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ABSTRACT

Next-generation radio interferometers, like the Square Kilometre Array, will acquire large
amounts of data with the goal of improving the size and sensitivity of the reconstructed images
by orders of magnitude. The efficient processing of large-scale data sets is of great importance.
We propose an acceleration strategy for a recently proposed primal-dual distributed algorithm.
A preconditioning approach can incorporate into the algorithmic structure both the sampling
density of the measured visibilities and the noise statistics. Using the sampling density infor-
mation greatly accelerates the convergence speed, especially for highly non-uniform sampling
patterns, while relying on the correct noise statistics optimizes the sensitivity of the reconstruc-
tion. In connection to cLeAN, our approach can be seen as including in the same algorithmic
structure both natural and uniform weighting, thereby simultaneously optimizing both the
resolution and the sensitivity. The method relies on a new non-Euclidean proximity operator
for the data fidelity term, that generalizes the projection on to the , ball where the noise
lives for naturally weighted data, to the projection on to a generalized ellipsoid incorporating
sampling density information through uniform weighting. Importantly, this non-Euclidean
modification is only an acceleration strategy to solve the convex imaging problem with data
fidelity dictated only by noise statistics. We show through simulations with realistic sampling
patterns the acceleration obtained using the preconditioning. We also investigate the algo-
rithm performance for the reconstruction of the 3C129 radio galaxy from real visibilities and
compare with multiscale cLean, showing better sensitivity and resolution. Our maTLAB code is
available online on GitHub.

Key words: techniques: image processing —techniques: interferometric.

1 INTRODUCTION

Radio interferometry (RI) is a technique that permits the observa-
tion of radio emissions with great sensitivity and angular resolution.
It provides valuable data for many research directions in astronomy,
cosmology or astrophysics (Thompson, Moran & Swenson 2007).
The next-generation radio telescopes, like the planned Square Kilo-
metre Array (SKA; Dewdney et al. 2009), are expected to push the
sensitivity further to achieve a dynamic range of six or seven or-
ders of magnitude and to reconstruct large, gigapixel size, images.
To achieve such a feat, the amount of data to be acquired will be
huge and the signal processing techniques from RI need to be revis-
ited and reinvented. Fast specialized algorithmic solvers are being
developed (Carrillo, McEwen & Wiaux 2014; Ferrari et al. 2014;
Yatawatta 2015, 2016; Deguignet et al. 2016; Onose et al. 2016) and
vigorous research is being directed towards tackling the challenges
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of both RI imaging and RI calibration (Rau et al. 2009; Wijnholds
et al. 2014).

The SKA, whose construction is scheduled to start in 2018, will
be comprised of a huge number of antennas, approximately 131 000
low-frequency elements and 197 dishes for medium frequency
(Dewdney et al. 2009; Broekema, van Nieuwpoort & Bal 2015).
With an expected number of 65000 frequency bands of opera-
tion, the data rates estimates will be in the terabits per second
range (Broekema et al. 2015) and will present a challenge for
both the communication infrastructure and signal processing. The
current standard algorithmic solvers, belonging to the cLean fam-
ily (Hégbom 1974; Schwab 1984; Bhatnagar & Cornwell 2004;
Cornwell 2008), do not scale well to such tremendous data sizes.

Recently, convex optimization techniques coupled with com-
pressive sensing models (Wiaux et al. 2009a; Li, Cornwell & de
Hoog 2011; Carrillo, McEwen & Wiaux 2012; Garsden et al. 2015)
have been shown to potentially outperform the standard state-of-the-
art cLean imaging algorithms. Such methods typically approach the
imaging problem by minimizing a convex objective function de-
fined as a sum of multiple terms: several data terms dependent on
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the measured data (the visibilities), and a number of regularization
priors usually promoting sparsity or smoothness in an appropriate
domain and positivity. This is a global approach, all algorithms
searching for the unique solution that minimizes the convex objec-
tive function.

Besides the reconstruction quality, the processing speed is of great
interest with fast and parallelizable algorithms having been recently
proposed (Carrillo et al. 2014; Ferrari et al. 2014; Yatawatta 2015;
Onose et al. 2016). Such approaches come in contrast with the
standard cLean methods that employ local procedures and rely on
greedy updates and other signal pre-processing steps, like the RI
weighting used to mitigate the effects produced by an unbalanced
density profile of the sampling strategy. For algorithms that work
directly in image space, like cLean, the type of RI weighting is
very important and affects the overall image reconstruction results
(Briggs 1995; Boone 2013; Yatawatta 2014). Natural weighting
provides controlled noise statistics with the aim of maximizing the
sensitivity. Uniform weighting reduces the side-lobes of the point
spread function by scaling the visibilities with the inverse sampling
density and provides better resolution at the cost of lowered sensi-
tivity. Since any weighting other than natural essentially biases the
data, cLEAN is not able to maximize both resolution and sensitivity.
To mitigate this, intermediate robust weighting (Briggs 1995) or
adaptive weighting schemes (Yatawatta 2014) have also been pro-
posed and serve as a trade-off between resolution and sensitivity.

Convex optimization methods (Carrillo et al. 2012, 2014) that
impose constraints directly in visibility space work with naturally
weighting data. Such approaches can optimize both the resolution
and sensitivity, which is impossible to achieve with cLean and its
evolutions. An unbalanced density profile of the sampling strategy
does not influence the final solution of the convex optimization
problem. It can have however a potentially significant detrimental
effect on the convergence speed of the algorithmic structures.

We study herein an acceleration strategy of the primal-dual (PD)
algorithmic structure recently proposed by Onose et al. (2016). It
can incorporate sampling density information into the algorithmic
structure to achieve faster convergence speed for non-uniform visi-
bility distributions in u-v space. We propose the use of a precondi-
tioning strategy that improves the convergence speed significantly,
making the PD approach even more appealing for the large-scale
signal processing associated with the future radio telescopes. We
rely on the same convex optimization problem from Onose et al.
(2016) but introduce a non-Euclidian, skewed, proximity step that
uses a preconditioning matrix reminiscent of the uniform weight-
ing used by cLean and the other RI imaging methods that work in
image space. Intuitively, to link with the behaviour of cLEaN, such
an approach maintains the sensitivity of the natural weighting but
achieves the resolution of the uniformly weighted data.

We show through simulations the acceleration achieved using
the preconditioning strategy for simulated random, SKA and Very
Large Array (VLA) coverages. A study of the computational bur-
den of the non-Euclidian proximity step is also included. We also
showcase the reconstruction capabilities of the algorithm using real
interferometric data of the 3C129 radio galaxy and compare with
CLEAN. The observations were performed for two 50 MHz channels
using the VLA in configuration B and C.

The remainder of this paper is organized as follows. Section 2
introduces the RI problem and briefly reviews the current existing
standard solvers. Section 3 presents the main convex optimization
problem we associate with the image reconstruction and introduces
the tools used by the preconditioned PD solver. Sections 4 details the
proposed preconditioned PD algorithm and the acceleration strat-
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egy. Extensive simulations and results are presented in Section 5.
Section 6 presents our final remarks and future work directions.

2 RADIO-INTERFEROMETRIC IMAGING

In RI, the measured data, the visibilities, are produced by an ar-
ray of geographically separated antennas that are paired to measure
radio emissions from a given area of the sky. Under the simplify-
ing assumptions of non-polarized monochromatic RI imaging, the
measurement equation for a measured visibility point y(u) can be
stated as
y(u) = D, ux(e? “dl, Q)
with the direction-dependent effects (DDES) that affect the measure-
ments, modelled through D(l, u). Here, we denote by u = (u, v),
the projected baseline components in the orthogonal plane relative
to the line of sight. The observed sky brightness is described in
the same coordinate system, with coordinates (I, m). We denote
I = (I, m). The well-known w component effect, associated with
the baseline components in the line of sight, is a known DDE. Un-
known DDEs related to primary beam and ionospheric effects are
assumed to have been properly calibrated so that we consider here
a pure imaging problem.

The reconstruction algorithms work with a discretized version of
the inverse problem (1). This resolves to the linear measurement
equation

y= X-+n, )

where x RN is the unknown intensity image of interest of which
M visibility measurements y ~ CM are taken by the radio telescope
array. The measurements are corrupted by additive noise n, each
component n, assumed to have a known variance ¢ = g,, e. The
measurement operator = GFZ is a linear map from the image
space to the visibility domain. It is composed of the matrix G
CM>nN containing compact support interpolation kernels (Fessler
& Sutton 2003) and modelling the DDEs, an n-oversampled Fourier
operator F C"™>"N and an oversampling and scaling operator
Z R™>N that pre-compensates for the interpolation (Fessler &
Sutton 2003). If the original visibilities are affected by noise with
different variances, o,, = ¢, for some e; and e, a diagonal matrix

with diagonal elements 6, = é is used to whiten the noise.
This is equivalent to the natural weighting performed in RI.

2.1 The CLEAN method

The inverse problem defined by (2) has been thoroughly studied
and various deconvolution methods have been proposed. The stan-
dard imaging algorithms, belonging to the cLean family, perform
a greedy non-linear deconvolution based on local iterative beam
removal (Hogbom 1974; Schwarz 1978; Schwab 1984; Thompson
et al. 2007). They rely on a sparsity prior on the solution implicitly
introduced through the greedy, pixel by pixel, image reconstruction
procedure. This resembles the matching pursuit algorithm (Mallat
& Zhang 1993). It can also be seen as a regularized gradient de-
scent method that minimizes the residual norm y— x 2 via a
gradient descent subject to an implicit sparsity constraint on x (Rau
et al. 2009),

xO=xED+T y— xtH )

The notation  denotes the adjoint of a linear operator. Multi-
ple versions and improvements have been suggested, multiscale
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cLEAN (Cornwell 2008), adaptive scale cLean (Bhatnagar &
Cornwell 2004). In parallel with cLean, the maximum entropy
method solvers (Ables 1974; Gull & Daniell 1978; Cornwell &
Evans 1985) have been proposed but in practice cLean was favoured.

2.2 Convex optimization algorithms

Recently, convex optimization methods are beginning to gain
traction in Rl and offer improved reconstruction quality and
speed over the classical cLean approaches (Wiaux et al. 2009a,b;
Wenger et al. 2010; Li et al. 2011; Carrillo et al. 2012, 2014;
Ferrari et al. 2014; Dabbech et al. 2015; Garsden et al. 2015;
Yatawatta 2015; Onose et al. 2016). They approach the imaging
problem under the framework of compressed sensing (CS). Such
methods add a regularization of the ill-posed reconstruction prob-
lem in the form of a prior that assumes a low-dimensional sig-
nal model (Candés, Romberg & Tao 2006; Donoho 2006). Seen
through the CS framework, the signal of interest x is considered
to have a sparse representation, x = with CP containing
only a few non-zero elements (Fornasier & Rauhut 2011). The dic-
tionary CN*D s usually a collection of wavelet bases or, more
generally, an overcomplete frame.

An analysis-based approach (Elad, Milanfar & Rubinstein 2007)
to recover the signal of interest x by solving the ill-
posed inverse problem (2) can be formally stated as (Carrillo
et al. 2012, 2013, 2014; Onose et al. 2016)

min X o subjectto y— x ,< and x R. 4)
X

The sparsity averaging reweighed analysis (SARA) sparsity prior
(Carrillo et al. 2012), used as the sparsity dictionary , has been
shown to be a good sparsity basis. Since the solution x is an in-
tensity image, a reality and positivity prior is also assumed. Data
fidelity is enforced by constraining the residual to belong to an ,
ball defined given an estimate of the noise affecting the mea-
surements. Synthesis-based approaches have also been proposed
(Wiaux et al. 2009a,b; McEwen & Wiaux 2011).

The ( norm is non-convex and thus the problem defined in (4)
is intractable. By replacing the  norm with its closest convex
relaxation, the ; norm, and by reformulating the constraints from
(4) with the use of the indicator function® 1., we can state a basic
minimization problem as

mxinf(x) +I(W  x)+h( x). (5)
The function ¥ = 1n introduces the reality and positivity require-
ments for the recovered solution, the function | = 1 repre-
sents the sparsity inducing prior and h(z) = 1g(z),B={z CM:

z—y , < }isthedatafidelity term constraining the residual to be
situated in the , ball B defined by the noise level . A re-weighted

1 approach (Candes, Wakin & Boyd 2008) is generally used to
approximate the ¢ norm by imposing the weights W on the oper-
ator  and solving sequentially several ; problems with different
W. This basic minimization problem (Carrillo et al. 2012; Onose
et al. 2016) has been approached using several state-of-the-art al-
gorithmic solvers: the simultaneous direction method of multipliers

1 The indicator function 1c of a convex set C is defined as

0 z C
+oco0 7 /C.

(2 k@)=

MNRAS 469, 938-949 (2017)

(Carrillo et al. 2014), the alternating direction method of multipli-
ers and a PD algorithm with forward—backward iterations (Onose
et al. 2016).

The forward-backward iterative structure is one of the main pil-
lars used in the algorithmic structure presented herein. We can view
it as being conceptually extremely close to the major-minor cy-
cle structure of cLeaN. Consider one of the most basic approaches,
the unconstrained version of the minimization problem (4), namely
mink W X 1+p y— X 3,withp afree parameter. This can
be solved using forward—backward iterations by performing a gra-
dient step together with a proximal step (Moreau 1965),

_ 1 _
prox,(z) = argming(z) + 51712 2. (6)

The forward gradient step consists in doing a step in the opposite
direction to the gradient of the , norm of the residual. This is
essentially equivalent to a major cycle of cLean. In this particular
case, the proximal step is a simple soft-thresholding operation in
the given basis W (Combettes & Pesquet 2007). It consists in
decreasing the absolute values of all the coefficients of W x that
are above a certain threshold by the threshold value, and setting to
zero those below the threshold. Such an approach is very similar
to the minor cycle of cLean, with the soft-threshold value being
an analogous to the loop gain factor. cLean iteratively builds up the
signal by picking up parts of the most important coefficients until the
residuals become negligible. The soft-thresholding acts globally by
removing small and insignificant coefficients, on all signal locations
simultaneously. As such, cLean can be intuitively understood as a
very specific version of the forward—backward algorithm.

3 FORWARD-BACKWARD PD ALGORITHM

We continue by reviewing the minimization problem and the
randomized PD algorithm (Condat 2013; V{ 2013; Pesquet &
Repetti 2015) recently proposed for RI by Onose et al. (2016), on
which this work relies. It solves a primal, block wise, minimization
problem similar to (5),

b d
minf(x) +vy (W, ;x)+
X i=1 j=t

hj (X)), )

together with its dual formulation (Bauschke & Combettes 2011),

b d
rraiinf — iWiu; —
vj i=1 j=1
1 d
+ vy L (ui)+  hy(vj). ®)

i=1 j=1

Vi

o

Here, since the ; norm is additively separable, we have split the
overcomplete sparsity basis into b parts, =[ ... p]. The
weighting matrix W is also split to produce a weight matrix W;
for each ;. The scalar y is a free configuration parameter and
only affects the convergence speed (Onose et al. 2016). The func-
tions from (7) are defined blockwise but similarly to (5). Thus,
the functions I; = 1 represent the sparsity inducing prior and
hj(2) =1g;(2),Bj ={z CMi: z—y; ,< ;} are the data fi-
delity terms constraining the residual to be situated in , balls
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Algorithm 1 Re-weighting scheme.
1: given 0@, x©@, %@ y©, vJ(O), 0@, V}O),Wfo)
:repeatfork =1, ...
x®, %0, 40 V9, 50, g0 = Algorithm3 -

2
3
4: set w® smaller than w®—2
5
6
7

j set ng) according to (11)
. until convergence
: output x®

defined by the noise level ;, for each part of the visibility data y;.
The notation denotes the Legendre—Fenchel conjugate function.?

3.1 Distributed problem formulation

We work in a set-up where the visibility data are split into d blocks,
such that

Y1 1 1G1M;
Yd d 4Ga My

to allow for distributed and parallelized processing (Carrillo
et al. 2014; Onose et al. 2016). We also rely on the fact that G
is composed of compact support kernels and introduce the matri-
ces M;  R™i*™ to select only the parts of the discrete Fourier
plane involved in computations for block j. Each block operator
Gj CMi*™j requires partial Fourier information, namely only
nN; coefficients (Onose et al. 2016). The diagonal matrix  is also
split accordingly.

The inverse problem (2) was therefore be rewritten for each data
block as

yi = ix+nj, (10)

with n; being the part of the noise associated with the measurements
y; and with  j the associated linear operator.

3.2 The re-weighted ; approach

A re-weighted ; (Candés et al. 2008) serves to approximate the

o horm by solving successive ; penalized problems. The weights
W™ at step k, are computed based on the solution x~ from the
previously solved problem from step k — 1 such that

3
D. WY = o? , (1)
w® + ( x(k=D)
e

with the operator D, denoting diagonal element e. The parameter
w® is decreased from a preset value at each re-weight step. This
ensures that, after several such steps, if the values of the eth coeffi-
cient (| ; x®|), are large, the penalty applied is decreased towards
0. The small coefficients, smaller than w®, are still being largely
penalized. Thus, this iterative procedure removes the bias intro-
duced by the ; relaxation of the sparsity constraint. This procedure
is summarized as Algorithm 1. Note that each call to Algorithm 3,
which will be detailed in the following sections, should use the past
primal and dual solutions, from step k — 1, as initialization in order
to warm start the convergence.

2The Legendre-Fenchel conjugate function g of a function g is
(v) g ()=supz v—g(2).
z
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3.3 Proximity operators

As previously mentioned, the PD algorithm (Pesquet &
Repetti 2015) relies on forward—backward iterations (Komodakis
& Pesquet 2015) to deal with the non-smooth terms present in both
the primal minimization problem (7) and its dual formulation (8).
The forward step corresponds to a gradient-like step and the back-
ward step is an implicit subgradient-like step performed through the
use of the proximity operator (Moreau 1965).

Using definition (6), the proximity operator associated with the
function f in (7) has a closed form solution and becomes the projec-
tion

(z¢) (ze) =0
(Pc(2))e 0 (2)<0 e, (12)
on to the positive real orthant. Similarly, the proximity opera-
tor for the sparsity prior functions I; is the componentwise soft-
thresholding operator

Zeflze|—0}+

(S(X(Z))e = 0 [ze] IZEI >0

, 13
l=0 ° 13)

for a given threshold a. For the data fidelity terms h;, the proximity
operator has a closed form as the projection onto an , ball Bj,

STV : — V. .

Pe, (= Jrwe Y ETYi 2T (14)
z Z—Yj 2= j.

More details can be found in Onose et al. (2016), which proposed

the PD algorithm for solving (7) and (8) in the absence of any

preconditioning strategy.

4 ACCELERATED FORWARD-BACKWARD
PD ALGORITHM

The structure of the proposed preconditioned primal-dual algorithm
(PPD), presented in Algorithm 3, is based on Pesquet & Repetti
(2015). It is similar to that of the PD algorithm proposed for RI by
Onoseetal. (2016). As before, we solve concurrently both the primal
minimization problem (7) and its dual formulation (8). Forward—
backward iterations, consisting of a gradient descent step coupled
with a proximal update, are used to update both the primal and the
dual variables. The key difference that accelerates the convergence
speed is the use of a new non-Euclidean proximity operator for
the data fidelity to replace the projection on to the , ball, used
in Onose et al. (2016), with a projection on to a generalized ellip-
soid that incorporates both the noise statistics and sampling density
information. By incorporating the sampling density information,
the algorithm can make a larger step towards the final solution at
each iteration. This acceleration strategy changes only the forward—
backward step associated with the data fidelity terms, the rest of
the updates remain the same as in Onose et al. (2016). In analogy
with cLean, the algorithm can be understood as being composed of
complex cLean-like forward—backward steps performed in parallel
in multiple data, prior and image spaces (Onose et al. 2016).

4.1 Non-Euclidean proximity operator

A generalization of the proximity operator allows us to use addi-
tional prior information about the data when performing the com-
putations associated with the data fidelity terms h;, in order to ac-
celerate the convergence speed. It offers a broad flexibility in the
way the data fidelity is enforced throughout the iterations.

MNRAS 469, 938-949 (2017)
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Thus, we rely on the generalized proximity operator relative to a
metric induced by a strongly positive, self-adjoint® linear operator
U (Hiriart-Urruty & Lemarechal 1996),

proxg (z) = argming(z) + %(z —-7) U(z—12). (15)

The standard definition from (6) is found when U = 1. A gener-
alization of the Moreau decomposition provides the link between
the proximity operators of a function g and that of its conjugate g
(Combettes & Vii 2014; Pesquet & Repetti 2015) for any operator
U,

I — aUprox; aluTlz (16)

u-t —
proxc(g (Z) - 71g

and allows for a facile way of computing the proximity operators
for the conjugate functions.

We choose the preconditioning matrices U; to be diagonal, with
positive, non-zero diagonal elements and thus positive definite and
invertible. It results directly from (15) that

prox;’ (2) = argmin h; (z) + %(z -7) Uj(z—2)

. - 1 _
= argminh; (2) + 5 U2z — Uz
Z

J J
1/2 1/2=
Ui “z—uyz . a7
By making the variable change s = Ui’z and § = U;’*Z, we can
rewrite (17) as
proxﬁj" Uy Y% = Ut argmin hj U7
+ -(s—5s) (s—5s
2( ) (s—5)
=U; 2P (). (18)

Here, we have denoted by Pg; the projection on to a generalized el-
lipsoid Ej ={s CMi : U 1/Zs —Yj 2= j}associated with the
preconditioned matrix U; and the data fidelity function h;. This
formulation serves as a generalization of the way data fidelity is
enforced (Carrillo et al. 2014; Onose et al. 2016). Note that the min-
imization problem (7) and its dual formulation (8) do not change
when the generalized proximity operator (15) is used. This only
affects the way convergence is achieved. Thus, if U; = 1, the con-
straints that the residual should belong to the , balls Bj is enforced
such that the Euclidian distance from the starting point ;X and
the ball B;j is minimized. This results in the simple projection on
to the ; ball Bj from (14). If instead a different metric U; =1 is
used, the projection becomes skewed and the Euclidian distance to
the ball B; is not minimized anymore. However, the new projection
pointstill satisfies  jx —y; 2 =< j. This can be expressed as the
projection on to the ellipsoid E; with the resulting projection point
moved to the  ball by the application of U; ~2 in equation (18).
For a generic metric U; =1, an |terat|ve procedure is re-

quired to compute the proximity operator proxh We propose a
forward-backward approach that works directly with the definition
of the proximity step (17). It performs a gradient step, with step W,
in the direction of the smooth term %(z —2) Uj(z — 2) followed
by the application of the proximity operator for the function h;,

3 A linear operator U is said to be strongly positive and self-adjoint if
x|Ux =a x 2, x, a>0andU = U, respectively.

MNRAS 469, 938-949 (2017)

Algorithm 2 Forward—backward algorithm for solving (17).
1: given zO,
2: repeatfort =1,...
3 =Py 7V —py;
4: until convergence

70D —7

Algorithm 3 Preconditioned forward-backward PD.

1: given x©@, %@, y© v (0) 0, ”(O) S Wi, Uj, 5,5, 1,0, 3 A
2: repeatfort =1,.
3 generate sets P {1,

.blandD {1,...,d}

4: &0 =pzgt-y
5: j Dset
6: a’ = m; a0
J
7: end
8: run simultaneously
9: j D distribute a and do in parallel
. t) —1,,(t—1 t
10: W= 1-yjy;? PE]. Ui+ jGjal)
. ® — =1 o® _ =1
11: Vit =V +A i vj
. g = )
12: Vit = Gj iVvi
13: end and gather vjl)
14: J .d}\ D set
15: vgt = v@*l)
16: 7 =g
17: end
18: i P doin parallel
. =) — t—1 S(t—1
19: W= 1-s, w2 Wt ew, gD
20: u® =0 GO —
21 i = iwu®
22: end
23: i g . bI\ P set
24: 0=yt
25 a0 = gt
26: end
27: end
d b
28 xO=pc xtD -1 nzF M; \7]@)+( a®
j=1 i=1

29:  xO=xED 4 3O —xD

30: &0 =250 — D
31: until convergence
32: output x®, %O, u, v}t), a®, \7]0)

which is projection (14). This is formally presented as Algorithm 2.

matrix U; is diagonal, we have UJ s = maxe(D¢(Uj)) with the
operator D, selecting the eth diagonal element of Uj;.

Faster converging proximal gradient algorithms for solving (15)
may be employed (Tseng 2008). However, for simplicity we limit
the presentation herein to the forward-backward approach pre-
sented as Algorithm 2. Alternatively, we can compute the projection
Pe; on to the ellipsoid E; and then estimate proxh (2) as in (18).
A very fast iterative approach was developed by Dai (2006) for
any choice of metric Uj. It requires an initial point on the feasible
region, which, due to U; being positive definite and invertible, can
be easily computed using Algorithm 2. Note that this is not the case
for a general operator Uj, for which the derivations form (17) and
(18) are not guaranteed to hold.
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4.2 The preconditioned algorithmic structure

All the updates associated with the dual variables VJ@ and uft) from
(8) are performed in Algorithm 3 in parallel in steps 9-13 and 18-
22, respectively. Randomization is supported given a probabilistic
construction of the active sets P and D. Thus, only a part of the
dual variables is updated per iteration, the rest remains unchanged
as in steps 14-17 and 23-26. The forward-backward updates rely
on the Moreau decomposition (16) to compute the proximity op-
erator associated with the conjugate functions I; and h; relying
on the proximity operator of the functions I; and h;. The resulting
updates become the soft-thresholding (13) for the prior dual vari-
ables ui(‘) from step 19 and the skewed projection (18) on to the
ellipsoid E; for the data fidelity dual variables v’ from step 10.
For the soft-thresholding, we perform a re-parametrization similar
to the one performed in Onose et al. (2016). Since y is a free pa-
rameter, we replace the resulting algorithmic soft-threshold size %
with kK W 2 to produce an operator-independent configuration
parameter K. The parameter K is only linked to the scale of the
unknown image to be recovered. The application of the operators
Gj j and ;Wi; is also performed in parallel, in steps 12 and 21.
The contribution of all the dual variables is then used to update the
primal variable, the image of interest x® in steps 28-29. This is
a forward—backward step that, through the use of the Moreau de-
composition, resumes to projection (12) on to the positive orthant
presented in step 28.

4.3 The epiphany: when natural and uniform weighting meet

For the data fidelity terms h;, we propose the use of a non-trivial
invertible preconditioning matrix U; that has links to the standard
weighting schemes. The weighting is used to mitigate the effects
produced by the sampling strategy (Briggs 1995; Yatawatta 2014)
and serves as an important pre-processing step for the cLean family
of algorithms. We aim to incorporate the sampling density informa-
tion into the PD algorithmic structure, through Uj, while solving
the same problems defined in (7) and (8). This does not change
the overall results due to the convergence guarantees of the convex
optimization methods and increases the speed of convergence, as
will be shown through simulations.

With this aim, we employ a diagonal preconditioning matrix
Uj, for each visibility block y;. The matrix U; accounts for the
sampling density similarly to the uniform weighting. It contains
on the diagonal the inverse of the sampling density in the vicinity
of each associated visibility point. This has the benefit of allow-
ing for a facile computation of its inverse that is important to the
computational complexity of the resulting strategy. Other types of
preconditioning could also be supported.

To give further insight into the behaviour of this preconditioning
strategy, consider problem (7) written in an equivalent formulation

b d
mnf()+y L W, x + h; GjM;FzZx , (19)
i=1 j=1
by introducing the natural weighting matrix j in the definition of
the function ﬁj (2) = lg (2), ENj ={z CM: jz— Vi 2= jk
Now, the convex set associated with ﬁj becomes the ellipsoid E
associated with the natural weight matrix . This does not change
the definition of the minimization problems but changes signifi-
cantly how the problem is approached algorithmically. It changes
the manner in which the data fidelity constraint is enforced to make
it similar to the way the generalized proximity operator is used in
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the algorithm. As such, it allows us to provide an intuitive link be-
tween the whitening matrices ; and the preconditioning matrices
U; by highlighting that they enter the algorithmic structure through
a similar mechanism.

Thus, based on the definition of the proximity operator (15) and
by performing the variable change s = jzands = jz, we can

write proxgjj (2) as

-1
J

-1

Yj — -1 L S
prox; s = arggmnhJ i’s

F26-9 U -9 @)
Since both  ; and Uj; are diagonal matrices and since h; ( j‘ls) =
h;j (s), (20) becomes
o T | ; oL 3 3

proxg’ s = arggmn h; (s) + 3 (s—s) D(s—s), (21)
with diagonal elements de . = 62D¢(U;). The operator D selects
the eth diagonal element from U; . Since they affect the data fidelity
term h; in a similar way, this provides an intuitive link between the
natural weighting matrix  ; and the preconditioning matrix Uj,
which is based on the inverse of the sampling density. A large value
for de, e corresponds to either a low sample density for the frequency
vicinity of the given measurement e or a large noise variance for
the same measurement. Low values d. . correspond to less noisy
measurements or a high sampling density. Since sampling the same
u-v region multiple times can be seen as lowering the noise by
averaging the data, the similitude between the effect of the noise on
the measurement and the sampling density is immediate.

Let us emphasize again that only the natural weighting performed
through ; is reflected back into the definition of the minimization
problem through the application of j‘l in (21). In contrast, the
preconditioning matrix is only an internal algorithmic flexibility to
solve the very same problem. Thus, such an approach can be seen to
incorporate all the benefits from both natural and uniform weighting
in cLean terms. On one hand, it optimizes resolution by accounting
for the correct noise statistics, leveraging natural weighting in the
definition of the minimization problem for image reconstruction.
On the other hand, it optimizes sensitivity by enabling accelerated
convergence through a preconditioning strategy incorporating sam-
pling density information a la uniform weighting.

4.4 Convergence requirements

The variables x®, v’ and u{", i, ], are guaranteed to converge tothe

solution of the PD problem (7) and (8) for an adequately chosen set
of configuration parameters, T, { and . The convergence conditions
(Pesquet & Repetti 2015, Lemma 4.3) can be stated explicitly for
Algorithm 3 as

(I 0 w T 1/2

S

<t W i+ U2 l<y, 22)

with the use of the triangle and Cauchy-Schwarz inequalities and
with the diagonal matrices | of a proper dimension. The matrix
U represents a diagonal concatenation of all the preconditioning
matrices U; associated with the differently split operators and data
blocks. A relaxation with the factor 0 < A < 1 of the updates is
also permitted. The additional parameter y > 0 imposes that kK > 0
as well. For the randomized set-up, the probabilities with which

MNRAS 469, 938-949 (2017)

6T0Z Jaqwa2ad £0 UO Jasn ANISIaAIUN NeM 10L8H AQ £/E260E/8E6/T/691/A0811Se-2]01R/SeluLl/Wod dnooispese//:sdiy Woly papeojumod



944  A. Onose, A. Dabbech and Y. Wiaux

Figure 1. The test images, a 512 x 512 galaxy cluster image and a 477 < 1024 image of Cygnus A, all shown in logsg scale.*

the active sets P and D are generated have to be non-zero and the
activated variables need to be drawn in an independent and identical
manner along the iterations.

The general framework of the PD with forward—backward it-
erations approach and its mathematical analysis are presented by
Pesquet & Repetti (2015).

4.5 Computational complexity

The complexity and parallelized and distributed implementation de-
tails follow closely the study from Onose et al. (2016). The only
difference is the introduction of the preconditioning matrix and the
need for the iterative computation of the resulting proximity opera-
tor. The complexity class of Algorithm 2 is O(M;) per data block
j. The computations involving the projection are to be performed
in a distributed fashion similarly to the computations involving the
data fidelity terms. The convergence speed of Algorithm 2 is linked
to the conditioning number of the preconditioning matrix and may
slow down for ill-conditioned matrices. In such case, Algorithm
4 proposed by Dai (2006) or faster proximal gradient methods
(Tseng 2008) become preferable. Empirical evidence however sug-
gests that the accuracy of the projection can be lowered by reducing
the number of iteration performed without damaging the conver-
gence speed of the whole algorithm. The algorithm is resilient to
errors in the computations and in practice as little as one iteration
can be enough to achieve a significant acceleration. This can serve to
control the added complexity due to the subiterative computation of
the preconditioned proximity operator. Comparing the added total
computational complexity of the preconditioning, which is O(M)
per subiteration, with that of the basic non-preconditioned PD algo-
rithm, which is of the order of O(nN lognN) + O(dN) + O(MN)
per iteration, it is evident that the added cost due to the precondi-
tioning in PPD is negligible when the number of subiterations is
kept small.

For more details regarding the complexity, randomization and
general structure of the PD algorithm solving equations (7) and (8),
we direct the reader to Onose et al. (2016).

5 SIMULATIONS AND RESULTS

We study the acceleration for different sampling strategies of the
u-v space. To judge the efficacy of the acceleration, we compare
the preconditioned algorithm PPD against the non-preconditioned

4 We display log,, z, where z is the current image of interest.
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PD and ADMM algorithms (Onose et al. 2016), solving the same
minimization problem. We also compare the reconstruction qual-
ity and acceleration using real interferometric measurement of the
3C129 radio galaxy. In this case, we showcase the reconstruction
in comparison with cLean, as implemented by the wscLeEan pack-
age (Offringa et al. 2014). We provide reconstruction for multiscale
cLEAN, denoted as MS-CLEAN. We do not study the distribution
and randomization, an extensive study being performed by Onose
et al. (2016).

We work with pre-calibrated measurements, for both simulated
and real data. We assume the absence of DDEs and a small field
of view such that the measurement operator is a Fourier operator.
We used an oversampled factor n = 4 and a matrix G that performs
an interpolation of the frequency data using 8 < 8 Kaiser—Bessel
interpolation kernels (Fessler & Sutton 2003) to average nearby
uniformly distributed frequency. The diagonal preconditioning ma-
trix U contains the inverse of the sampling density as diagonal
elements.

Thus, we begin by performing synthetic tests with the u-v
space sampled using a zero-mean, generalized Gaussian distribu-
tion (GGD) (Novey, Adali & Roy 2010) with shape parameter 3.
This allows us to have control of the sampling densities and see
how the preconditioning is able to accelerate the convergence speed
for various sampling patterns. We also use realistic simulations of
VLA and SKA coverages and we study, through simulations, the
behaviour of the algorithms. The u-v coverages used are included
in Fig. 2. For all these tests, we use two test images to generate
the visibilities, namely a 477 < 1024 image of the Cygnus A radio
galaxy and a 512 = 512 simulated image of a galaxy cluster with
faint extended emission, respectively. The galaxy cluster image was
produced using the FarADAY tool (Murgia et al. 2004). The two im-
ages are presented in Fig. 1. The simulated visibilities are corrupted
by zero-mean complex independent Gaussian noise. We run simu-
lations for two noise levels to produce an input signal-to-noise ratio
iSNR = 30dB and iSNR = 50dB on the visibilities, respectively.
This is accomplished by choosing the appropriate noise power rela-
tive to the power of the simulated, noise free, signal. In this case, the
resulting noise statistics are used to generate the weight matrix

For the comparison with cLean, we rely on observations of the
3C129 radio galaxy: right ascension 04"45M313695, declination
44°55 19.95, J2000. The observations were performed using the
VLA for two 50 MHz channels centred at 4.59 and 4.89 GHz on
1994 July 25 in configuration B and 1994 November 3 in configura-
tion C, respectively. The calibration and flagging for radio frequency
interference have been performed in Pratley et al. (2016) accord-
ing to the casa manual. We additionally remove approximately
20000 visibility points that contained large noise outliers, probably
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Figure 2. From left to right, the SKA coverage containing 1447 950 u-v points, the VLA coverage containing 894 240 u-v points and the coverage of the real
VLA observations containing 307 780 u-v points. All frequencies are normalized with the largest corresponding baseline and rescaled to the interval [— , ]

to produce the coverages presented.

visibilities affected by radio frequency interference or poorly cali-
brated. The remaining data consist of 307 780 visibilities. The nor-
malized u-v coverage is also included in Fig. 2. All reconstructions
are performed at twice the resolution of the telescope array. This
is necessary to avoid tension between the band limitation of the
reconstructed image and the positivity constraint introduced by our
approach.

For the synthetic tests, we assess the reconstruction performance
in terms of the signal-to-noise ratio,

o

2

SNR = 20 |0g10 m

, (23)
where x° is the original image and x® is the reconstructed esti-
mate of the original. For the real data reconstructions, since we do
not have access to the ground truth, we report the dynamic range
obtained for the reconstruction,

N 2
DR=—— S5 max Xét). (24)
(y— xO0), e

5.1 Choice of parameters

The PPD algorithms converge given that (22) is satisfied. To ensure
this, we set { = \}v 7N = Ul%% and T = 0.49. The relaxation
parameter is set to 1. For the ADMM and PD algorithms, we set
the parameters as recommended by Onose et al. (2016). We do
not use randomization, all data and all sparsity priors are used at
each iteration. We use the SARA collection of wavelets (Carrillo
et al. 2012), namely a concatenation of a Dirac basis with the first
eight Daubechies wavelets, as sparsity prior. For the simulations,
we set the normalized soft-threshold values k = 10~ for all three
methods, PPD, PD and ADMM. We run PPD for a number of
subiteration ny {1, 5, 50}. In all tests, we impose that the square
of the global bound ? is two standard deviations above the mean
of the x? distribution associated with the noise (Onose et al. 2016).

For the real data reconstruction, we set k = 1075, since the
recovered image has the brightest pixel of the order of 1072, In
this case, we also perform 10 re-weighting steps, one every 1024
iterations, according to Algorithm. We start with w© = 1072 and set
0® = 0.25w© for each step k. In this case, the global bound 2 is
set to be 1.05 times mean of the X2 distribution associated with the
thermal noise affecting the visibilities. Such a bound was observed
to provide good reconstruction results. ms-cLEAN was run using the

wscLEAN software package, version 2.2.1, with both uniform and
natural weighting. For both weighting schemes, we use six scales,
{0, 16, 24, 32, 48, 64}. We set the major loop gain to y = 0.6
and the minor loop gain to y ,, = 0.08. The stopping threshold is set
to two standard deviations above the automatically estimated noise
level on the different scales. The uniform weighting test reached
the stopping threshold. The natural weighting test was stopped after
35000 iterations since, for a larger number of iterations, the method
was only accumulating spurious components without improving the
solution.

5.2 Simulations

To study the behaviour of PPD across a broad range of u-v sam-
pling strategies, we use coverages with the sampled u-v points dis-
tributed according to a generalized Gaussian distribution with the
shape parameter . We study the acceleration for the reconstruction
of the galaxy cluster testimage in Fig. 3 and for the reconstruction of
the Cygnus A test image in Fig. 4. Here, we report the evolution of
the SNR as a function of the number of iterations. In both cases, we
have performed tests for two levels of input noise, 30dB and 50dB.
For all test cases, we provide the distribution of the normalized u
and v coordinates to showcase the link between the convergence
speed and sampling pattern.

For sampling strategies that are farther away from uniform, the
preconditioning strategy improves the convergence rate dramati-
cally in all test cases. For a Gaussian sampling, when 3 = 2, the
converge speed of the PPD is similar to that of PD and ADMM.
A decrease in 3 does not affect PPD greatly. It maintains almost
the same convergence speed throughout all the test cases. In the
extreme case when 3 = 0.25, the density of measurements is much
greater in the centre of the u-v space and PPD becomes one order
of magnitude faster than PD and ADMM. In all test cases, the PPD
algorithm remains robust to an inexact computation of the ellipsoid
projection. In practice, there is little difference between perform-
ing 1 subiteration and performing as many as 50. Due to this, its
complexity per iteration is marginally larger than that of PD. This,
coupled with the improved convergence rate, makes PPD much
more suitable for the large-scale problems arising in Rl. Comparing
the two input noise regimes, for lower input noise, the gap between
PPD and PD becomes larger. For less noisy data, the sampling den-
sity becomes the most important factor that limits the convergence
speed. This is due to the high-frequency data having lower power
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