-modal 

learning at a latent space. 

The results are very 

promising. Yet, more data, 

both in terms of numbers 

as well as in terms of 

diversity are necessary. 

Furthermore, custom 

solutions, taking into 

consideration the inherent 

FBEµ imaging properties, 

could further enhance the 

classification performance.  

Gastro-

intestinal 

Oesophagus 

epithelial changes. 

(Hong et al., 2017) 

(Aubreville et al., 2017) 

Custom CNN architecture for the 

multi-class frame classification. 

Oropharyngeal Pathological 

epithelium. 

(Aubreville et al., 2017) Full-training of LeNet-5 and 

shallow fine-tuning the Inception v3 

(using the ImageNet database). 

Brain Informative frames 

within videos. 

(Izadyyazdanabadi et 

al., 2017a; 

Izadyyazdanabadi et al., 

2017b) 

Fully-trained AlexNet and 

GoogleNet as well as comparing the 

between full training and transfer 

learning through fine-tuning using 

the ImageNet database. 

 Brain tumours. (Murthy et al., 2017) Novel Cascaded CNN, discarding 

easy images at early stages, 

concentrating on challenging ones 

at subsequent, expert shallow nets.  

Breast Cancerous breast 

nodules. 

(Gu et al., 2017) Multi-modal (FBEµ mosaics and 

histology) classification mapping 

the original features to a latent 

space for improved SVM 

performance. 

There have recently been some studies that do not follow the same basic structure of training a classifier on a 

hand-crafted feature space descriptive of the underlying imaged structures. (Gil et al., 2017) proposed an 

unsupervised classification approach to compensate for the limited quantity of data available for training and 

testing decision support systems. The methodology used graph representation to codify feature space 

connectivity followed by community detection algorithms (Cazabet et al., 2010), representing space topology 

and detecting associated image communities. (Gu et al., 2016) incorporated features extracted from 

endomicroscopy mosaics as well as associated histology images, to a supervised framework, mapping the 

original features to a latent space by maximising their semantic correlation. The derived latent features 

outperformed mono-modal features in binary classification (SVM) of breast cancer images. Furthermore, recent 

advances of Deep Learning architectures, such as Convolutional Neural Networks (CNN), have resulted in 

numerous powerful tools for binary or multi-class image classification, without the need for explicit definition 

of feature descriptors. (Hong et al., 2017) proposed a custom CNN architecture with for the multi-class 

classification of epithelial changes in Barrett’s oesophagus. (Aubreville et al., 2017) adopted and adapted two 

established CNN architectures for the detection of cancerous tissue in the oral cavity, (i) a patch-based 

classification based on full-training of LeNet-5 (Lecun et al., 1998), as well as (ii) a whole image classification 

based on shallow fine-tuning the Inception v3 network (Szegedy et al., 2016) pre-trained using ImageNet 

database (Deng et al., 2009). Similarly, (Izadyyazdanabadi et al., 2017a) fully-trained AlexNet (Krizhevsky et 

al., 2012) and GoogleNet (Szegedy et al., 2015) for the detection of diagnostic frames in brain endomicroscopy. 

(Murthy et al., 2017) presented a novel multi-stage CNN, discarding images classified with high confidence at 

early stages, concentrating on more challenging images at subsequent, expert shallow networks. The proposed 

                  



network demonstrated substantial improvement on traditional feature/classifier as well as CNN architectures 

when classifying (binary endomicroscopic brain tumour images. (Izadyyazdanabadi et al., 2017b) compared the 

classification performance amongst fully training CNNs from scratch against transfer learning through fine-

tuning, shallow (fully connected layers) or deep (whole network), of pre-trained networks using conventional 

image databases such as ImageNet. Similar to (Tajbakhsh et al., 2016), fine-tuning was found to be able to 

provide better or at least similar classification performance to training from scratch on limited medical image 

databases.  

Table 6. Overview of image retrieval approaches for fibred endoscopic imaging. 

Topic References Methodology Comments 

Image retrieval through 

low-level visual features.  

(André et al., 2009a) Bag of Visual Words (k-means clustering) of 

multi-scale SIFT descriptors extracted from 

regularly distributed circular regions.  

Thorough methodologies for 

image and video retrieval 

based solely on low-level 

information extracted from 

images.  

Due to lack of relevant 

ground truth, methodologies 

were evaluated as binary 

classification tasks (instead 

of retrieval). 

(André et al., 2009b) Introduce (i) spatial information between local 

features by exploiting the co-occurrence matrix 

of their visual words (ii) temporal relationship 

across frames through mosaicing. 

(André et al., 2010) Deriving visual words from individual frames 

and weighting the contributions of local regions 

through the relevant overlap rate derived during 

mosaicing. 

(André et al., 2012b; 

André et al., 2011b) 

Combining and clinically testing above 

approaches as a binary classification (kNN) 

between neoplastic/benign colonic epithelium. 

(André et al., 2011a) (i) Generate the “perceived similarity” ground 

truth (manual assessment – Likert scale), and (ii) 

learn an adjusted similarity/distance metric 

(linear transform) for optimal mapping of video 

signatures (histograms of visual words). 

First attempt to evaluate 

directly the performance of 

endomicroscopic video 

retrieval, through generating 

the perceived similarity of 

ground truth. 

Image retrieval combining 

low-level visual features 

with high-level semantic 

context.  

(André et al., 2012a; 

André et al., 2012c) 

Fisher-based approach transforming visual word 

histograms to 8 binary semantic concepts. 

Combine with adjusted similarity distance to 

improve “perceived similarity”.  

Bridging the semantic gap 

between low-level visual 

features, extracted from the 

images, and high-level 

clinical knowledge, 

generated through human 

perception. 
(Watcharapichat, 2012) Gabor filter and Earth Mover’s Distance based 

retrieval enhanced through iterative “relevance 

feedback” and Isomap dimensionality reduction. 

(Tous et al., 2012) Retrieval via (i) low-level, image-based features 

(LBPs & k-NN with Euclidian or Manhattan 

distances), (ii) high level key-word semantic 

descriptions (Apache Lucene search engine), and 

(iii) third party software compatibility through 

MPEG Query Format & JPEG Search standards. 

Other image retrieval 

approaches 

(Kohandani Tafresh et al., 

2014) 

Semi-automated query adaptation of (André et 

al., 2011b) via (i) temporal segmentation based 

on kinetic stability (Euclidean distance of SHIFT 

descriptors across consecutive frames), and (ii) 

manual selection of spatially stable segments. 

Adaptations of  (André et al., 

2011b) enhancing retrieval 

performance. 

(Gu et al., 2017) Unsupervised, multimodal graph mining (i) 

deriving similar (cycle consistency) and 

dissimilar (geodesic distance) FBEµ and 

histology frame pairs, (ii) learning discriminative 

features in the associated latent space. 

                  



 

 Image retrieval 5.2.

While a less prolific research area to the closely related image classification, a number of studies have 

developed Content Based Image Retrieval (CBIR) frameworks for endomicroscopic data. Unlike image 

classification, that groups images to a number of pre-determined (trained) classes, CBIR methods search a 

database to find (and return) the images that are most similar (based to some image extracted feature set) to a 

given (query) image. In an early attempt, (André et al., 2009a) adapted the Bag of Visual Words (BVW) 

approach of (Sivic and Zisserman, 2008) to endomicroscopic images, containing discriminative texture 

information (SIFT) extracted across a regular grid of overlapping disks at various scales (radius). (André et al., 

2009b) introduced to the retrieval process (i) spatial relationship between local features by exploiting the co-

occurrence matrix of the visual words labelling the local features in each image, as well as (ii) temporal 

relationship between successive frames in a video sequence, by including image mosaics projecting the temporal 

dimension onto an extended field of view. In an attempt to avoid computationally costly non-rigid deformations 

required for a robust mosaic image, (André et al., 2010) proposed a video retrieval approach named Bag of 

Overlap-Weighted Visual Words (BOWVW). BOWVW computed independently the BVW signatures from 

individual frames within a video sub-sequence, as per (André et al., 2009a), and weighted the associated 

contributions (frame overlap rate) of their individual dense local regions to a single signature for the sub-

sequence. The subsequence signatures were then incorporated (normalised sum) to a single signature for a 

whole video. The aforementioned studies were compared and combined to a single, integrated video retrieval 

approach (André et al., 2011b). However, due to the challenging task of generating ground truth for the 

evaluation of content based retrieval, the proposed methodology was evaluated as a binary classification task 

between neoplastic and benign epithelium in Colonic Polyps (André et al., 2012b).  

In an attempt to address the challenging evaluation of true retrieval performance (André et al., 2011a) (i) 

developed a tool for generating the perceived similarity ground truth, enabling the direct evaluation of 

endoscopic video retrieval, and (ii) employed this ground truth information by employing a similarity distance 

learning technique to derive an optimal mapping of video signatures, improving the discrimination of similar 

video pairs. Another challenge in retrieval systems is bridging the “semantic gap” between the (sometimes 

conflicting) low-level visual features, extracted computationally from the images, and high-level clinical 

knowledge, generated through human perception. In clinical practice, new data are usually interpreted through 

similarity-based reasoning, combining both visual features and semantic concepts. (André et al., 2012a; André 

et al., 2012c) defined 8 mid-level binary semantic concepts that were either present or not in a colonic 

endomicroscopic video sequence. A Fisher-based approach was utilised to estimate the expressive power of 

each of the visual words (estimated as per (André et al., 2011b)) to each of these 8 semantic concepts. The 

derived semantic signatures were found to be informative and consistent with the low-level visual features, 

providing some relevant semantic translation, more familiar to the clinicians’ own language, of the visual 

retrieval outputs. In a separate attempt to alleviate the semantic gap, (Watcharapichat, 2012) proposed an 

interactive approach that the user has the ability to provide “relevance feedback” on the previously retrieved 

content, enabling the system to iteratively improve upon the search results. The feedback was combined on 

Isomap dimensionality reduction for improved performance and efficiency. (Tous et al., 2012) developed a 

multimedia retrieval software enabling querying via low-level, image-based features as well as high level key-

                  



word semantic descriptions. The software ensured compatibility with third party applications through interface 

compliance with the MPEG Query Format (ISO/IEC 15938-12:2008) and JPEG Search (ISO/IEC 24800) 

standards.  

In an attempt to improve the retrieval performance of (André et al., 2011b), (Kohandani Tafresh et al., 2014) 

introduced a simple and efficient semi-automated approach allowing clinicians to create more meaningful 

queries than unprocessed endomicroscopic video sequences. The approach automatically temporally segmented 

endomicroscopic video sequence based on kinematic stability assessment, with informative sub-segments 

assumed spatially stable. Then, the clinician could manually select stable sub-sequences of interest generating a 

new augmented query video, leading to more reproducible and consistent retrieval results. (Gu et al., 2017) 

proposed Unsupervised Multimodal Graph Mining (UMGM), a framework mining the latent similarity amongst 

endomicroscopic mosaics and histology patches for enhanced CBIR performance. While an extension of (Gu et 

al., 2016), UMGM employed graph-based analysis over a large collection of histology patches without 

supervised information (matching pairs), minimising latent space distance between similar pairs while 

maximising the distance between dissimilar pairs. 

 Limitations and opportunities 6.

Fibre bundle based endomicroscopy (FBEµ) offers several enabling capabilities for diagnostic and 

interventional procedures in a range of clinical indications. The literature to date has established a solid 

understanding of the limitations inherent to imaging through coherent fibre bundles, making substantial progress 

in terms of associated image computing methodologies. Characteristic examples of concentrated research effort 

have been (i) compensating for the honeycomb effect through the irregular, sparse sampling introduced along 

the coherent fibre bundle, and (ii) extending the limited field of view, a direct consequence of the fibre bundle 

miniaturisation for guidance through an endoscope’s working channel, through mosaicing spatially adjacent 

frames. Yet, FBEµ is a still a fledging imaging technology with tremendous potential for improvement 

assuming the research/technical challenges can be overcome. Throughout this review the following major image 

computing challenges/opportunities have been identified. 

 Image reconstruction 6.1.

Image reconstruction research has concentrated predominantly in compensating for the honeycomb effect on 

raw FBEµ images, a consequence of the sparse, irregular sampling through the coherent fibre bundle. Yet, even 

straightforward approaches such as bilinear interpolation between the cores, as currently used in clinical practice 

(Cellvizio, Mauna Kea Technologies), have been found to generate satisfactory results, with subsequent 

improvements perceived as predominantly aesthetic. In contrast, very limited research has been performed 

compensating for other inherent artefacts known to have limiting effect on the imaging capabilities of the 

technology, such as (i) variable coupling and background response (due to irregularities amongst cores physical 

properties) and (ii) inter-core coupling across neighbouring cores. Optimal solutions to these problems can have 

a direct impact on the imaging signal to noise ratio, contrast and potentially the spatial resolution 

(computationally supressing cross coupling can conceivably enable smaller inter-core distances). Furthermore, 

with the notable exception of the work by (Vercauteren et al., 2013), there have been no studies on multi-colour 

data acquisition, investigating and compensating for the effect of the aforementioned coupling/background 

artefacts along with other inherent limitations such as spectral mixing. Such enhanced imaging capabilities are 

                  



of paramount importance into the advancing molecular endomicroscopy which has stringent requirements in 

terms of light detection (preferably at multiple wavelengths), especially when imaging small targets such as 

bacteria superimposed upon highly fluorescent background structures. Finally, existing reconstruction 

approaches tend to concentrate on a single limitation in FBEµ imaging, intrinsic to the coherent fibre bundle 

characteristics, either ignoring or downplaying the relevance of other limitations in the reconstructed images. In 

real-world applications this is rarely the case. There is therefore scope for the development of a unified image 

reconstruction methodology that compensates for a range of limitations, including but not limited to irregular 

sampling, varying coupling efficiency and inter-core coupling along with additional challenges introduced in 

multi-spectral acquisition such as chromatic aberrations and spectral mixing. This is of greater importance to 

widefield FBEµ, where poor sectioning already reduces limits of detection and subsequently the imaging 

capabilities of the technology. The emergence of deep-imaging (Wang, 2016), employing data-driven deep 

learning (Convolutional Neural Networks) for image formation/reconstruction from raw, irregularly sampled 

data, is expected to generate tremendous opportunities in biomedical imaging in general and FBEµ in extension. 

(Ravì et al., 2018) for example has recently demonstrated a deep-learning based super-resolution pipeline for 

FBEµ. Yet, this direction, while very promising, will eventually lead to additional challenges regarding the need 

for large amounts of carefully chosen, and meaningful “gold-standard” data to form the basis of the learning and 

inference processes. Furthermore, convolution filers have been the cornerstone of state-of-the-art deep learning 

approaches for classical regularly sampled images. Yet, FBEµ images are sparsely and irregularly sampled 

through a coherent fibre bundle subsequently reconstructed to a regularly sampled image, potentially 

introducing uncertainty to the image reconstruction process. There is therefore scope for developing novel deep-

learning architectures applied directly on the irregularly sampled data. 

 Pathology detection and quantification 6.2.

There is a substantial body of work on the classification of frames into clinically relevant groupings, based 

predominantly on the binary classification between healthy and pathological frames over a range of organ 

systems and associated pathologies. Generating hand-crafted feature descriptors and training a binary or multi-

class classifier has been shown to generate reliable results in parsing videos and detecting abnormalities in 

endomicroscopic frame sequences. Yet, there has been very limited work on the semantic segmentation and 

subsequent pathology detection and quantification for FBEµ frames and mosaics. (IIzadyyazdanabadi et al., 

2018) for example proposed a weakly supervised CNN architecture for localising brain tumours in eCLE 

images. Pathology quantification will be imperative to any viable Computer-aided detection (CADe) and 

Computer-aided diagnosis (CADx) system. Furthermore, the existing image quantification studies have 

primarily adopted, empirical, ad hoc methodologies along with heuristic parameter estimation with hard 

thresholds, tested on very limited data. As a result, this can lead to poor generalisation as well as limited clinical 

utility. There is therefore an opportunity and need for the development of customised and robust methods that 

analyse and quantify the contents of FBEµ images, which when combined with state of the art detection and 

classification approaches, can identify and quantify pathology as the cornerstone for invaluable CAD systems. 

Ultimately, in certain clinical applications, pathology detection and quantification will also be aided by targeted 

molecular imaging agents. 

 Integration 6.3.

                  



To date, the tasks of image reconstruction, analysis and understanding have been dealt with independently, with 

notable exceptions the works of (Hu et al., 2010; Ravì et al., 2018; Vercauteren et al., 2006) that employ image 

mosaicing techniques to generate a super-resolved reconstructed image. Consequently, image reconstruction has 

been optimised primarily for user experience. While user experience in a clinical setting is an extremely 

important factor, contributing to the success of the endomicroscopic procedure through effective guidance and 

on-target sampling, it is not necessarily a primary concern during the automated detection and quantification of 

pathology. Moreover, most studies have employed unimodal information derived exclusively from 

endomicroscopic images, with a small number of multimodal attempts integrating histological (Gu et al., 2017; 

Gu et al., 2016), demographic and clinical (Seth et al., 2016) information in the decision-making pipeline. Yet, 

endomicroscopy (predominantly due to limited FOV and guidance capabilities) is unlikely to be used as a stand-

alone tool in the clinical workflow. FBEµ will be integrated as part of a multimodality approach consolidating 

imaging across a range of scales, from organ level (radiology) to cellular level (microscopy), along with other 

clinically relevant information. There is therefore scope for (i) incorporating multi-modal information in the 

decision-making algorithms, and (ii) integrating the reconstruction, analysis and understanding of 

endomicroscopic images to novel unified frameworks with joint loss functions, optimised for the task in 

question such as identifying and quantifying pathology. 

 Data availability 6.4.

Recent developments in Convolutional Neural Networks (CNNs) have acted as vehicle to substantial advances 

to image analysis and understanding across an ever-increasing range of areas, including medical imaging, with 

applications in image reconstruction, classification, segmentation and registration. Yet, to date there have been 

just a limited number studies employing Convolutional Neutral Networks for the classification and retrieval on 

FBEµ frames and mosaics. Instead, image understanding tasks has been tackled predominantly through 

traditional machine learning pathways, defining hand-crafted feature descriptors and subsequently training a 

binary or multi-class classifier on this feature set. A key constraint in the effective adaptation and adoption of 

the technology (CNNs) has been, to a large extent, the limited data and associated annotations available. In 

particular, the plurality of FBEµ classification/retrieval studies have employed limited data, ranging between 

100 and 200 annotated frames for combined training, validation and testing, with several studies using datasets 

of less than 100 frames. Furthermore, the available data have for the most part been acquired from a single 

clinical site and many times from a single operator, introducing potential bias and hindering the ability of the 

proposed methodologies for widespread generalisation. Similarly, there is often a lack of a gold reference 

standard and manual annotations can be weak, demonstrating large inter- and intra-operator variability. In tasks 

such as image restoration and analysis, the proposed methodologies of assessment have been constrained to 

simple simulated data, test targets, and in some cases to a very limited number of biological samples. There is 

therefore a need for the development of (i) large data depositories, containing a diverse collection of frames 

sequences acquired from different operators at multiple sites across the world, with easy access for the 

endomicroscopy research community, (ii) associated manual annotations, ideally from multiple operators with 

varied level of expertise, with quantifiable inter- and intra-operator variability. Providing standardised 

annotation tools, available alongside the data depositories can further enhance the consistency and robustness of 

these annotations.  

                  



 Real-time capability 6.5.

In much of the FBEµ image computing literature to date, the proposed methodologies have limited or no 

capacity for real-time application. Given the potential for FBEµ to perform in vivo, in situ assessment, at 

microscopic level (optical biopsies), the lack of real-time capability impairs the clinical application for such 

algorithms. There is therefore a necessity to design and test methodologies, from the ground up, with particular 

consideration for their real-time potential under pragmatic computational resources (at the time of testing and 

near future) for the intended clinical application. 

 Conclusions 7.

Fibre bundle based endomicroscopy (FBEµ) is a relatively new medical imaging modality. Yet, the real time, 

microscopic imaging capabilities, commonly referred to as optical biopsy, make FBEµ a very promising 

diagnostic and monitoring tool, particularly when combined in the future with molecular imaging agents. 

Imaging through a miniaturised coherent fibre bundle, typically guided to the region of interest through the 

working channel of an endoscope, imposes a number of inherent limitations to the technology. These limitations 

have motivated a diverse and ever-growing area of research for tailored image computing solutions. To date, 

considerable progress has been made in (i) image reconstruction, compensating for the honeycomb introduced 

by the coherent fibre bundle, (ii) extending the limited field of view through mosaicing adjacent frames, and (iii) 

classifying frames amongst two or more clinically relevant categories. However, there are still significant 

research challenges and opportunities remain for FBEµ to realise its full clinical potential.  
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