

Heriot-Watt University
Research Gateway

How Could Serious Games Support Secure Programming?
Designing a Study Replication and Intervention

Citation for published version:
Maarek, M, McGregor, L, Louchart, S & McMenemy, R 2019, How Could Serious Games Support Secure
Programming? Designing a Study Replication and Intervention. in 2019 IEEE European Symposium on
Security and Privacy Workshops (EuroS&PW). IEEE, pp. 139-148, EuroUSEC European Workshop on
Usable Security 2019, Stockholm, Sweden, 20/06/19. https://doi.org/10.1109/EuroSPW.2019.00022

Digital Object Identifier (DOI):
10.1109/EuroSPW.2019.00022

Link:
Link to publication record in Heriot-Watt Research Portal

Document Version:
Peer reviewed version

Published In:
2019 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW)

General rights
Copyright for the publications made accessible via Heriot-Watt Research Portal is retained by the author(s) and /
or other copyright owners and it is a condition of accessing these publications that users recognise and abide by
the legal requirements associated with these rights.

Take down policy
Heriot-Watt University has made every reasonable effort to ensure that the content in Heriot-Watt Research
Portal complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact open.access@hw.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 30. Nov. 2021

https://doi.org/10.1109/EuroSPW.2019.00022
https://doi.org/10.1109/EuroSPW.2019.00022
https://researchportal.hw.ac.uk/en/publications/c6964379-ff89-442d-8317-e459ba5e01d3

How Could Serious Games Support Secure
Programming? Designing a Study Replication and

Intervention
Manuel Maarek, Léon McGregor

School of Mathematical and Computer Sciences
Heriot-Watt University

Edinburgh, United Kingdom
M.Maarek,lm356@hw.ac.uk

Sandy Louchart, Ross McMenemy
School of Simulation and Visualisation

Glasgow School of Art
Glasgow, United Kingdom
S.Louchart@gsa.ac.uk

R.McMenemy1@student.gsa.ac.uk

Abstract—While developing and deploying software continue
to be more broadly accessible, so is the problem caused by these
systems’ security not being considered enough by their developers
and maintainers. We propose to address this developer-centred
security issue with serious games (games for which entertainment
is not the main purpose) as a means to motivate developers to
consider security threats when developing. We have developed
a serious game around secure and non-secure programming
exercises to investigate if serious gamification helps to improve
attitudes or ability with secure programming. We detail the
design choices of the game and how it relates to the programming
tasks. In particular we present the design choices we made with
the intention to replicate a prior study and discuss the tension
that arose between replication and intervention. We discuss the
results of a pilot study we conducted and present the steps we
plan to take going forward into larger studies.

Index Terms—serious games, secure programming, developer
centred security, study replication, serious game intervention

I. INTRODUCTION

In recent times software systems are taking an increasing
and prevalent role in our everyday lives. These systems are
interconnected, ubiquitous and are operating everywhere from
the cloud to our mobile devices. They handle our personal and
sensitive data such as our credentials or daily records of our
activities. The development of software systems is increasingly
accessible to anyone, with the availability of software-as-a-
service development platforms and the dissemination power of
application stores. As a result, the implementation of security
functions in the software systems we use might not be done
or vetted by security experts or security-aware developers. As
an illustration of the issue, a recent study [1] has revealed the
extent of insecure code embedded in mobile applications as
a result of the misuse of security Application Programming
Interfaces (APIs).

This work was part a project funded by the Research Institute in Science
of Cyber Security (RISCS) in association with the National Cyber Security
Centre (NCSC) and the Engineering and Physical Sciences Research Council
(EPSRC).

A. Background and Motivations

Our goal is to address the issue of poor security of widely
available software systems by looking at ways to help the
“masses” [2] of developers of these systems to become more
aware and proficient in code security.

One direction to tackle this issue is to help the developers
to protect themselves against introducing such security bugs
by improving API usability and making APIs more secure by
default (see examples of such approach in Section IV-A).

Another direction, which is the one we are taking, is to
motivate developers to build more secure software by engaging
them in taking security into account during development.
In our work, we are particularly interested in the role that
serious games, which are games for which entertainment is
not the main purpose, can play to raise security awareness and
understanding. We believe that well-designed games can be
effective in impacting behaviour. The gamification approach,
which consists of turning a domain activity into a game, has
been used in the software engineering context (see examples in
Section IV-C), and in the cyber security context (see examples
in Section IV-D). The aim of our research is to improve,
through games, the security of code that developers produce,
and to do so with serious games which we believe offer more
potential than basic programming-based gamifications.

This paper presents the idea of a study to investigate
how serious games could impact developer-centred security,
discusses the design choices we made, and analyses the results
of the pilot study we conducted. This pilot is the first iteration
of our experiment design, and we detail the changes we plan
to make consequently.

B. Research Questions

Our research aims to identify if game interventions are
effective at enhancing programmers’ abilities and understand-
ings of secure programming. We therefore derived two re-
search questions on the comparative impact of serious games
on the security aspect of programming.

RQ1 Does embedding secure programming exercises in
a serious game improve the effectiveness of such

exercises? — When a player of the game completes a
secure programming exercise, do they perform better
at it than if they had not played the game?

RQ2 How differently does a serious game impact security-
oriented and other programming exercises? — If a
player completed a programming task and a secure
programming task, does the benefit from having
played the game affect them differently?

In this paper we only discuss the design of an experiment
to answer these questions, and therefore do not answer these
questions, see Section I-D.

C. Study Replication vs. Intervention

As a starting point to address these research questions, we
wanted to ground our work on an earlier study [3]. This
base study was primarily aimed at investigating the ability
of developers to program securely and at investigating the
security impact of the information sources developers use. We
chose to structure our experiment on this base study because
of its large sample size of participants recruited online. Using
a similar experimental setup would allow us to compare and
extrapolate our results with the results of the base study.
Replicating this prior study would confirm the original results,
and verify the effectiveness of our intervention. As part of our
goal to relate our findings with this base study we wanted to
replicate the following.

• Use the same programming tasks set in the base study.
• Record participants browsing to identify the information

sources used, as was done by self-reporting in the base
study.

• Ground the study online on the GitHub interface, while
the base study had recruited participants on GitHub1.

While repeating the same programming tasks, we extended
the experiment with participants taking up the tasks within
a serious game with the intention to observe how the game
impacted on their ability to program securely (RQ1). We also
extended the programming tasks with non-security focused
programming tasks to compare how the game differently
impacts security and non-security tasks (RQ2).

One major issue that arose in the design, preparation and
pilot execution of our experiment was the tension between the
idea of replicating the base study and our introduction of a
serious game intervention. Our goal to replicate the base study
and our goal to design a game intervention had conflicting
requirements which we discuss in the paper as well as the
trade-offs with the middle ground solution we implemented.

D. Contributions, Limitations and Plan of the Paper

As this paper presents the first steps in our investigation of
the impact of a serious game on developer centred security, it
reports the outcome of the first stage of our iterative design.
The contributions are as follows.

• Presentation of the design of a serious game for secure
programming.

1https://github.com/

• Discussion of the choices in replicating a prior study
while designing an intervention.

• Analysis of the results of our pilot experiment and details
the updates in the design of our study.

The work presented in this paper has also some limitations.
• This paper only reports on a pilot study and therefore

does not answer the research questions.
• The study in this paper is based on a single game. The

outcome of the pilot and further experiment is therefore
limited to the impact this particular game may have.

• This paper does not address the game design process
which is the focus of another paper [4].

In Section II, we discuss the design of the game and the
programming tasks of our study. The design considerations
with respect to the replication and intervention are discussed
in Section II-D. Then, the design of the pilot study is presented
in Section III as well as its results. In this section, we discuss
the issues that occurred, including those that arose from the
conflicts between replication and intervention. Finally, related
works are discussed in Section IV before we conclude and
draw future work perspectives in Section V.

II. DESIGN OF THE GAME

The serious game we have designed follows the genre of
tower defence video games. The players switch between the
game and completing programming tasks. By performing these
tasks, they can unlock new content (named upgrades) in the
game. The tasks players complete are python programming
exercises described in Section II-A. Each of the elements
that makes up the game will have some link back to the
programming tasks. For example, offering a story element in
the game linking back to a security topic covered in a task.
Details of these links are given in Section II-B. The game and
program development platform are web-based as described in
Section II-C. We end the description of the design of the game
by discussing the drives for replication and intervention in
Section II-D.

The design of our serious game was done collaboratively
between game experts and software security experts. This co-
design is the topic of another paper [4].

A. Programming Tasks

The six tasks that users can complete to unlock additional
upgrades in the game are described in Table I. The three first
tasks denoted by [3] are taken directly from the base study
and are security-related, while the remainder three are non-
security-related and were written by us. The programming
tasks are completed using python3 and are primarily focused
on the use of libraries. An experiment participant (playing the
game or simply completing programming tasks) can choose
whichever order they wish to complete them in, and is not
required to complete them all.

The general premise of a task is that a player will complete
a python method (given an empty stub method and spec-
ification), and then submit it. For example, the Credential
Storage task gets the player to write a method which takes

TABLE I
TASK DESCRIPTIONS

Task Name Motivation & Description

URL Shortener [3] Design an algorithm that can securely (non-
reversibly) generate shortened URLs.

Credential Storage [3] Securely (salt, hash with good algorithm) store
passwords in a database.

String Encryption [3] Choose a strong encryption algorithm and mode
to encrypt a given string.

Image Analysis Use a library to analyse an image and return its
average colour.

Time Tool Manipulate the datetime python library to find
the difference between two given times.

Search Replace Write a python script which can perform some
search and replace operations on text.

in a username and password, and then store it in a database
file. This requires them to make use of the sqllite3 python
library. Players can use print() calls and view the standard
output resulting from the execution, as well as download any
changed files (such as a database file) to assist them with
debugging their solution. Some tasks also provide output to
assist with debugging — such as printing the contents of a
database. Section II-C gives more detailed on the programming
environment which is illustrated in Figure 2.

B. Tower Defence Game

Our game is designed as a tower defence strategy game.
We intend for the player to repeatedly play the same level to
earn in-game money which can be used to purchase upgrades
that improve the defence. Some upgrades are locked until
the programming tasks (from Section II-A) are completed.
This is an incentive for players to complete the tasks. As is
often the case in such games, the level is difficult to begin
with, but should get easier the more upgrades are unlocked.
This difficulty is chosen to incentivise unlocking the upgrades
which in turn gives players some practice in programming.

Figure 1 shows the tower defence level in action, you can
see two of the main gameplay mechanics in action: creeps (a)
coming in from the top left corners heading towards the bank
target (b), and fixed position towers (c)–(f) which fire upon the
creeps or provide other communication facilities depending on
their type. The primary interface for playing the game is via
a text entry system, to mimic command line interactions.

We use the design of an enemy attempting to rob a bank as a
metaphor that abstracts from programming and cyber attackers
to a more real-world environment. This provides an alternative
perspective to that given by the programming context of the
task. The bridge between two different attack contexts exists
to increase player motivation.

The main gameplay mechanics (creeps and towers) and their
links to the tasks are as follows.

1) Creeps: The main antagonists of the game, presented as
one of either Basic, Hacker, Tank or Interceptor. The primary
goal of the game is for the player to use the tools at their
disposal to prevent the creeps from getting through the level
to their target (the bank).

Fig. 1. Screenshot of the game
The screenshot shows the main gameplay level with the gameplay mechanics:
(a) creeps, (b) target asset, and (c)–(f) towers, detailed in Table II.

2) Towers: These are fixed bases that will shoot at in-
coming enemies. We use several integrations to tie the game
mechanics and the programming tasks together. These inte-
grations exist in how the towers operate, of which there are
4 types: Standard, Communication, Laser and Missile. Details
for each tower are given in Table II.

3) Upgrades: As the player plays the main level they
unlock in-game currency. This can be used on the main
menu to purchase upgrades which enhance in-game abilities.
Some of these upgrades can only be unlocked by completing
programming tasks. This is done in order to motivate players
to complete the tasks in the order that will best benefit their
play style. In order to equally incentivise completing tasks and
unlocking upgrades, each of the upgrades will have a different
impact on gameplay, making it easier to progress further in a
level. These tasks are numbered in the game and both named
and numbered in the web browser interface. This is done
so that it is easier to see which task corresponds to which
upgrade. The numberings are the same for all participants.
The various upgrades, as well as the link they have to a given
task, are given in Table III.

C. Game and Coding Platform

The game and the code editor are both hosted online and
served through a web browser with a special browser extension
installed.

The code editor is based on the GitHub website and
interface, with additional functionalities provided by our web

TABLE II
TOWER DESCRIPTIONS

Tower Concept Motivation & Description

Standard (c) Credential Storage
(Passwords)

This tower is the basic tower that simply fires continually at any creeps that pass in range. However, hacker
creeps can disable these towers by “guessing” the password. The player then needs to manually reset the
password for each tower that this occurs to. While not explicitly mentioned, longer passwords take longer
to hack through.

Communication (d) String Encryption These towers act as support for other towers. The player can draw a line of communication between one
of these towers and another to increase its range. The link to encryption is that a creep could intercept
communications if they are not properly encrypted, represented by the connecting line being broken.

Laser (e) Credential Storage
(SQL Injection)

This tower is a “fall-back defence” — one that is used as a last resort. It can fire a high damage laser
at a specific creep, though it has a cooldown timer during which it cannot be used. To target a creep, the
player must type its name. However, some creeps have names which could affect a system vulnerable to
SQL injection. Typing such names would have undesired effects such as disabling towers.

Missile (f) URL Shortener This tower also acts as a “fall-back defence”. In this tower’s case, to target a creep you need to select an
area on the map which will generate a code referencing this location, which can then be typed as a target.
These codes can be long however and can be shortened with an appropriate upgrade. Some creeps can guess
(through reversibility) these codes, so that if a player enters such a guessed code, the missile will be fired
at that creep instead of the target location. The primary method for selection is done using a command-like
interface.

TABLE III
UPGRADE DESCRIPTIONS

Upgrade Task Motivation & Description

Tower password strength Credential Storage Stronger and safer credential storage makes it more difficult for an attacker to guess passwords. This
upgrade increases tower resistance to hacker creeps.

Input sanitisation Credential Storage Databases must be resistant against injection attacks (such as via SQL). This upgrade prevents creeps
with injectable names from interfering when their names are typed for targeting using towers.

Range upgrade Image analyser By using image analysis, the standard and communication towers can see better at further distances.
This allows them to increase their range.

Improved sensors Image analyser With better image analysis, towers can spot any creeps that are trying to obscure themselves using
camouflage.

Encryption strength String Encryption With stronger encryption, it takes a longer time for creeps to be able to intercept and break
communication lines between towers.

Search algorithms Search & Replace Once this upgrade is enabled, towers can use different targeting algorithms. This is made possible by
the developed algorithm being able to search through the list of creeps in a towers range.

Tower fire rate Time Tool Once developed, the time tool allows towers to increase their rate of fire by being able to calculate
timing events with more precision.

Missile code length URL shortener For the missile tower, a user needs to enter a long code to indicate the location to fire at. Unlocking
this upgrade by developing the URL shortening algorithm allows these codes to be shortened, making
the tower easier to use.

Missile code reversibility URL shortener One issue with codes is that of reversibility: that creeps could guess the location codes, name themselves
this, and divert attacks away from intended locations. This upgrade prevents this, as reversibility is a
security concern in the programming task.

browser extension. A screenshot of the kind of view the play-
ers would see while performing a programming task is given
in Figure 2. When editing the code (1) for the programming
tasks, the players can also run the code (2) and see the resulting
standard output (3) and for certain tasks, any changed files (4).
Once the player marks a version of code as the final version
(5), they receive a short code that can be used to unlock
upgrades in the game, as detailed in Section II-B3. We intend
for the player to go back and forth between programming and
playing the game. This is done as the game is designed with
certain prompts for programming securely, e.g., SQL injection
being a game play component (see the Laser tower in Table II).

The game itself was created using the Unity game engine
and exported to HTML5, as part of our aim for it to be playable
without needing to install any special extra components. The
game was designed to have low system requirements to allow

lower specification devices to run it. The game will capture
some analytics about how players are playing the game.

By asking participants to install a browser extension, we
can:

• Collect information about the domains of websites they
visit during completion of programming tasks;

• Modify the GitHub code editor to allow running python
code remotely;

• Return a code that could be used to unlock content in the
game upon completion of a task.

The code editor itself is the standard editor made available
on the GitHub website, with a few extra options for running
code and marking a task as complete. This can be seen in
Figure 2.

We handle the execution of the python code on our own
server for multiple reasons:

Fig. 2. Screenshot of the program editor
The screenshot shows the program editor of the game which extends GitHub’s
website and interface with (1) programming tasks, (2) a run code button, (3)–
(4) standard output and files resulting from the run, and (5) a final submission
button.

• Removing the requirement for the player to have
python3 installed on their system;

• Allowing us to capture the different versions of code that
are run;

• Enabling behind the scenes testing to see if the code
meets functional requirements.

D. Replication vs. Intervention

In order to replicate the base study [3], we needed to build
a platform that could operate in a similar way to the one
the base study used [5]. One of the first conflicts between
our replication and intervention was that we did not re-use
the same platform named Developer observatory [5], instead
opting for a browser extension that could modify the GitHub
web interface and a web-based game. This was primarily done
to allow web access to our platform.

The base study asked participants to make note of which
sites they visited or obtained code from, and to mark these as
comments in their code. Our implementation goes further in
collecting the actual domains visited.

In the base study [3] the only information made available to
the participants was the specification they needed to implement
and the python libraries they could use. One issue in designing
our intervention to be compatible with the replication was to
keep this level of information given to the participants. This
goes against the usual design practice for a serious game,
where the objective is to teach something and therefore to
provide guidance or adaptive information depending on the
player’s abilities.

Behind the scenes testing was done on the programming
solutions submitted to the six tasks by the player. The result
of the tests can be graded automatically and result in different
quality of game upgrades depending on the solution quality.
This would act as incentive to perform well and be at the art of
an educational game intervention. However, with the intention
to replicate the base study, our initial choice was to disable
making distinction between a correct and incorrect solution to
keep the amount of feedback the participants receive similar
to the base study.

III. PILOT EXPERIMENT

In this section we detail the plan, execution and analysis of
our pilot experiment with undergraduate students playing the
game and taking up the programming tasks. In our analysis of
results, we discuss some of the issues that arose, notably in
the design of the tasks and game, and the conflicts between
replication and our developed intervention.

We designed the experimental platform so that participants
are either invited to play the game and take up the pro-
gramming tasks within the game, or are asked to complete
the programming tasks without the game (control group).
This control is to identify if the game itself is effective
(RQ1), and to verify if there are any biases of difficulty in
regular programming when assessing RQ2. The distribution of
participants between the game group and the control group is
done with a round robin mechanism. For our pilot experiment,
we removed the control group to focus on identifying issues
with the workflow and interactions between the game and the
programming environment.

A. Pre-Pilot Testing

We performed pre-pilot testing, and found no major techni-
cal issues. This testing indicated issues with the layout of the
questionnaire, which we fixed before starting the pilot.

B. Method

For this pilot, our participants were undergraduate students
within the computer science department at Heriot-Watt Uni-
versity. We recruited eight students who had prior experience
or knowledge of python programming. The participants were
invited to go through the same sign up process as would be
used in a full experiment. Once accepting to take part, this
involved: installing the browser extension, playing the game,
completing some coding tasks and finishing by completing
a questionnaire. The participants were encouraged to play
as much as possible with the game, and not necessarily
following any particular task order. The participants could
stay for as long as they wanted. Prior to taking part and in
accordance with the ethical procedures in our University, the
participants were provided with information on the research,
what participating entailed and what data would be collected.
They were asked to complete a consent form. Participants
could withdraw at any time.

C. Data Collection

In the experiment, we aim to collect data from multiple
sources: questioning, game and task analytics, and end-of-
session questionnaire. As we conducted our pilot study in
person, we could also observe the participants as they were
completing the task, and answer any questions they had. We
noted issues or positive outcomes observed.

While participants are playing the game, game analytics are
recorded on how they play and progress. As they complete the
programming tasks and ran code, the back-end system collects
the changes they are making to their code.

The end-of-session questionnaire is composed of questions
about each task and its integration in the game, about the level
of experience in python programming and in security, about
gaming experience and perception of the game, as well as
some general demographics. This questionnaire replicates the
one used by the base study [3] with additional game-related
questions.

In the full study, we plan to use the responses from the
questionnaire, and the collected programming artefacts (source
code, code executions), to determine if the game has had a
positive impact on secure programming (RQ1). We also plan
to use this data to see if secure and non-secure programming
tasks are affected differently (RQ2). This will require compar-
ison of results both between secure and non-security related
tasks and also between groups of participants who did and did
not play the game.

D. Pilot Results

This section analyses the results from the questionnaire
and the observations made during the pilot experiment. Of
the 8 participants, only 1 attempted every task (although did
not fully complete any of them). The rest of the participants
each attempted at least 1 task and completed the exit survey.
However, of the 8 that took part only 3 participants ended
up with a solution that they submitted as “complete”. The
base study [3] noted that using python APIs can be hard
— evidenced by fewer correct solutions and a high assumed
perceived difficulty level. Conducting a small in person pilot
study may account for the 0 dropout rate. Our experiment
had more tasks than the base study, so it is not surprising
in hindsight that the participants completed fewer tasks. Also,
worth noting is that unlike the base study, our pilot participants
were all students, not active developers, which would likely
make the tasks harder. In the base study participants spent
“median 56 minutes” on programming tasks [5]. In our pilot,
there was an average of 44 minutes spent playing the game and
completing tasks (not including the time spent answering the
questionnaire). The low task completion rate and the lower
time spent on our pilot may be due to the fact that the
participants were students with commitments and that the pilot
was done in person rather than at their leisure.

1) Questionnaire Results: The questionnaire is composed
of questions which related to specific tasks, and some which
referred to the game side of the experiment on its own.

The questionnaire answers indicate that, although players
feel the game does prompt them for correct solutions, it does
not prompt them well to have a secure solution. We also see
that in its current iteration, players feel the game is not very
useful at helping them to complete tasks. The game’s story is
also difficult for players to maintain an interest in. There is
no strong consensus as to whether the link between tasks and
game is strong enough. From the questionnaire’s open answer
section, responses indicate a lack of time to complete the tasks
and play the game.

2) Observation Results: From observation, it was noted
that despite the inclusion of a replayable tutorial level which
covered how to play the game, some participants still required
additional explanations for certain concepts, such as how
communication towers were supposed to connect. It was also
observed that some players wanted to get through the tutorial
as quickly as possible. This indicates an interesting problem
of how to offer sufficient explanation while also not trying the
patience of players.

E. Pilot Discussion

1) Technical Setup: Analysing the players’ ability to simply
take part in the experiment shows that it went well (after they
were able to sign in following some setup issues). Our plan
was for the set up to be as simple as possible. There were
several steps between registering or installing the extensions
before being able to start taking part. Each step of friction
could reduce the number of people taking part. Despite efforts
such as using a web-based game to avoid downloads, the
implementation was convoluted. This was largely due to two
factors: the browser extension which required extra setup
steps; and the integration within GitHub which forced us to
use an extension in order to modify the interface to embed
code executions and outputs. We mention in Section III-F1
how we plan to address these issues.

All the participants were able to start and play the game,
even on lower-end machines that were provided during the
pilot study. Once correctly signed in, all the participants were
able to interact with the webpage offering a code editor. They
could write code, run it and see output, and then select a final
version as their solution.

2) Tasks: The biggest issue we encountered lay with the
programming tasks that the participants had to complete — in
terms of difficulty and the time commitment required. Some of
the programming tasks can be quite demanding, and this could
be a big factor in preventing players from progressing through
the game, or put them off completing tasks. At the current level
of difficulty, even if developers are capable of completing the
tasks, it would still take a very long time to complete them all
while still leaving time to play the game. This pilot study gave
only a relatively small window for participants to take part,
with them spending an average of 44 minutes on the tasks and
game with some time for the questionnaire. Modifications to
our experimental setup, such as targeting a longitudinal study
are detailed in Section III-F2

3) Game Design: Somewhat related to the issues with the
programming tasks, we noted some flaws in the design of
the game itself. Such as the link between the game, the
tasks and the help that the game gives from a programming
perspective. The tasks had an influence on the design of the
game, however not all respondents felt the presence of the
intended link between the tasks and game. There were broad
and mixed responses from all the participants as to whether
the game had a good link, and whether it engaged them well.
This could be due to the fact that players are taken out of
the game to complete the tasks, and they may see this as
two separate experiences. The only link back to the game at
that point is the code the player receives to unlock upgrades.
Another issue in the game is that it should have given more
help/training for the programming tasks. As mentioned in
Section II-D, in a serious game, guidance should typically
be provided to meet the learning objectives. This was not
done because part of the experiment was initially intended
to mirror the base study, and giving too much help in the
game could have voided such a comparison. As a result, the
game was not offering enough guidance from a perspective of
reinforcing secure programming or correct API usage. The in-
game tutorial also proved to be moderately useful in explaining
how game features worked, though some participants were
observed to have still missed the explanations given, requiring
additional help to understand how the game was to be played.
Changes to the game design will be detailed in the following
Section III-F3.

F. Updated Experiment

This section details out our plan for an updated experiment
design, taking into consideration the issues discovered during
the pilot.

1) Technical Setup: To simplify the login process we are
now developing an alternative version which would rely on a
GitLab2 server we will host rather than the GitHub website.
This makes the process of installing a web browser extension
and linking to GitHub unnecessary. This would however
prevent us from recording participants’ browsing history while
taking up the programming tasks, so instead we will introduce
a more explicit mechanism for participants to self-report
visited URLs, such as a text box on a page where players can
submit visited URLs. With a GitLab server, we can modify the
interface as we wish without the need for extensions, and any
logins would happen through more traditional means. This will
reduce friction to 1) lower the chance of participants dropping
out, and to 2) give participants more time to focus on the game
and programming.

2) Tasks & Experimental Setup: As mentioned, the pro-
gramming tasks are difficult, especially with regards to partic-
ipant time. One solution to this would be to remove some of
the tasks from the intervention, however this would reduce
the type of tasks and security topics we could cover. An
alternative solution would be to simplify the tasks, though this

2https://gitlab.com/

would conflict with our ability to closely compare results as
part of a study replication of [3]. The solution we choose
to implement in our update is to get participants to play the
game over a longer period of time, rather than in a single
sitting. A leader board could be used to motivate participants
to continue playing the game, and offer additional motivation
for completing tasks to do better in the game. This method
will require a questionnaire to be offered for each task after
it is completed. This will allow us to simplify the questions
to focus on one task at a time making it easier to understand,
and have the experience fresh in participants minds. General
demographic questions would be asked up-front and game-
related general questions would need to be asked at the end
or at regular timed intervals. Another change we plan to make
is to modify how tasks are displayed to participants when
they are choosing which to complete. Right now, they are
numbered 1–6 and do not change. Instead, these numbers will
be removed, and the tasks will be randomly ordered when
being shown to participants. By doing this randomly we can
avoid issues where participants learn the same concepts from
doing the same tasks. This will offer a better investigation
of how the intervention, rather than the tasks themselves, are
helping the participants.

3) Game: In the updated experiment a re-balance of the
information that is provided will be considered. This change in
the intervention is a necessary trade-off against the replication.
It will make completing an exact comparison or replication
of earlier study impossible, but it will allow the game to
function more as a serious game intervention. With the game
now acting as a proper intervention, we will be able to
evaluate its effectiveness at helping players to understand
secure programming (RQ1) and through our control see if
there is a different impact for non-secure programming tasks
(RQ2). The in-game help system may also need to be tweaked
in order to provide more assistance to players while avoiding
the requirement for a lengthy tutorial session before playing.

G. Summary of Pilot

Our pilot experiment was useful, in that it revealed issues
which we can work to improve upon. We need to re-think the
programming tasks and how they link to the game. We also
need to consider the trade-offs between an exact replication of
[3] and designing a serious game intervention teaching secure
use of python APIs in an experiment based on the earlier study.

IV. RELATED WORK

As mentioned in the motivations, we wish to tackle the
issues surrounding program security from the level of the
developer. There are many issues that developers can face,
including API usability, information sources available to de-
velopers, and developers’ lack of interest in taking security
into account. In this section, we discuss the related works
investigating these issues, as well as other games and game
interventions in related domains.

A. API Usability

An important research into helping developers program
more securely is looking into usable security. Research has
revealed usability issues in frequently used concepts like
SSL [6], [7] or libraries such as JSSE [8] and bouncycastle [9].
These usability issues exist in the APIs themselves, in the
documentation around them, or in their level of abstraction.
All these issues can contribute to developers producing more
security bugs when they use these libraries.

Suggestions have been made that API designers should
adopt best practices [10] like making APIs secure by default
or making APIs deliberately difficult to misuse. Another
suggestion [11] is that API developers should consider an
application developer as they would an attacker, and harden
their codebase against misuses accordingly.

The concept behind usable API security is that API devel-
opers need to take more responsibility in making applications
secure. The focus of the security tasks presented by [3] and
our game is on security related libraries offered by python.
Such a game could be modified to focus on one particular
library, educate on its secure usage, and assist in navigating
and understanding its documentation.

B. Developer Information Sources

As we noted in Section I-C, the primary aim of the study we
try to replicate [3] was looking at the sources of information
developers use when programming. A series of studies [1],
[12]–[14] on this topic have found that many applications are
being published with bugs that can be traced back to Q&A
community websites such as Stack Overflow.

In this context, a game could play the role of an alternative
documentation system, or an interactive portal for information
resources.

C. Games for Software Engineering

The idea of basic gamification has been used in software
engineering for some time, but [15] claims that we should go
further with interventions (adding fictional narrative, adding
multiple game elements) if we are to best impact the developer
players. Our developed game adopts this idea, going beyond
simple achievements and actually framing a story with the aim
of better engaging the developer players.

Serious games have been created that overlap with soft-
ware engineering. As proposed in [16], a study looked at
developers and tried to map their process onto a game
by using achievements, storytelling and Role-Playing Game
(RPG) elements. The development team took interest in the
gamified development process. This way of using a game to
reward programming is similar to our game though we only
focused on specific programming tasks rather than the whole
development cycle.

Code Hunt [17], [18] is a programming game. It gets players
to develop code that matches a hidden implementation — with
only some predefined tests to guide them. However, it offers
more of a framework around testing code, and can be used in
a contest environment, in addition to teaching programming.

Contests, notably involving Capture the flag (CTF) type
objectives, are used to give developers an opportunity to act
as programmers and hackers in a competitive manner. One
such example, the Build it, Break it, Fix it contest [19] gets
developers to build a solution, attempt to break another team’s
build, and then repair their own if it was broken. These types
of contest have a more involved security aspect than the
game we developed, and suggest an interesting potential future
extension: our game could let multiple players assess (and try
to break) the secure programming solutions rather than leaving
it up to an automatic or expert tester. We are exploring the
potential of peer-testing as a means of providing such expert
programming peer-feedback for computer science education in
[20].

Another such game, Code Defenders [21]–[23] puts a game
around the topic of mutation testing. Players are taught the
concepts of mutation testing by either writing test cases to
catch new mutants or writing mutations to the code to escape
the new tests. Though our game has testing behind the scenes
to evaluate solutions, this testing is neither the focus of what
is taught, nor is it transparent to the players.

Both Code Defenders and Code Hunt are web-based and
place the player into a code editor, but they do not include a
traditional video game experience. In our game, both elements
are present although separated. This separation could be the
reason why players felt a disconnect between the game and
tasks in our pilot.

Gamifications have also been built into Integrated Devel-
opment Environments (IDEs). One example [24] presents a
tool that motivates developers to remove warning messages
by gamifying it through awarding or removing points for
bugs created or fixed. This type of game focuses more on
simply getting developers to avoid warnings, which might
not trigger deeper understanding and could be of little help
when the developer produces bugs for which static analysis
and compilers do not warn about.

D. Games for Cyber security

Several games have been created for helping players to
understand cyber security concepts, beyond just the secure
programming that the paper focuses on.

The hACME game [25] is a web-based game that gets
the player to hack the site that is hosting it. This is less
programmer-focused and more hacker-focused, as it has dif-
ferent levels each requiring the player to investigate the site
(such as inspecting its HTML source) to “unlock” the next
level.

A table top game is presented in [26] that involves all
members of an organisation and teaches concepts behind social
engineering. Simulating a working environment provides a
nice real-world grounding for people to play on, and a way
to engage players to think about security. Another table top
game [27] is designed to be used in classrooms and is
based around having discussions of a simulated company
under attack. A table-top Lego game [28] which simulates

an industrial security environment, was found by managers of
industries to offer a real educational value.

A common theme of these games is that they simulate a
realistic environment. A way to increase the engagement of
games like the one we presented here, would be to place it in
the context of an existing or simulated organisation’s codebase.

V. CONCLUSION

This paper demonstrates and discusses how serious games
could be designed to gauge and impact software developers’
security motivations. After designing a serious game and
linking it with a framework for programming tasks, we ran a
pilot study with a view to investigate if the game is effective
at prompting players to program more securely. The pilot
revealed issues with the design of the game and the tasks, and
indeed the experimental setup as a whole. Our investigation
aims to research if serious games can assist programmers in
completing programming tasks, and if serious games have
different effects on security and non-security related program-
ming tasks. Our pilot does not provide an answer to these
questions, but we detail the changes we plan to make to our
experiment before conducting a larger scale study in the future.
We discussed in this paper both the design of the game, its
relationship with the secure programming tasks and the impact
our attempt to replicate the base study had on the effectiveness
of our serious game intervention.

Online Version: The game is available online at the follow-
ing address for people to play it.

http://www.macs.hw.ac.uk/games-dcs/

Future Work: We plan to re-work the experiment as refer-
enced in Section III-F. Once the changes are accomplished,
we plan to run the experiment an see if the game can be
deployed in a teaching environment. This would give us more
opportunities to observe the interactions within the game and
outside among student developers.

An additional direction is to develop a different game with
the same experimental setup. This would allow to investigate
whether certain types of game design affect engagement of a
player differently in secure programming training.

Possible future alterations for the structure of the experiment
could be to remove the current tasks and instead look at certain
specific topics that could be taught, for example building tasks
that all focus on one specific library. The game could also be
deployed for use in a real or realistic codebase, rather than
having discrete tasks to raise engagement and to adapt to
specific contexts.

VI. ACKNOWLEDGEMENT

We would like to thank the anonymous reviewers and
shepherd for their constructive comments and suggestions.

REFERENCES

[1] F. Fischer, K. Böttinger, H. Xiao, C. Stransky, Y. Acar, M. Backes, and
S. Fahl, “Stack Overflow Considered Harmful? The Impact of Copy
amp;Paste on Android Application Security,” in 2017 IEEE Symposium
on Security and Privacy (SP), May 2017, pp. 121–136.

[2] C. Weir, A. Rashid, and J. Noble, “Reaching the Masses: A New
Subdiscipline of App Programmer Education,” in Proceedings of the
2016 24th ACM SIGSOFT International Symposium on Foundations of
Software Engineering, ser. FSE 2016. New York, NY, USA: ACM,
2016, pp. 936–939.

[3] Y. Acar, C. Stransky, D. Wermke, M. L. Mazurek, and S. Fahl, “Security
Developer Studies with GitHub Users: Exploring a Convenience Sam-
ple,” in Thirteenth Symposium on Usable Privacy and Security (SOUPS
2017), 2017.

[4] M. Maarek, S. Louchart, L. McGregor, and R. McMenemy, “Co-
created Design of a Serious Game Investigation into Developer-Centred
Security,” in Games and Learning Alliance, ser. Lecture Notes in
Computer Science, M. Gentile, M. Allegra, and H. Söbke, Eds. Springer
International Publishing, 2019, pp. 221–231.

[5] C. Stransky, Y. Acar, D. C. Nguyen, D. Wermke, D. Kim, E. M. Red-
miles, M. Backes, S. Garfinkel, M. L. Mazurek, and S. Fahl, “Lessons
Learned from Using an Online Platform to Conduct Large-Scale, Online
Controlled Security Experiments with Software Developers,” in 10th
USENIX Workshop on Cyber Security Experimentation and Test (CSET
17). Vancouver, BC: USENIX Association, 2017.

[6] M. Ukrop and V. Matyas, “Why Johnny the Developer Can’t Work
with Public Key Certificates,” in Topics in Cryptology – CT-RSA 2018,
ser. Lecture Notes in Computer Science, N. P. Smart, Ed. Springer
International Publishing, 2018, pp. 45–64.

[7] M. Georgiev, S. Iyengar, S. Jana, R. Anubhai, D. Boneh, and
V. Shmatikov, “The Most Dangerous Code in the World: Validating SSL
Certificates in Non-browser Software,” in Proceedings of the 2012 ACM
Conference on Computer and Communications Security, ser. CCS ’12.
New York, NY, USA: ACM, 2012, pp. 38–49.

[8] C. Wijayarathna and N. A. G. Arachchilage, “Why Johnny can’t
develop a secure application? A usability analysis of Java Secure Socket
Extension API,” Computers & Security, vol. 80, pp. 54–73, Jan. 2019.

[9] ——, “Why Johnny Can’t Store Passwords Securely?: A Usability
Evaluation of Bouncycastle Password Hashing,” in Proceedings of
the 22nd International Conference on Evaluation and Assessment in
Software Engineering 2018, ser. EASE’18. New York, NY, USA: ACM,
2018, pp. 205–210.

[10] M. Green and M. Smith, “Developers are Not the Enemy!: The Need
for Usable Security APIs,” IEEE Security Privacy, vol. 14, no. 5, pp.
40–46, Sep. 2016.

[11] G. Wurster and P. C. van Oorschot, “The Developer is the Enemy,” in
Proceedings of the 2008 New Security Paradigms Workshop, ser. NSPW
’08. New York, NY, USA: ACM, 2008, pp. 89–97.

[12] Y. Acar, C. Stransky, D. Wermke, C. Weir, M. L. Mazurek, and
S. Fahl, “Developers Need Support, Too: A Survey of Security Advice
for Software Developers,” in 2017 IEEE Cybersecurity Development
(SecDev), Sep. 2017, pp. 22–26.

[13] Y. Acar, M. Backes, S. Fahl, D. Kim, M. L. Mazurek, and C. Stransky,
“How Internet Resources Might Be Helping You Develop Faster but
Less Securely,” IEEE Security Privacy, vol. 15, no. 2, pp. 50–60, Mar.
2017.

[14] ——, “You Get Where You’re Looking for: The Impact of Information
Sources on Code Security,” in 2016 IEEE Symposium on Security and
Privacy (SP), May 2016, pp. 289–305.

[15] T. Barik, E. Murphy-Hill, and T. Zimmermann, “A perspective on
blending programming environments and games: Beyond points, badges,
and leaderboards,” in 2016 IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC), Sep. 2016, pp. 134–142.

[16] E. B. Passos, D. B. Medeiros, P. A. S. Neto, and E. W. G. Clua, “Turning
Real-World Software Development into a Game,” in 2011 Brazilian
Symposium on Games and Digital Entertainment, Nov. 2011, pp. 260–
269.

[17] T. Xie, J. Bishop, N. Tillmann, and J. de Halleux, “Gamifying Software
Security Education and Training via Secure Coding Duels in Code
Hunt,” in Proceedings of the 2015 Symposium and Bootcamp on the
Science of Security, ser. HotSoS ’15. New York, NY, USA: ACM,
2015, pp. 26:1–26:2.

[18] J. Bishop, R. N. Horspool, T. Xie, N. Tillmann, and J. De Halleux, “Code
Hunt: Experience with Coding Contests at Scale,” in 2015 IEEE/ACM
37th IEEE International Conference on Software Engineering, vol. 2,
May 2015, pp. 398–407.

[19] A. Ruef, M. Hicks, J. Parker, D. Levin, M. L. Mazurek, and P. Mardziel,
“Build It, Break It, Fix It: Contesting Secure Development,” in Pro-
ceedings of the 2016 ACM SIGSAC Conference on Computer and

Communications Security, ser. CCS ’16. New York, NY, USA: ACM,
2016, pp. 690–703.

[20] M. Maarek and L. McGregor, “Development of a Web Platform for
Code Peer-Testing,” in The 8th Workshop on Evaluation and Usability
of Programming Languages and Tools (PLATEAU) at SPLASH 2017.,
2017.

[21] B. S. Clegg, J. M. Rojas, and G. Fraser, “Teaching Software Testing
Concepts Using a Mutation Testing Game,” in Proceedings of the 39th
International Conference on Software Engineering: Software Engineer-
ing and Education Track, ser. ICSE-SEET ’17. Piscataway, NJ, USA:
IEEE Press, 2017, pp. 33–36.

[22] J. M. Rojas and G. Fraser, “Code Defenders: A Mutation Testing Game,”
in 2016 IEEE Ninth International Conference on Software Testing,
Verification and Validation Workshops (ICSTW), Apr. 2016, pp. 162–
167.

[23] J. M. Rojas, T. D. White, B. S. Clegg, and G. Fraser, “Code Defenders:
Crowdsourcing Effective Tests and Subtle Mutants with a Mutation
Testing Game,” in Proceedings of the 39th International Conference

on Software Engineering, ser. ICSE ’17. Piscataway, NJ, USA: IEEE
Press, 2017, pp. 677–688.

[24] S. Arai, K. Sakamoto, H. Washizaki, and Y. Fukazawa, A Gamified Tool
for Motivating Developers to Remove Warnings of Bug Pattern Tools,
Dec. 2014.

[25] O. Nerbråten and L. Røstad, “hACMEgame: A Tool for Teaching
Software Security,” in 2009 International Conference on Availability,
Reliability and Security, Mar. 2009, pp. 811–816.

[26] K. Beckers and S. Pape, “A Serious Game for Eliciting Social En-
gineering Security Requirements,” in 2016 IEEE 24th International
Requirements Engineering Conference (RE), Sep. 2016, pp. 16–25.

[27] R. Ottis, “Light Weight Tabletop Exercise for Cybersecurity Education,”
Journal of Homeland Security and Emergency Management, vol. 11,
no. 4, pp. 579–592, 2014.

[28] S. Frey, A. Rashid, P. Anthonysamy, M. Pinto-Albuquerque, and S. A.
Naqvi, “The Good, the Bad and the Ugly: A Study of Security Decisions
in a Cyber-Physical Systems Game,” IEEE Transactions on Software
Engineering, 2018.

