Scattering amplitude recursion relations in Batalin-Vilkovisky-quantizable theories

Citation for published version:

Digital Object Identifier (DOI):
10.1103/PhysRevD.100.045017

Link:
Link to publication record in Heriot-Watt Research Portal

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Physical Review D

General rights
Copyright for the publications made accessible via Heriot-Watt Research Portal is retained by the author(s) and/or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
Heriot-Watt University has made every reasonable effort to ensure that the content in Heriot-Watt Research Portal complies with UK legislation. If you believe that the public display of this file breaches copyright please contact open.access@hw.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Scattering amplitude recursion relations in Batalin-Vilkovisky–quantizable theories

Tommaso Macrelli,1,* Christian Sämann,2,† and Martin Wolf1,‡

1Department of Mathematics, University of Surrey, Guildford GU2 7XH, United Kingdom
2Maxwell Institute for Mathematical Sciences, Department of Mathematics, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom

(Received 25 March 2019; published 16 August 2019)

Tree-level scattering amplitudes in Yang-Mills theory satisfy a recursion relation due to Berends and Giele which yields e.g., the famous Parke-Taylor formula for maximally helicity violating amplitudes. We show that the origin of this recursion relation becomes clear in the Batalin-Vilkovisky (BV) formalism, which encodes a field theory in an \(\mathcal{L}_\infty \)-algebra. The recursion relation is obtained in the transition to a smallest representative in the quasi-isomorphism class of that \(\mathcal{L}_\infty \)-algebra, known as a minimal model. In fact, the quasi-isomorphism contains all the information about the scattering theory. As we explain, the computation of such a minimal model is readily performed in any BV quantizable theory, which, in turn, produces recursion relations for its tree-level scattering amplitudes.

DOI: 10.1103/PhysRevD.100.045017

I. INTRODUCTION AND RESULTS

While string theory has not yet fulfilled its initial promise of a complete and unified description of nature, it has certainly become a successful way of thinking about quantum field theories. Here, we would like to adopt a perspective which has its origin in string field theory and which was suggested e.g., in [1–4]. The structures of the Hilbert spaces of string field theories are encoded in homotopy algebras, and in the case of closed string field theory in terms of \(\mathcal{L}_\infty \)-algebras [5]. The relevant classical action is simply the canonical action associated with an \(\mathcal{L}_\infty \)-algebra and which is known as the homotopy Maurer-Cartan action. Homotopy Maurer-Cartan theory can be thought of as a vast generalization of Chern-Simons theory. One might hope that this rich structure is somehow reflected in ordinary field theory, which one could then exploit, e.g., in often cumbersome computations of scattering amplitudes. As we shall see, this is indeed the case and the place to look for \(\mathcal{L}_\infty \)-algebras is the Batalin-Vilkovisky (BV) formalism [6–10]; see also e.g., [11–13] for related, earlier considerations.

In this paper, we shall combine the following three facts, which should be familiar to any expert on BV quantization and which are explained in detail e.g., in [3,4]:

(i) The BV formalism assigns to any field theory it can treat an \(\mathcal{L}_\infty \)-algebra describing its symmetries, field contents, equations of motion, and Noether currents;
(ii) Quasi-isomorphic \(\mathcal{L}_\infty \)-algebras describe physically equivalent field theories [3] (see also [14]);
(iii) Any \(\mathcal{L}_\infty \)-algebra comes with a minimal model which is the smallest representative in its quasi-isomorphism class and whose propagators vanish.

Given an \(\mathcal{L}_\infty \)-algebra of a classical field theory, we are thus led to conclude that the \(n \)-point vertices of the field theory described by its minimal model should be the tree-level scattering amplitudes of the original field theory. An obvious candidate for investigating the validity of our conclusion is the famous Parke-Taylor formula, which describes a huge simplification in adding up the Feynman diagrams contributing to maximally helicity violating gluon scattering amplitudes. After its conjecture in [15], this formula was proved by Berends and Giele in [16] using a recursion relation for particular currents. We shall show that this recursion relation is nothing but the explicit formula for computing a minimal model in the concrete case of Yang-Mills theory.

We begin with a very concise review of \(\mathcal{L}_\infty \)-algebras, quasi-isomorphisms, minimal models, and their appearance in the BV formalism in Sec. II. We then discuss our formalism in Sec. III for the example of scalar field theory in which the relevant structures and their interpretation become very obvious. Full Yang-Mills theory and the gluon current recursion relations are then discussed in Sec. IV.
We explain that the Berends-Giele recursion relations for tree-level scattering amplitudes in Yang-Mills theory arise as recursion relations of an underlying quasi-isomorphism of \(L_\infty \)-algebras.

Let us also summarize a number of general important observations that follow from our constructions. Any BV quantizable field theory can be cast into the strictification theorem for \(L_\infty \)-algebras. This allows us to consider the chain complex

\[
\ldots \rightarrow L_{-1} \xrightarrow{\mu_1} L_0 \xrightarrow{\mu_1} L_1 \rightarrow \ldots.
\]

Next, we equip this complex with products \(\mu_i : L \times \cdots \times L \rightarrow L \) of degree \(2-i \) for \(i \in \mathbb{N} \) which are \(i \)-linear and totally graded antisymmetric and subject to the higher or homotopy Jacobi identity:

\[
\sum_{j+k-i \in \text{Shuf}(j,i)} \chi(\sigma; \ell_1, \ldots, \ell_i) (-1)^k \mu_{k+1}(\ell_{\sigma(1)}, \ldots, \ell_{\sigma(i)}),
\]

\[
\ell_{\sigma(j+1)}, \ldots, \ell_{\sigma(i)}) = 0
\]

for \(\ell_1, \ldots, \ell_i \in L \). The sum over \(\sigma \) is taken over all \((j;i) \) shuffles which consist of permutations \(\sigma \) of \(\{1, \ldots, i\} \) such that the first \(j \) and the last \(i-j \) images of \(\sigma \) are ordered: \(\sigma(1) < \cdots < \sigma(j) \) and \(\sigma(j+1) < \cdots < \sigma(i) \). Furthermore, the sign \(\chi(\sigma; \ell_1, \ldots, \ell_i) \) is called the graded Koszul sign and defined by means of

\[
\ell_1 \wedge \cdots \wedge \ell_i = \chi(\sigma; \ell_1, \ldots, \ell_i) \ell_{\sigma(1)} \wedge \cdots \wedge \ell_{\sigma(i)}.
\]

Specifically, when \(i = 1 \), the homotopy Jacobi identity (2.1b) just says that \(\mu_1 \) is a differential. For \(i = 2 \), it says that \(\mu_2 \) is a derivation with respect to \(\mu_2 \), and for \(i = 3 \), it says that the binary product \(\mu_2 \) satisfies a generalization of the standard Jacobi identity, and so on.

A \(\mathbb{Z} \)-graded vector space with such products \(\mu_i \) is called an \(L_\infty \)-algebra [21–23]. Particular examples of \(L_\infty \)-algebras include the trivial \(L_\infty \)-algebra \(L = \bigoplus_{k \in \mathbb{Z}} L_k \) with \(L = \{0\} \), ordinary Lie algebras with \(L = L_0 \) and the only nonvanishing product being \(\mu_2 \), as well as differential graded Lie algebras with general \(L \) for which \(\mu_i = 0 \) for \(i \geq 3 \). The latter are also called \textit{strict} \(L_\infty \)-algebras.

\section{II. \(L_\infty \)-Algebras of Field Theories}

\(L_\infty \)-algebras are generalizations of Lie algebras to differential graded Lie algebras and beyond. We will review the relevant definitions and refer the interested reader to [3,4] for all the details.

\section{A. \(L_\infty \)-algebras and quasi-isomorphisms}

\subsection{1. \(L_\infty \)-algebras}

To begin with, let \(L = \bigoplus_{k \in \mathbb{Z}} L_k \) be a \(\mathbb{Z} \)-graded vector space. Elements of \(L_k \) are said to be homogeneous of and degree \(k \), and we shall denote the degree of a homogeneous element \(\ell \in L \) by \(|\ell| \in \mathbb{Z} \). Suppose there is a differential \(\mu_1 : L \rightarrow L \) of degree 1. This allows us to consider the chain complex

\[
\ldots \rightarrow L_{-1} \xrightarrow{\mu_1} L_0 \xrightarrow{\mu_1} L_1 \rightarrow \ldots.
\]

Conversely, \(\mu_1 \) is a differential iff it is a \(1 \)-linear and totally graded antisymmetric of degree 1. This means that \(\mu_1 \) is a Lie algebra homomorphism of degree 1.

\subsection{2. \(L_\infty \)-morphisms}

Morphisms between Lie algebras are maps preserving the Lie bracket. The higher categorical nature of \(L_\infty \)-algebras now leads to a vast generalization of Lie algebra morphisms to \(L_\infty \)-morphisms. Explicitly, an \(L_\infty \)-morphism \(\phi : (L, \mu_i) \rightarrow (L', \mu'_i) \) between two \(L_\infty \)-algebras \((L, \mu_i) \) and \((L', \mu'_i) \) is a collection of \(i \)-linear totally graded antisymmetric maps \(\phi_i : L \times \cdots \times L \rightarrow L' \) of degree \(1-i \) such that

\[\text{There are many possible sign conventions here; we believe we chose the convention with the least amount of overhead of signs for the BV formalism.}\]
\[
\sum_{j+k=i} \sum_{\sigma \in \text{Sh}(j; i)} (-1)^{j} \chi(\sigma; \ell_1, \ldots, \ell_i) \phi_{k+1}(\mu_j(\ell_{\sigma(1)}, \ldots, \ell_{\sigma(j)}), \ell_{\sigma(j+1)}, \ldots, \ell_{\sigma(i)}) \\
= \sum_{j=1}^{i} \sum_{k=1}^{j} \chi(\sigma; \ell_1, \ldots, \ell_i) \zeta(\sigma; \ell_1, \ldots, \ell_i) \times \mu_{j}^{'j}(\phi_{k}(\ell_{\sigma(1)}, \ldots, \ell_{\sigma(k)}), \ldots, \phi_{k}(\ell_{\sigma(k+1), \ldots, \ell_{\sigma(i)}}))
\]

(2.2a)

with \(\chi(\sigma; \ell_1, \ldots, \ell_i) \) the Koszul sign and \(\zeta(\sigma; \ell_1, \ldots, \ell_i) \) given by

\[
\zeta(\sigma; \ell_1, \ldots, \ell_i) := (-1) \sum_{1 \leq m \leq j} m_\sigma k_\sigma + \sum_{n=1}^{j} \sum_{m=1}^{n} (2m-1) \sum_{k=1}^{n} k_\sigma 1 \ell_{\sigma(n)} L_i.
\]

(2.2b)

Note that for Lie algebras, this definition just reduces to the standard definition of a Lie algebra morphism.

Since \(\mu_1 \) is a differential, we may study the cohomology ring \(H_{\mu_1}^\ast(L) \) of the chain complex (2.1a). If the map \(\phi_1 \) of an \(L_\infty \)-morphism \(\phi: (L, \mu_1) \to (L', \mu'_1) \) induces an isomorphism on the cohomology rings \(H_{\mu_1}^\ast(L) \cong H_{\mu'_1}^\ast(L') \), then \(\phi \) is called a quasi-isomorphism, generalizing quasi-isomorphisms of chain complexes. Quasi-isomorphisms are, in most cases, the appropriate notion of isomorphisms for \(L_\infty \)-algebras.

3. Strictification theorem

General strictification theorems for homotopy algebras \([24,25]\) specialize to \(L_\infty \)-algebras and state that any \(L_\infty \)-algebra is quasi-isomorphic to a strict \(L_\infty \)-algebra. The latter is then called a strict model for the former. Recall that a strict \(L_\infty \)-algebra is a differential graded Lie algebra because only the differential and the binary product are nonvanishing.

We shall see explicit examples of strictifications of \(L_\infty \)-algebras in Secs. III B and IV B. In practice, however, it often turns out that the transition to the strict model of an \(L_\infty \)-algebra is either hard to begin with or not very convenient and too restrictive for further computations.

4. Minimal model theorem

A companion theorem to the above one is the minimal model theorem\(^2\): any \(L_\infty \)-algebra \((L, \mu_1)\) is quasi-isomorphic to an \(L_\infty \)-algebra \((L', \mu'_1)\) for which \(\mu'_1 = 0 \). The latter is indeed a minimal model, i.e., a minimal representative of the quasi-isomorphism class of \(L \), since the graded vector space underlying \(L' \) is its own cohomology ring \(H_{\mu'_1}^\ast(L) \). We note that minimal models are unique up to \(L_\infty \)-isomorphisms (i.e., \(L_\infty \)-morphisms \(\phi \) with \(\phi_1 \) invertible).

The construction of a minimal model for an \(L_\infty \)-algebra \(L \) means to compute the \(L_\infty \)-structure given by brackets \(\mu_i^{'j} \) on the cohomology ring \(H_{\mu_1}^\ast(L) =: L_\infty \). Since this will be central to our discussion, we give some more details. We start from a choice of projection \(p: L \to L_\infty \) together with an embedding \(e: L_\infty \to L \) which are both chain maps of degree 0 and satisfy \(p \circ e = \text{id}_L \). Then we always have a degree -1 chain map \(h: L \to L_\infty \) satisfying

\[
id_L - e \circ p = h \circ \mu_1 + \mu_1 \circ h.
\]

(2.3)

Such a map \(h \) is called a contracting homotopy, and we summarize this pictorially as

\[
h \quad \circ \quad L \xrightarrow{p} \xrightarrow{e} H_{\mu_1}^\ast(L).
\]

(2.4)

Evidently, since \((L, \mu_1)\) is a complex and \(p \) and \(e \) are chain maps, we have

\[
\mu_1 \circ \mu_1 = 0, \quad e \circ \mu_1 = 0, \quad \text{and} \quad p \circ \mu_1 = 0.
\]

(2.5)

Upon combining this with (2.3), we obtain

\[
\mu_1 = \mu_1 \circ h \circ \mu_1.
\]

(2.6)

The map \(e \circ p \) in (2.3) is a projector onto a subspace of \(L \); however, the maps \(h \circ \mu_1 \) and \(\mu_1 \circ h \) on the right-hand side are not, in general. We can always rectify this by redefining the contracting homotopy according to

\[
h := h - h \circ h \circ \mu_1 - h \circ e \circ p.
\]

(2.7)

Indeed, with the help of (2.3) and (2.5), one may check that \(h \) satisfies

\[
id_L - e \circ p = h \circ \mu_1 + \mu_1 \circ h, \quad h = h - h \circ h \circ \mu_1 - h \circ e \circ p, \quad \mu_1 = \mu_1 \circ h \circ \mu_1, \quad h = h \circ \mu_1 \circ h, \quad h \circ h = 0.
\]

(2.8)

In particular, \(h \) is again a contracting homotopy. Moreover, we now have a decomposition\(^3\)

\(^2\)See [2,26] for the corresponding statement for \(A_\infty \)-algebras.

\(^3\)The subscripts are borrowed from the Hodge decomposition of a differential form into harmonic, exact, and coexact parts; see [3], Sec. 5.2] for the corresponding formulas.
\[L \cong L_{\text{harm}} \oplus L_{\text{ext}} \oplus L_{\text{coex}}, \]

\[
\text{L}_{\text{harm}} := \text{im}(\varepsilon \circ \varrho), \quad \text{L}_{\text{ext}} := \text{im} (\mu_1 \circ h), \quad \text{L}_{\text{coex}} := \text{im} (h \circ \mu_1)
\]

(2.9)

with \(L_{\text{harm}} \cong L^\circ \). This is known as the abstract Hodge-Kodaira decomposition. It is rather straightforward to verify that

\[
\phi_1 (\ell'_1) := \varepsilon (\ell'_1),
\]

\[
\phi_2 (\ell'_1, \ell'_2) := -(h \circ \mu_2)(\phi_1 (\ell'_1), \phi_1 (\ell'_2)),
\]

\[\vdots \]

\[
\phi_i (\ell'_1, \ldots, \ell'_i) := - \sum_{j=2}^i \frac{1}{j!} \sum_{k_1 + \ldots + k_j = i \sigma \in \mathbb{S}(k_1, \ldots, k_{j-1}, i)} \chi (\sigma; \ell'_1, \ldots, \ell'_i) \zeta (\sigma; \ell'_1, \ldots, \ell'_i)
\]

\[
\times (h \circ \mu_j)(\phi_{k_1} (\ell'_{a(1)}), \ldots, \ell'_{a(k_1)}), \ldots, \phi_{k_j} (\ell'_{a(k_1 + \ldots + k_{j-1} + 1)}, \ldots, \ell'_{a(k)}) \right) \right),
\]

(2.11a)

and likewise, the brackets \(\mu_i : L^\circ \times \cdots \times L^\circ \to L^\circ \) are given by [2]

\[
\mu_1 (\ell'_1) := 0,
\]

\[
\mu_2 (\ell'_1, \ell'_2) := (\varrho \circ \mu_2)(\phi_1 (\ell'_1), \phi_1 (\ell'_2)),
\]

\[\vdots \]

\[
\mu_i (\ell'_1, \ldots, \ell'_i) := \frac{1}{i!} \sum_{k_1 + \ldots + k_j = i \sigma \in \mathbb{S}(k_1, \ldots, k_{j-1}, i)} \chi (\sigma; \ell'_1, \ldots, \ell'_i) \zeta (\sigma; \ell'_1, \ldots, \ell'_i)
\]

\[
\times (\varrho \circ \mu_j)(\phi_{k_1} (\ell'_{a(1)}), \ldots, \ell'_{a(k_1)}), \ldots, \phi_{k_j} (\ell'_{a(k_1 + \ldots + k_{j-1} + 1)}, \ldots, \ell'_{a(k)}) \right) \right),
\]

(2.11b)

where \(\ell'_1, \ldots, \ell'_i \in L^\circ \). Here, \(\chi (\sigma; \ell'_1, \ldots, \ell'_i) \) is the Koszul sign and \(\zeta (\sigma; \ell'_1, \ldots, \ell'_i) \) the sign factor introduced in (2.2b). We shall provide a proof of these formulas in Appendix A, explaining the derivation in [2] in some more detail.

5. Cyclic \(L_\infty \)-algebras

The appropriate notion of a metric (or indefinite inner product) on an \(L_\infty \)-algebra is the following one. A cyclic structure on an \(L_\infty \)-algebra \((L, \mu_i)\) is a nondegenerate bilinear graded symmetric pairing \(\langle -, - \rangle_L : L \times L \to \mathbb{R} \) of degree \(k \) which is cyclic in the sense of

\[
\langle \ell_1, \mu_i (\ell_2, \ldots, \ell_{i+1}) \rangle_L = (-1)^{i+i |\ell_1| + |\ell_{i+1}|} |\ell_{i+1}| \sum_{j=1}^i |\ell_j| L \times \langle \ell_{i+1}, \mu_i (\ell_1, \ldots, \ell_i) \rangle_L
\]

(2.12)

for \(\ell_1, \ldots, \ell_{i+1} \in L \). An \(L_\infty \)-algebra quipped with an inner product is called a cyclic \(L_\infty \)-algebra.

We can extend morphisms of \(L_\infty \)-algebras \(\phi : (L, \mu_i) \to (L', \mu'_i) \) to morphisms of cyclic \(L_\infty \)-algebras if we additionally require

\[
\langle \phi_1 (\ell_1), \phi_1 (\ell_2) \rangle_{L'} = \langle \ell_1, \ell_2 \rangle_L,
\]

(2.13a)

and for all \(i \geq 3 \) and \(\ell_1, \ldots, \ell_i \in L \),

\[
\sum_{j=1}^i \langle \phi_j (\ell_1, \ldots, \ell_j), \mu_k (\ell_{j+1}, \ldots, \ell_{i+k}) \rangle_{L'} = 0.
\]

(2.13b)

Likewise, the strictification and minimal model theorems extend to cyclic \(L_\infty \)-algebras.

B. Homotopy Maurer-Cartan theory

The BV formalism can be seen as a reformulation of a Lagrangian field theory as a homotopy Maurer-Cartan theory, which is a generalized form of a Chern-Simons theory. In the following, we concisely recall the basic facts and refer again to [3,4] for more details.
1. Homotopy Maurer-Cartan equation

Given an L_{∞}-algebra (\mathcal{L}, μ_i), we call an element of degree 1, $a \in \mathcal{L}_1$, a gauge potential and define its curvature by

$$f := \sum_{i \geq 1} \frac{1}{i!} \mu_i(a, \ldots, a) \in \mathcal{L}_2. \quad (2.14)$$

Due to the higher Jacobi identities (2.1b), the curvature f obeys the Bianchi identity

$$\sum_{i \geq 0} \frac{1}{i!} \mu_{i+1}(a, \ldots, a, f) = 0. \quad (2.15)$$

Infinitesimal gauge transformations are mediated by degree 0 elements $c_0 \in \mathcal{L}_0$ and are given by $a \mapsto a + \delta_{c_0}a$ with

$$\delta_{c_0}a := \sum_{i \geq 0} \frac{1}{i!} \mu_{i+1}(a, \ldots, a, c_0) \Rightarrow \quad \delta_{c_0}f = \sum_{i \geq 0} \frac{1}{i!} \mu_{i+2}(a, \ldots, a, f, c_0). \quad (2.16)$$

Using the higher Jacobi identities (2.1b), one may show that

$$[\delta_{c_0}, \delta_{c_0}']a = \delta_{c_0}a + \sum_{i \geq 0} \frac{1}{i!} \mu_{i+3}(a, \ldots, a, f, c_0, c_0'), \quad (2.17a)$$

where

$$c_0' := \sum_{i \geq 0} \frac{1}{i!} \mu_{i+2}(a, \ldots, a, c_0, c_0'). \quad (2.17b)$$

Thus, the gauge transformations always close for strict L_{∞}-algebras, for which only the differential and the 2-product are nontrivial. In the general case, however, a restriction of the gauge potential is required to ensure closure, and a sufficient condition is

$$f = 0. \quad (2.18)$$

This equation, which describes an abstract form of flatness of the gauge potential, is known as the homotopy Maurer-Cartan equation. Gauge potentials $a \in \mathcal{L}_1$ satisfying this equation are called Maurer-Cartan elements.

It is important to stress that the gauge parameters $c_0 \in \mathcal{L}_0$ may enjoy gauge freedom themselves which is mediated by next-to-lowest gauge parameters $c_{-1} \in \mathcal{L}_{-1}$ of degree -1. In turn, the next-to-lowest gauge parameters $c_{-1} \in \mathcal{L}_{-1}$ enjoy gauge freedom that is mediated by next-to-next-to-lowest gauge parameters $c_{-2} \in \mathcal{L}_{-2}$ for degree -2, and so on. These are known as the higher gauge transformations, and they are given by

$$\delta_{c_{-1}}c_{-k} := \sum_{i \geq 0} \frac{1}{i!} \mu_{i+1}(a, \ldots, a, c_{-k-1}) \quad (2.19)$$

with $c_{-k} \in \mathcal{L}_{-k}$ of degree $-k$. Note that $f = 0$ is also a sufficient condition for the higher gauge transformations to close.

2. Homotopy Maurer-Cartan action

The homotopy Maurer-Cartan equation is variational whenever $(\mathcal{L}, \mu_i, \langle -, - \rangle)$ is a cyclic L_{∞}-algebra with an inner product $\langle -, - \rangle$ of degree -3. Indeed, the gauge invariant action functional

$$S_{MC} := \sum_{i \geq 1} \frac{1}{(i+1)!} \langle a, \mu_i(a, \ldots, a) \rangle, \quad (2.20)$$

known as the homotopy Maurer-Cartan action, has the homotopy Maurer-Cartan equation as its stationary locus.

3. Homotopy Maurer-Cartan elements and L_{∞}-morphisms

Let us now briefly explain how Maurer-Cartan elements transform under L_{∞}-morphisms. For any L_{∞}-morphism ϕ between two L_{∞}-algebras (\mathcal{L}, μ_i) and (\mathcal{L}', μ'_i), there is a natural morphism of gauge potentials,

$$a \mapsto a' := \sum_{i \geq 1} \frac{1}{i!} \phi_i(a, \ldots, a) \Rightarrow \quad f \mapsto f' := \sum_{i \geq 0} \frac{1}{i!} \phi_{i+1}(a, \ldots, a), \quad (2.21)$$

which thus maps Maurer-Cartan elements to Maurer-Cartan elements.

Furthermore, a gauge transformation $a \mapsto a + \delta_{c_0}a$ with gauge parameter $c_0 \in \mathcal{L}_0$ of a Maurer-Cartan element $a \in \mathcal{L}_1$ is transformed under an L_{∞}-morphism to $a' \mapsto a' + \delta_{c_0}a'$ with $a' \in \mathcal{L}_1'$ given by (2.21) and

$$c_0 \mapsto c_0' := \sum_{i \geq 0} \frac{1}{i!} \phi_{i+1}(a, \ldots, a, c_0). \quad (2.22)$$

Consequently, gauge equivalence classes of Maurer-Cartan elements are mapped to gauge equivalence classes of Maurer-Cartan elements. Note that whenever ϕ is a quasi-isomorphism, the moduli space of Maurer-Cartan elements for (\mathcal{L}, μ_i) (that is, the space of solutions to the homotopy Maurer-Cartan equation modulo gauge transformations) is isomorphic to the moduli space of Maurer-Cartan elements for (\mathcal{L}', μ'_i).

045017-5
C. Field theory and underlying L_{∞}-structures

1. Classical observables

The most general approach to the quantization of gauge theories is certainly the BV formalism. To prepare the field theory for quantization, the BV formalism constructs a modern description of the space of classical observables, which are the functionals on the space of solutions to the field equations modulo gauge symmetries. This space is now described as (part of) the cohomology ring of a differential complex known as the BV complex,

$$
\cdots \xrightarrow{Q_{BV}} \mathcal{C}_{-1}^\infty(\mathfrak{g}) \xrightarrow{Q_{BV}} \mathcal{C}_0^\infty(\mathfrak{g}) \xrightarrow{Q_{BV}} \mathcal{C}_1^\infty(\mathfrak{g}) \xrightarrow{Q_{BV}} \cdots,
$$

where $\mathcal{C}_i^\infty(\mathfrak{g})$ denote functionals of degree i on the \mathbb{Z}-graded vector space of BV fields \mathfrak{g}, which is parametrized by fields, ghosts (of positive degree), and antifields (of negative degree). Since the image of Q_{BV} on antifields produces the equations of motion,

$$
Q_{BV} \phi^+_i = \frac{\delta S[\phi]}{\delta \phi^i} = 0
$$

for ϕ^i the classical fields, ϕ^+_i their antifields, and $S[\phi]$ the classical action, the image of the operator Q_{BV} restricted to elements of $\mathcal{C}_{-1}^\infty(\mathfrak{g})$ linear in the antifields is the ideal of functionals in $\mathcal{C}_0^\infty(\mathfrak{g})$ vanishing on solutions of the field equations. Gauge invariant such functionals are in the kernel of the BV differential Q_{BV}. The elements of degree 0 in the cohomology ring thus contain indeed the classical observables.

2. L_{∞}-algebra structure

Now the BV complex is evidently a differential graded commutative algebra and its dual is a differential graded commutative coalgebra, which is nothing but an L_{∞}-algebra. Explicitly, the action of the BV differential Q_{BV} on the coordinate functions on \mathfrak{g} is written as a polynomial in the fields, ghosts, antighosts, and their derivatives, which is simply the dual of the sum over all higher products μ_i on the graded vector space \mathfrak{g}. Schematically, we can write

$$
Q_{BV} \xi = - \sum_{i \geq 1} \frac{1}{i!} \mu_i(\xi, \ldots, \xi),
$$

where ξ is the sum over all coordinate functions on \mathfrak{g} parametrizing fields, ghosts, and antighosts. Given the μ_i, we can construct Q_{BV}, and knowing Q_{BV}, we can reconstruct the μ_i as higher products from this equation.

Recall furthermore that the BV formalism comes with a Poisson bracket, sometimes called the antibracket, which is induced by a canonical symplectic form of degree -1 on \mathfrak{g}. This form induces a cyclic structure on the L_{∞}-algebra on \mathfrak{g}, which is of degree -3.

Altogether, we conclude that any field theory has an associated cyclic L_{∞}-algebra structure on its BV field space \mathfrak{g}, and this structure is recovered from the BV differential and the BV antibracket. See [3,4] for more details and the precise formulation of Eq. (2.25) and for a review about the Q-manifold formulation of L_{∞}-algebras.

The fact that any classical Lagrangian field theory comes with a L_{∞}-algebra is certainly well known by experts on the BV formalism. It has been rediscovered several times; see e.g., [27] or [28] and also [3,4] for more historical references. The structural advantages of this description, however, have not been fully exploited in our opinion, and this is what we set out to do in this paper.

III. SCALAR FIELD THEORY

As an introductory example illustrating the construction of an L_{∞}-algebra for a classical field theory, the computation of its minimal model, and the recursion relations, we consider scalar field theory on four-dimensional Minkowski space $\mathbb{R}^{1,3} := (\mathbb{R}^4, \eta)$ with η the Minkowski metric. In the following, $\mu, \nu, \ldots = 0, \ldots, 3$, and we shall write $x \cdot y := \eta_{\mu\nu} x^\mu y^\nu = x^\mu y^\nu$ and $\Box := \partial^\mu \partial_\mu$. All of our constructions in this section generalize rather evidently to arbitrary field theories admitting a (classical) BV formulation.

A. L_{∞}-algebra formulation of scalar field theory

Instead of plain φ^4-theory, we start from the action

$$
S := \int_{\mathbb{R}^{1,3}} d^4x \left\{ \frac{1}{2} \varphi(-\Box - m^2) \varphi - \frac{\kappa}{3!} \varphi^3 - \frac{\lambda}{4!} \varphi^4 \right\},
$$

which will demonstrate the relation between the minimal model and tree-level amplitudes more clearly.

1. Scalar L_{∞}-algebra

The associated L_{∞}-algebra of this field theory is obtained as usual from the BV formalism. Here, we merely note that in a field theory without (gauge) symmetry to be factored out, the BV action agrees with the classical action. The homological vector field Q_{BV} therefore acts only nontrivially on the antifield φ^+, and we have

$$
Q_{BV} \varphi^+ := \{ S_{BV}, \varphi^+ \} = \frac{\delta S}{\delta \varphi} = \sum_{i \geq 1} \frac{1}{i!} \mu_i(\varphi, \ldots, \varphi).
$$

The resulting L_{∞}-algebra is therefore

$$
\xymatrix{ L_0 \ar[r] & \mathcal{C}_0^\infty(\mathbb{R}^{1,3}) \ar[r] & \mathcal{C}_1^\infty(\mathbb{R}^{1,3}) \ar[r] & \mathcal{C}_2^\infty(\mathbb{R}^{1,3}) \ar[r] & L_3 }.
$$

See also [13] for pure φ^4-theory and [3] for a discussion closer to ours.
with higher products

$$\begin{align*}
\mu_1(q_1) &:= (-\Box - m^2)q_1, & \mu_2(q_1, q_2) &:= -\kappa q_1q_2, \\
\mu_3(q_1, q_2, q_3) &:= -\lambda q_1q_2q_3
\end{align*}$$

(3.3b)

for \(q_{1,2,3} \in \mathcal{C}^{\infty}({\mathbb{R}^{1,3}})\). The homotopy Maurer-Cartan action (2.20) for this \(L_\infty\)-algebra becomes \(S\).

2. Cyclic structure

This \(L_\infty\)-algebra, however, is too general. In particular, we cannot extend it to a cyclic one with the cyclic structure given by the integral,

$$\langle q_1, q_2 \rangle_L = \int d^4x q_1(x)q_2(x).$$

(3.4)

First, finiteness of the integral is not guaranteed, and second, boundary terms arising when partially integrating the Laplace operator may violate cyclicity. We are thus led to restricting the function space to the Schwartz functions \(\mathcal{S}({\mathbb{R}^{1,3}}) \subset \mathcal{C}^{\infty}({\mathbb{R}^{1,3}})\), i.e., functions which are rapidly decreasing toward the boundary of Minkowski space \(\mathbb{R}^{1,3}\). This restriction, however, is too harsh: the kinematical operator is invertible as a map \(\mu_1: \mathcal{S}({\mathbb{R}^{1,3}}) \rightarrow \mathcal{S}({\mathbb{R}^{1,3}})\), as we will explain in more detail below. Therefore, the cohomology of \(L\) would be trivial and the \(L_\infty\)-algebra would be quasi-isomorphic to the trivial one.

To fix this issue, we should also include the solutions to the classical Klein-Gordon equation, \(\ker(\mu_1) \subset \mathcal{C}^{\infty}({\mathbb{R}^{1,3}})\), in our field space. More precisely, we should restrict ourselves to those solutions with compactly supported Cauchy data, \(\ker_c(\mu_1) \subset \ker(\mu_1)\). Our total field space is then

$$\mathcal{F} := \ker_c(\mu_1) \oplus \mathcal{S}({\mathbb{R}^{1,3}}).$$

(3.5)

Note that both subspaces are vector spaces and their intersection is empty, since there are no solutions to the Klein-Gordon equation in \(\mathcal{S}({\mathbb{R}^{1,3}})\), which is a simple consequence of energy conservation.

This, however, requires an adjustment of the higher products, since \(\mathcal{F}\) is not closed under multiplication: the product of two elements in \(\ker_c(\mu_1)\) is neither in \(\mathcal{S}({\mathbb{R}^{1,3}})\) nor in \(\ker_c(\mu_1)\). The standard procedure here is to replace the coupling constants with bump functions, which reflects the fact that interactions should be turned off at asymptotic times. On the other hand, we require that a Schwartz-type function can have an overlap with \(\ker_c(\mu_1)\), which we extract by restricting the Fourier transform to its on-shell modes. Explicitly, we have a map to on-shell states

$$\varphi: \mathcal{S}(\mathbb{R}^{1,3}) \rightarrow \ker_c(\mu_1).$$

(3.6)

where \(\delta\) is the Dirac delta, \(\Theta\) is the Heaviside distributions, and the hat indicates the Fourier transform. Compactly supported Cauchy data of the image of \(\varphi\) is guaranteed since the Fourier transform maps \(\mathcal{S}(\mathbb{R}^{1,3})\) to \(\mathcal{S}(\mathbb{R}^{1,3})\). Finally, we regularize the kinematical operator \(\mu_1\) already now to obtain well-defined Green’s functions later. Altogether, we thus define

$$\begin{align*}
\mu_1(q_1) &:= (-\Box - m^2 + i\epsilon)q_1, \\
\mu_2(q_1, q_2) &:= -\kappa(1 + \varphi)\left(\frac{e^{-|q_1q_2|^2}}{2\pi}\right)q_1q_2, \\
\mu_3(q_1, q_2, q_3) &:= -\lambda(1 + \varphi)\left(\frac{e^{-|q_1q_2|^2}}{2\pi}\right)q_1q_2q_3
\end{align*}$$

(3.7)

for \(q_{1,2,3} \in \mathcal{C}^{\infty}({\mathbb{R}^{1,3}})\) and \(\epsilon \in \mathbb{R}^+\). Here, \((1 + \varphi)(\varphi)\) is shorthand for \(\varphi + \varphi(\varphi)\). Clearly, these products break Lorentz invariance, but we can eventually consider the limit \(\delta \rightarrow +0\) to restore Lorentz invariance in all our final results. Also, note that the homotopy Jacobi identities are trivially satisfied since the only nontrivial higher products \(\mu_i\) map \(L_1 \times \cdots \times L_1\) to \(L_2\) and thus nested expressions of \(\mu_i\) vanish trivially.

As a cyclic structure, we clearly want to use the \(L^2\)-inner product on \(\mathcal{S}(\mathbb{R}^{1,3}) \subset L^2(\mathbb{R}^{1,3})\), and we extend it as follows to \(\mathcal{F}\):

$$\begin{align*}
\langle \varphi_0 + \varphi_i, \varphi_0 + \varphi_i \rangle_L := &\int d^4x \varphi_i(x)\varphi_0(x) \\
&+ \int C d^4x \varphi_0(x)\varphi_0(x)
\end{align*}$$

(3.8)

for \(\varphi_0, \varphi_0 \in \ker_c(\mu_1)\) and \(\varphi_i, \varphi_i \in \mathcal{S}({\mathbb{R}^{1,3}})\). Here, \(C\) is a Cauchy surface of constant time in \(\mathbb{R}^{1,3}\) and the inner product is independent of the choice. This inner product is indeed cyclic with respect to the higher products (3.7). We thus complete the construction of a cyclic \(L_\infty\)-algebra structure on the complex

$$\begin{array}{ccc}
* & \rightarrow & \mathcal{F} \\
\mathcal{F} & \rightarrow & \mathcal{F} \\
\mathcal{F} & \rightarrow & *
\end{array}$$

(3.9)

It should be rather obvious that the above construction of a cyclic \(L_\infty\)-algebra can be performed for any field theory to which we can apply the BV formalism; in particular, the specialization of the field space to Schwartz-type functions and on-shell modes readily generalizes. We also note that the technicalities of choosing the appropriate field space...
mostly arose because we insisted on a consistent cyclic structure on the \(L_\infty \)-algebra. If one is happy to do without a precise cyclic structure, one can essentially neglect this issue; cf. also [18].

B. Strictification of scalar field theory

Let us briefly discuss the strictification of the \(L_\infty \)-algebra \(\mathbb{L} \), which consists of an \(L_\infty \)-algebra \(\mathbb{L} \) which is quasi-isomorphic to \(\mathbb{L} \) and for which \(\tilde{\mu}_i = 0 \) for \(i \geq 3 \). Equivalently, we find an action \(\tilde{S} \) which yields a field theory that is classically equivalent to that of the action (3.1) but whose interaction terms are at most cubic in the fields. This is done by introducing auxiliary fields, and the strictification for pure \(\phi^4 \)-theory with \(\kappa = 0 \) was already given in [3]. For simplicity, we will work with the naive, unregularized \(L_\infty \)-algebra (3.3).

\[\tilde{S} := \int_{\mathbb{R}^{1,3}} \mathrm{d}^4 \! x \left\{ \frac{1}{2} \phi(-\Box - m^2) \phi + X Y - \frac{\kappa}{3!} Y \phi + \frac{4\kappa}{\lambda} X \phi - \frac{\lambda}{4!} Y^2 + X \phi^2 \right\}, \]

where \(X \) and \(Y \) are two additional auxiliary scalar fields \(X, Y \in C^\infty(\mathbb{R}) \). The corresponding \(L_\infty \)-algebra \(\mathbb{L} \) reads as

\[\begin{array}{cccc}
\ast & \to & \mathbb{C}^\infty(\mathbb{R}^{1,3}) \otimes \mathbb{R}^3 & \to \\
\ast & = & \mathbb{L}_0 & = \mathbb{L}_1 \\
\ast & = & \mathbb{L}_2 & = \mathbb{L}_3 \\
\ast & \to & \mathbb{C}^\infty(\mathbb{R}^{1,3}) \otimes \mathbb{R}^3 & \to \\
\end{array} \]

and has nontrivial higher products,

\[\tilde{\mu}_1(\phi_1, X_1, Y_1) := (-\Box - m^2) \phi_1 - \frac{\kappa}{3!} Y \phi_1 + \frac{4\kappa}{\lambda} X \phi_1 + \frac{\lambda}{4!} \phi_1 - \frac{\lambda}{12} Y_1, \]

\[\tilde{\mu}_2((\phi_1, X_1, Y_1), (\phi_2, X_2, Y_2)) := 2\phi_1 X_2 + 2\phi_2 X_1, 2\phi_1 \phi_2, 0, \]

for \(\phi, \phi_1, X, X_i, Y, Y_i \in C^\infty(\mathbb{R}^{1,3}) \). The homotopy Maurer-Cartan action (2.20) for \(\mathbb{L} \) is indeed \(\tilde{S} \).

A possible quasi-isomorphism \(\phi : \mathbb{L} \to \mathbb{L} \) has nontrivial maps

\[\begin{align*}
\phi_1 : \mathbb{L}_1 & \to \mathbb{L}_1, & \phi_1(\phi, X, Y) & := \phi, \\
\phi_1 : \mathbb{L}_2 & \to \mathbb{L}_2, & \phi_1(\phi, X, Y) & := \phi - \frac{\kappa}{3!} X - \frac{4\kappa}{\lambda} Y, \\
\phi_2 : \mathbb{L}_1 \times \mathbb{L}_2 & \to \mathbb{L}_2, & \phi_2((\phi_1, X_1, Y_1), (\phi_2, X_2, Y_2)) & := -2\phi_1 X_2 + \frac{\lambda}{3!} \phi_1 X_2.
\end{align*} \]

As one readily checks, these maps satisfy the nontrivial relations in (2.2),

\[\begin{align*}
i = 1 : & \quad \mu_1(\phi_1(\Phi_1)) = \phi_1(\tilde{\mu}_1(\Phi_1)), \\
i = 2 : & \quad \mu_1(\phi_2(\Phi_1, \Phi_2)) + \mu_2(\phi_1(\Phi_1), \phi_1(\Phi_2)) \\
& = \phi_1(\tilde{\mu}_2(\Phi_1, \Phi_2)) - \phi_2(\tilde{\mu}_1(\Phi_1), \Phi_2) - \phi_2(\tilde{\mu}_1(\Phi_2), \Phi_1), \\
i = 3 : & \quad \mu_3(\phi_1(\Phi_1), \phi_1(\Phi_2), \phi_1(\Phi_3)) = -[\phi_2(\tilde{\mu}_2(\Phi_1, \Phi_2), \Phi_3) + \text{cyclic}],
\end{align*} \]

where \(\Phi_i = (\phi_i, X_i, Y_i) \in \mathbb{L}_1 \).

C. Scattering amplitudes and recursion relations

1. Minimal model

To compute the minimal model \(\mathbb{L}_0 \) of \(\mathbb{L} \), we need to find a contracting homotopy

\[\begin{array}{ccc}
\mathbb{L} & \xrightarrow{\mu_1} & \mathbb{L}_0 := H^\bullet_{\mu_1}(\mathbb{L}) \\
\downarrow h & & \downarrow p \\
\mathbb{L} & \xrightarrow{\mu_1} & \mathbb{L}_0 := H^\bullet_{\mu_1}(\mathbb{L}).
\end{array} \]

We start by noticing that \(\mu_1 \) is a map \(\mu_1 : \mathbb{S}(\mathbb{R}^{1,3}) \to \mathbb{S}(\mathbb{R}^{1,3}) \) and it is invertible as a map \(\mu_1 : \mathbb{S}(\mathbb{R}^{1,3}) \to \mathbb{S}(\mathbb{R}^{1,3}) \). Its inverse is the Feynman propagator \(G^F \), which is defined for functions \(\phi \in \mathbb{S}(\mathbb{R}^{1,3}) \) by

\[(G^F \phi)(x) := \int d^4 \! y G^F(x, y) \phi(y), \]

where the integral kernel is
For more and precise details, see e.g., [29], Chap. 14. We trivially extend G_F to a linear function \tilde{G}_F on all of \mathfrak{g} with $\ker(\tilde{G}_F) = \ker_c(\mu_1)$. Because the invertibility of μ_1 on $S(\mathbb{R}^{1,3})$ implies surjectivity on $S(\mathbb{R}^{1,3})$, it is now clear that the graded vector space of the minimal model L° of L is

$$L^\circ = H^*_{\mu_1}(L) \cong (\ast \rightarrow \ker_c(\mu_1) \rightarrow \ker_c(\mu_1) \rightarrow *) \quad (3.17)$$

With the help of \tilde{G}_F, we can define the projections

$$p_1 : L_1 \rightarrow \ker_c(\mu_1), \quad p_1 := \text{id} - \tilde{G}_F \circ \mu_1,$$

$$p_2 : L_2 \rightarrow \ker_c(\mu_1), \quad p_2 := \text{id} - \mu_1 \circ \tilde{G}_F. \quad (3.18)$$

The embeddings $e_{1,2} : \ker_c(\mu_1) \hookrightarrow \mathfrak{g}$ are simply the trivial ones. The maps we introduced so far satisfy the relations

$$p_1 e = \text{id}_{L_1}, \quad \mu_1 p_1 = 0, \quad \mu_1 p_2 = 0, \quad p_2 \mu_1 = 0, \quad (3.19)$$

and we have the following picture:

$$\mathcal{F}(\mathbb{R}^{1,3}) \xrightarrow{G_F} \mathcal{F}(\mathbb{R}^{1,3})$$

$$\xrightarrow{\ker_c(\mu_1)} \xrightarrow{0} \xrightarrow{\ker_c(\mu_1)}$$

It remains to construct a contracting homotopy h, i.e., a map $h : L \rightarrow L$ of degree -1 such that

$$\text{id}_L = e_1 p + h \circ \mu_1 + \mu_1 \circ h \quad (3.21)$$

and clearly the extended Feynman propagator \tilde{G}_F satisfies this relation. We thus put h trivial except for $h_2 := \tilde{G}_F$. The improved contracting homotopy h, cf. (2.7), agrees with h,

$$h = h, \quad (3.22)$$

since $h^2 = 0$ and $h e = 0$. The decomposition of L reads as

$$L_1 \cong L_{\text{harm},1} \oplus L_{\text{coex},1} \cong \ker_c(\mu_1) \oplus S(\mathbb{R}^{1,3}),$$

$$L_2 \cong L_{\text{harm},2} \oplus L_{\text{coex},2} \cong \ker_c(\mu_1) \oplus S(\mathbb{R}^{1,3}). \quad (3.23)$$

The minimal model is now readily computed using formulas (2.11). Let us list the lowest higher products for $\varphi_1, \ldots, \varphi \in \ker_c(\mu)$ explicitly:

$$\mu_2^c(\varphi_1, \varphi_2) = (p \circ \mu_2)(\varphi_1, \varphi_2) = -\kappa \varphi \left(e^{-\frac{|\varphi_1|^2}{2}} - \varphi_1 \varphi_2 \right),$$

$$\mu_3^c(\varphi_1, \varphi_2, \varphi_3) = -\sum_{\sigma \in S_3(1,3)} (p \circ \mu_2)(\varphi(\varphi_{(1)}), \tilde{G}_F(\mu_2(\varphi(\varphi_{(2)}), \varphi(\varphi_{(3)}) + (p \circ \mu_3)(\varphi(\varphi_1), \varphi(\varphi_2), \varphi(\varphi_3))$$

$$= -\sum_{\sigma \in S_3(1,3)} \kappa^2 \varphi \left(e^{-\frac{|\varphi_1|^2}{2}} \varphi_{(1)} G_{1,3}^\sigma \left(e^{-\frac{|\varphi_2|^2}{2}} \varphi_{(2)}(y) \varphi_{(3)}(y) \right) \right) - \lambda \varphi \left(e^{-\frac{|\varphi_1|^2}{2}} \varphi_1 \varphi_2 \varphi_3 \right). \quad (3.24)$$

where $G_{1,3}^\sigma$ indicates the operator G_F acting on a function of y and producing a function of x. Slightly less explicitly, μ_4 reads as
\[\mu'_\ast(q_1, q_2, q_3, q_4) = \sum_{\sigma \in \text{Sh}(1,1;4)} (p \cdot \mu_\ast)(q_{\sigma(1)}, \tilde{G}^F(\mu_2(\varphi_{\sigma(2)}, \tilde{G}^F(\mu_2(\varphi_{\sigma(3)}, \varphi_{\sigma(4)})))) \]
\[- \sum_{\sigma \in \text{Sh}(1;4)} (p \cdot \mu_\ast)(q_{\sigma(1)}, \tilde{G}^F(\mu_3(\varphi_{\sigma(2)}, \varphi_{\sigma(3)}, \varphi_{\sigma(4)}))) \]
\[+ \frac{1}{2} \sum_{\sigma \in \text{Sh}(2;4)} (p \cdot \mu_\ast)(\tilde{G}^F(\mu_2(\varphi_{\sigma(1)}, \varphi_{\sigma(2)})), \tilde{G}^F(\mu_2(\varphi_{\sigma(3)}, \varphi_{\sigma(4)}))) \]
\[- \sum_{\sigma \in \text{Sh}(2;4)} (p \cdot \mu_2)(q_{\sigma(1)}, \varphi_{\sigma(2)}), \tilde{G}^F(\mu_2(\varphi_{\sigma(3)}, \varphi_{\sigma(4)}))). \] (3.25)

2. Cyclic structure

We also stress that the compatibility of the \(L_\infty \)-algebra morphism \(\phi: \mathbb{L} \rightarrow \mathbb{L} \) with the cyclic structure \(\langle -, - \rangle_L \) on \(\mathbb{L} \) is trivially satisfied. First of all, we have \(\langle \phi_1(\cdots), \phi_1(\cdots) \rangle_L = \langle \phi(\cdots), \phi(\cdots) \rangle_L = 0 \) for \(i \geq 2 \) since \(\text{im}(\epsilon) \cong \ker_{\mathbb{L}}(\mathbb{R}^1;3) \) and the direct sum \(\mathbb{R} = \ker_{\mathbb{L}}(\mathbb{R}^1;3) \oplus S(\mathbb{R}^1;3) \) is an orthogonal decomposition with respect to the cyclic structure \(\langle -, - \rangle_L \). Then, we have \(\langle \phi_1(\cdots), \phi_i(\cdots) \rangle_L = \langle h(\cdots), h(\cdots) \rangle_L = 0 \) for \(i, j \geq 2 \), since \(\text{im}(h) \subseteq \mathbb{L} \) and the cyclic structure \(\langle -, - \rangle_L \) necessarily vanishes between two elements of \(\mathbb{L} \).

At a more abstract level and for a general field theory, it is rather evident that we will always have a Feynman propagator serving as a contracting homotopy, which allows us to construct the minimal model of the field theory’s \(L_\infty \)-algebra explicitly. Also, the graded vector space \(\mathbb{L} \) will consist of the on-shell modes, \(\mathbb{L}_1 \) will be isomorphic to \(\mathbb{L}_1 \), and the symplectic form on field space provides a nondegenerate pairing of both spaces.

3. Scattering amplitudes

Let us now link the minimal model to tree-level Feynman diagrams. We start from the summands in the homotopy Maurer-Cartan action (2.20) for the minimal model,
\[\frac{1}{\hbar} \langle \varphi, \mu_\ast^\varepsilon(\varphi, \ldots, \varphi) \rangle_L. \] (3.26)

Using the usual trick of polarization, we can introduce the \((i + 1)\)-point functions \(\langle \varphi_1, \mu_\ast^\varepsilon(\varphi_2, \ldots, \varphi_{i+1}) \rangle_L \). As we shall see now, these are indeed the tree-level \((i + 1)\)-point functions. Let us consider the 3-point function \(\frac{1}{\hbar} \langle \varphi_1, \mu_\ast^\varepsilon(\varphi_2, \varphi_3) \rangle^3 \) for \(\varphi_1, \varphi_2, \varphi_3 \) plane waves with on-shell momenta \(k_1, k_2, \) and \(k_3 \), respectively. We have
\[\langle \varphi_1, \mu_\ast^\varepsilon(\varphi_2, \varphi_3) \rangle_L = -\kappa \lim_{\delta \to 0} \int_C d^3 x e^{-i k \cdot x} \varphi \]
\[\times \left(\frac{e^{-i |k| x}}{2\pi} - e^{i k \cdot x} \right). \] (3.27)

which yields the coupling constant \(\kappa \) together with the usual Dirac distribution, enforcing energy-momentum conservation:
\[\langle \varphi_1, \mu_\ast^\varepsilon(\varphi_2, \varphi_3) \rangle_L = -\kappa (2\pi)^4 \delta(k_1 + k_2 + k_3). \] (3.28)

For the 4-point function we now get additional contributions from the 3-point vertices:

\[\langle \varphi_1, \mu_\ast^\varepsilon(\varphi_2, \varphi_3) \rangle_L = -\kappa (2\pi)^4 \delta(k_1 + k_2 + k_3). \] (3.29)

In terms of Feynman diagrams, we have the 4-point function
\[\begin{array}{c}
\varphi_1 \quad \varphi_2 \quad \varphi_3 \quad \varphi_4 \\
\kappa \quad \kappa \quad \kappa \\
\varphi_1 \quad \varphi_2 \quad \varphi_3 \quad \varphi_4 \\
\kappa \quad \kappa \quad \kappa \\
\varphi_1 \quad \varphi_2 \quad \varphi_3 \quad \varphi_4 \\
\kappa \quad \kappa \quad \kappa \\
\end{array} \] (3.30)
Let us now discuss the general interpretation of the ϕ_i and the μ_i arising in the quasi-isomorphism. While ϕ_1 is simply the embedding of on-shell modes into the original L_∞-algebra L, the higher ϕ_i take on-shell [i.e., elements of $\ker_c(\mu_1)$] or off-shell modes [i.e., elements of $\mathcal{S}(\mathbb{R}^{1,3})$], combine them with a $(j+1)$-point vertex encoded in μ_j, and propagate the resulting state to an off-shell mode or current in $\mathcal{S}(\mathbb{R}^{1,3})$. For example,

$$\phi_2(\varphi_1, \varphi_2) = \frac{1}{2} \mu_2 + \frac{1}{2} \mu_2$$

(3.31)

The μ_i, on the other hand, take either on-shell states or the currents arising from the ϕ_j with $j \geq 2$, combine them with a $(j+1)$-point vertex encoded in μ_j, and project the result back to an on-shell state. For example,

$$\phi_3(\varphi_1, \varphi_2, \varphi_3) = \mu_3 + \frac{1}{2!} \phi_2(\varphi_1, \varphi_2)$$

(3.33)

In most interesting quantum field theories, the nontrivial higher products are very restricted, and the recursive computation of the quasi-isomorphism to the minimal model (2.11a) simplifies to interesting recursion relations for the currents ϕ_i. These, in turn, may be solved in particular examples, yielding vast simplifications in the evaluation of the tree-level $(i+1)$-point functions. We shall discuss an important example in the next section but, again, it should be clear that our discussion applies to an arbitrary BV quantizable field theory.

IV. YANG-MILLS THEORY

A. L_∞-algebra formulation of Yang-Mills theory

We now study $\mathfrak{su}(N)$ Yang-Mills theory on four-dimensional Minkowski space $\mathbb{R}^{1,3}$. Let $\Omega^p(\mathbb{R}^{1,3}, \mathfrak{su}(N))$ be the $\mathfrak{su}(N)$-valued differential p-forms on $\mathbb{R}^{1,3}$. Furthermore, we let d be the exterior derivative and set $d^i := \star d \star$ for \star the Hodge star operator with respect to the Minkowski metric. To keep our discussion clear, we shall neglect the intricacies of falloff conditions on our function spaces; the details developed in the example of scalar field theory can be translated to the Yang-Mills theory.

4. Scattering amplitude recursion relations

The tree-level $(i+1)$-point functions are now obtained from the inner product of one external state with μ_i of the remaining i external states, so their information is encoded in the higher products of the minimal model L°. The tree-level corrections to the classical $n+1$-point vertex are now evidently constructed from diagrams involving the currents ϕ_j with $j < n$, which are recursively constructed from currents ϕ_k with $k < j$. This is obvious from formulas (2.11), and in terms of Feynman diagrams, we have for example

$$\mu_2(\varphi_1, \varphi_2) = \frac{1}{2} \mu_2 + \frac{1}{2} \mu_2$$

(3.32)

I. Yang-Mills L_∞-algebra

Following [30–33], we consider the L_∞-algebra (L_{YM}, μ_i) that is defined by the chain complex

\[
\begin{align*}
\Omega^0(\mathbb{R}^{1,3}, \mathfrak{su}(N)) & \xrightarrow{\mu_i=d} \Omega^1(\mathbb{R}^{1,3}, \mathfrak{su}(N)) \\
=_{L_0} & \xrightarrow{\mu_i=d} \Omega^1(\mathbb{R}^{1,3}, \mathfrak{su}(N)) \\
=_{L_1} & \xrightarrow{\mu_i=d} \Omega^1(\mathbb{R}^{1,3}, \mathfrak{su}(N)),
\end{align*}
\]

(4.1a)

together with the nonvanishing higher products...
\[\mu_1(c_1) \equiv dc_1, \quad \mu_1(A_1) \equiv d^1 dA_1, \]
\[\mu_1(A_1^+) \equiv d^1 A_1^+, \]
\[\mu_2(c_1, c_2) = [c_1, c_2], \quad \mu_2(c_1, A_1) = [c_1, A_1], \]
\[\mu_2(c_1, A_1^+) = [c_1, A_1^+], \quad \mu_2(c_1, c_2^+) = [c_1, c_2^+], \]
\[\mu_2(A_1, A_2^+) = [A_1, A_2^+], \quad \mu_2(A_1, A_2) = d^1 [A_1, A_2] + *[A_1, *dA_2] + *[A_2, *dA_1], \]
\[\mu_3(A_1, A_2, A_3) = *[A_1, *[A_2, A_3]] + *[A_2, *[A_3, A_1]] + *[A_3, *[A_1, A_2]], \]

where \([- , -]\) denotes the Lie bracket on \(\mathfrak{su}(N)\) with the wedge product understood. Furthermore, \(c_{1,2} \in L_0, A_{1,2,3} \in L_1, A_{1,2}^+ \in L_2,\) and \(c_2^+ \in L_3,\) respectively.

Importantly, the \(L_\infty\)-algebra \((L_{YM}, \mu_i)\) carries a natural cyclic structure which is nontrivial only for \([\omega_1]_{L_{YM}} + [\omega_2]_{L_{YM}} = 3\) and then reads as

\[(\omega_1, \omega_2)_{L_{YM}} := \int_{\mathbb{R}^1} \text{tr}(\omega_1 \wedge * \omega_2). \]

This cyclic \(L_\infty\)-algebra arises from the classical part of the BV formalism as explained in Sec. II C; cf. also [3] for all details. In particular, the relation between the higher products \(\mu_i\) and the BV-differential \(Q_{BV}\) is given in formula (2.25).

2. Yang-Mills action and Yang-Mills equation

For \(a \in L\) of degree 1 we have \(a = A \in \Omega^1(\mathbb{R}^{1,3}, g)\) and thus

\[\frac{1}{2} \langle a, \mu_1(a) \rangle_{L_{YM}} = \frac{1}{2} \int_{\mathbb{R}^1} \text{tr}(dA \wedge *dA), \]
\[\frac{1}{3!} \langle a, \mu_2(a, a) \rangle_{L_{YM}} = \frac{1}{2} \int_{\mathbb{R}^1} \text{tr}(dA \wedge *[A, A]) \]
\[= \frac{1}{4} \int_{\mathbb{R}^1} \text{tr}([A, A] \wedge *dA) \]
\[+ \text{d}A \wedge *[A, A]), \]
\[\frac{1}{4!} \langle a, \mu_3(a, a, a) \rangle_{L_{YM}} = \frac{1}{8} \int_{\mathbb{R}^1} \text{tr}([A, A] \wedge *[A, A]). \]

Consequently, the homotopy Maurer-Cartan action (2.20) becomes the Yang-Mills action,

\[S_{MC} = \frac{1}{2} \int_{\mathbb{R}^1} \text{tr}(F \wedge *F) \quad \text{with} \quad F := dA + \frac{1}{2} [A, A]. \]

Furthermore, the curvature (2.14) reads as

\[f = \star \nabla \star F \in \Omega^1(\mathbb{R}^{1,3}, \mathfrak{su}(N)), \]

where \(\nabla \star F := dF + [A, \star F]\) so that \(f = 0\) is, in fact, the Yang-Mills equation. The gauge transformations (2.16) reduce to the standard ones,

\[\delta_c A = \nabla c \quad \text{and} \quad \delta_c F = -[c, F] \]

for \(c \in \Omega^0(\mathbb{R}^{1,3}, \mathfrak{su}(N))\).

B. Strictification of Yang-Mills theory

1. First-order formulation

It is well known that four-dimensional Yang-Mills theory admits an alternative first-order formulation [34] given by the action functional

\[S := \int_{\mathbb{R}^3} \text{tr} \left(F \wedge B_+ + \frac{1}{2} B_+ \wedge B_+ \right). \]

Here, \(B_+ \in \Omega^2_+ (\mathbb{R}^4, \mathfrak{su}(N))\) is an \(\mathfrak{su}(N)\)-valued self-dual 2-form on \(\mathbb{R}^4\) for \(\epsilon \in \mathbb{R}^+,\) and we switched to Euclidean space to allow for real self-dual 2-forms. As we are only concerned with scattering amplitudes, which depend holomorphically on the kinematic variables, this switch in signature is largely irrelevant.

Integrating out \(B_+\), we find

\[S = -\frac{1}{2 \epsilon} \int_{\mathbb{R}^4} \text{tr}(F_+ \wedge F_+) \]
\[= -\frac{1}{4 \epsilon} \int_{\mathbb{R}^4} \text{tr}(F \wedge *F) - \frac{1}{2 \epsilon} \int_{\mathbb{R}^4} \text{tr}(F \wedge F), \]

where \(F_+ := \frac{1}{2} (F + *F)\). Hence, we recover the standard Yang-Mills action (4.4) plus a topological term, which is irrelevant for perturbation theory.

2. Differential graded Lie algebra structure

Note that (4.7) is only cubic in the interactions and hence the corresponding equations of motion are at most quadratic. The \(L_\infty\)-algebra \((L_{YM}, \mu_i)\) corresponding to this action should thus be strict. Indeed, we find the complex (cf. [35])
together with the higher products \([3,4,36]\)

\[
\mu_1(c_1) := dc_1, \quad \mu_1(B_{+1} + A_1) := (eB_{+1} + P_+ dA_1) + dB_{+1}, \quad \mu_1(A_1^+) := dA_1^+, \\
\mu_2(c_1, c_2) := [c_1, c_2], \quad \mu_2(c_1, B_{+1} + A_1) := [c_1, B_{+1}] + [c, A_1], \\
\mu_2(c_1, B_{+1} + A_1^+) := [c_1, B_{+1}^+] + [c, A_1^+].
\]

Also \((L_{YM}, \mu_i)\) can be made cyclic by introducing the degree \(-3\) inner product

\[
\langle \omega_1, \omega_2 \rangle_{L_{YM}} := \int_{\mathbb{R}^4} \text{tr}(\omega_1 \wedge \omega_2).
\]

(4.10)

It is now a straightforward exercise to check that the homotopy Maurer-Cartan action (2.20) for the \(L_{\infty}\)-algebra

\[
\begin{align*}
\Omega^0(\mathbb{R}^4, \mathfrak{su}(N)) & \xrightarrow{d} \Omega^1(\mathbb{R}^4, \mathfrak{su}(N)) & \Omega^1(\mathbb{R}^4, \mathfrak{su}(N)) & \xrightarrow{d} \Omega^2(\mathbb{R}^4, \mathfrak{su}(N)) \\
& \quad \oplus \quad & & \quad \oplus \\
\Omega^2(\mathbb{R}^4, \mathfrak{su}(N)) & \xrightarrow{d} \Omega^3(\mathbb{R}^4, \mathfrak{su}(N)) & \Omega^3(\mathbb{R}^4, \mathfrak{su}(N)) & \xrightarrow{d} \Omega^4(\mathbb{R}^4, \mathfrak{su}(N)) \\
& \quad \oplus \quad & & \quad \oplus \\
\Omega^0(\mathbb{R}^4, \mathfrak{su}(N)) & \xrightarrow{d} \Omega^1(\mathbb{R}^4, \mathfrak{su}(N)) & \Omega^1(\mathbb{R}^4, \mathfrak{su}(N)) & \xrightarrow{d} \Omega^0(\mathbb{R}^4, \mathfrak{su}(N)) \\
\end{align*}
\]

(4.11a)

where we have combined the two complexes (4.1a) and (4.9a). The maps \(\phi_1\) are given by

\[
\phi_1 : \Omega^1(\mathbb{R}^4, \mathfrak{su}(N)) \to \Omega^2(\mathbb{R}^4, \mathfrak{su}(N)) \oplus \Omega^1(\mathbb{R}^4, \mathfrak{su}(N)), \\
A \mapsto -\frac{1}{e} P_+ dA + A,
\]

(4.11b)

and

\[
\begin{align*}
\phi_1 : \Omega^3(\mathbb{R}^4, \mathfrak{su}(N)) & \to \Omega^2(\mathbb{R}^4, \mathfrak{su}(N)) \oplus \Omega^3(\mathbb{R}^4, \mathfrak{su}(N)), \\
C & \mapsto 0 - \frac{1}{2e} C,
\end{align*}
\]

(4.11c)

\[
\begin{align*}
\phi_1 : \Omega^4(\mathbb{R}^4, \mathfrak{su}(N)) & \to \Omega^4(\mathbb{R}^4, \mathfrak{su}(N)), \\
D & \mapsto -\frac{1}{2e} D.
\end{align*}
\]

(4.11d)

3. Quasi-isomorphism

While we have already seen that the actions (4.4) and (4.7) are equivalent by integrating out the self-dual 2-form, it is instructive to give the explicit quasi-isomorphism between \((L_{YM}, \mu_i, (-,-)_{L_{YM}})\) and \((L_{YM}, \mu_i, (-,-)_{L_{YM}})\).\(^5\) In particular, we have

\(^5\)Here, we consider \((L_{YM}, \mu_i, (-,-)_{L_{YM}})\) on \(\mathbb{R}^4\) as well.
As one may check, all square subdiagrams of (4.11a) are commutative, and, consequently, we have obtained a chain map between the underlying complexes of L_{YM} and L_{YM}. In fact, it is a quasi-isomorphism of complexes since this chain map reduces to the identity (modulo constant prefactors) on the cohomologies.

Moreover, the set of maps ϕ_i can be enlarged to include maps $\phi_i^\dagger: L_{YM} \times \cdots \times L_{YM} \to L_{YM}$ to obtain a fully fledged quasi-isomorphism (2.2) between the L_∞-algebras L_{YM} and L_{YM}. Indeed, the only nonvanishing higher map ϕ_i is given by the polarization of

$$
\phi_2(A, A) := -\frac{1}{\epsilon} P_+ [A, A].
$$

(4.12)

In [3,36], this quasi-isomorphism was given in the Q-manifold language which is somewhat more transparent.

Altogether, we conclude that the L_∞-algebra $(L_{YM}, \mu, (\cdot, -))_{YM}$ is indeed the strictification of $(L_{YM}, \mu, (\cdot, -))_{YM}$.

C. Scattering amplitudes and recursion relations

1. Minimal model from the second-order formulation

The cohomology of the L_∞-algebra (4.1) reads as $L_{YM} = L_{\text{Maxwell}} \otimes \mathfrak{su}(N)$ with

$$
L_{\text{Maxwell}} := \left[\mathbb{R} \longrightarrow \ker(d'\mathcal{d})/\text{im}(d) \longrightarrow \ker(d'\mathcal{d})/\text{im}(d) \longrightarrow \mathbb{R} \right].
$$

(4.13)

We choose the projectors P_k to be the evident L^2-projectors onto the subspaces $L_{YM,k} \subseteq L_{YM,k+1}$, and we have the trivial embeddings θ_k. To compute the L_∞-structure on L_{YM}, we need also a contracting homotopy $h = (h_k)$ with $h_k: L_k \to L_{k-1}$ which satisfies (2.8). Some algebra shows that

$$
h_1 := G^\epsilon d', \quad h_2 := G^\epsilon P_{\text{ex}}, \quad \text{and} \quad h_3 := G^\epsilon d
$$

is a possible choice. Here, G^ϵ is the Green operator (3.15) and P_{ex} is the projector onto the exact part under the abstract Hodge-Kodaira decomposition as discussed in Sec. II A, i.e., onto the image of $d'\mathcal{d}$. Explicitly, in momentum space and suppressing the gauge algebra for the moment, we have

$$
\hat{h}_2^{\mu}(k) = \frac{1}{k^2 + \epsilon} \hat{P}_{\text{ex}}^{\mu}(k), \quad \text{with} \quad \hat{P}_{\text{ex}}^{\mu}(k) = \eta^{\mu
u} - \frac{k^\nu k^\mu}{k^2}.
$$

(4.14a)

Recall that our formulas (2.11) were derived under the assumption that $h_1(A) = 0$; cf. (A4). Here, this implies that

we work in Lorenz gauge $d'A = 0$, and the propagator $G^\epsilon P_{\text{ex}}$ is indeed the corresponding gluon propagator.

It remains to insert the projectors and contracting homotopies into (2.11) to write down the quasi-isomorphism as well as the higher products for the minimal model.

2. Berends-Giele gluon recursion relation

Let us denote the generators in the fundamental representation of $\mathfrak{su}(N)$ by τ_a and set

$$
[h_{\alpha}, h_{\beta}] = f_{\alpha\beta} \tau_c \quad \text{and} \quad g_{ab} := \text{tr}(h_{\alpha}^a h_{\beta}^b) = \frac{1}{2} \delta_{ab},
$$

(4.15)

Using g_{ab}, we may rewrite the structure constants $f_{\alpha\beta\gamma} := f_{\alpha\beta}^d g_{dc}$ as $f_{\alpha\beta\gamma} = \text{tr}([h_{\alpha}, h_{\beta}] h_{\gamma})$. Furthermore, with the help of the completeness relation

$$
g^{\alpha\beta} (h_{\alpha} m_n (h_{\beta}) k) = -\delta_m^k \delta_{n}^k + \frac{1}{N} \delta_m^k \delta_{n}^k
$$

(4.16)

we immediately obtain

$$
g^{\alpha\beta} \text{tr}(X h_{\alpha}) \text{tr}(Y h_{\beta}) = -\text{tr}(XY) + \frac{1}{N} \text{tr}(X) \text{tr}(Y)
$$

$$
g^{\alpha\beta} \text{tr}(X h_{\alpha}) \text{tr}(Y h_{\beta}) f_{\alpha\beta\gamma} = -\text{tr}([X, Y] h_{\gamma}).
$$

(4.17)

for any two matrices X and Y. Consequently, all commutators appearing below can be expressed in terms of such traces.

Consider now a plane wave $A = A_{\mu} dx^\mu$ with $A_{\mu} = \epsilon_{\mu}(k) e^{ik \cdot x}$, where k_{μ} is the four-momentum and ϵ_{μ} the polarization vector with $k^2 = 0$ and $k \cdot \epsilon = 0$, and $X \in \mathfrak{su}(N)$. We shall also write

$$
A(\tau) := A_{\mu} \tau^\mu \quad \text{with} \quad A^\mu(i) := \epsilon^\mu(k_i) e^{ik_i \cdot X_i},
$$

(4.18)

to denote the “ith gluon.”

Then, the action of ϕ_1 in (2.11) on $A(1)$ is simply given by

$$
\phi_1(A(1)) = \Theta(A(1)) = J_{\mu}(1) e^{ik_{\mu} \cdot X_1} dx^\mu.
$$

(4.19)

Moreover, the action of ϕ_2 is

$$
\phi_2(A(1), A(2)) = -(h_{2 \alpha}) \tau_2 (\phi_1(A(1)), \phi_1(A(2))),
$$

(4.20a)

and with (4.19) and (4.1b), we find

\[\mu_2(A(1), A(2)) = d^+\{A(1), A(2)\} + \star\{A(1), \star dA(2)\} + \star\{A(2), \star dA(1)\}\]
\[= \{2(J(1) \cdot k_2)J_\mu(2) - 2(J(2) \cdot k_1)J_\mu(1) + (J(1) \cdot J(2))(k_1 - k_2)\}_\mu e^{i(k_1 + k_2) \cdot x}\]
\[= \int \{J(1), J(2)\}_\mu e^{i(k_1 + k_2) \cdot x}\{X_1, X_2\} \mu , \]
where
\[\{J(1), J(2)\}_\mu := 2(J(1) \cdot k_2)J_\mu(2) - 2(J(2) \cdot k_1)J_\mu(1) + (J(1) \cdot J(2))(k_1 - k_2)\].

Consequently, using the contracting homotopy (4.14), we obtain
\[\phi_2(A(1), A(2)) = -P_{ex}\left(\int \{J(1), J(2)\}_\mu e^{i(k_1 + k_2) \cdot x}\{X_1, X_2\} \mu \right)
\[= \frac{\int \{J(1), J(2)\}_\mu e^{i(k_1 + k_2) \cdot x}\{X_1, X_2\} \mu}{(k_1 + k_2)^2}
\[= -\frac{1}{2} \sum_{\sigma \in \mathcal{S}_3} J_\mu(\sigma(1), \sigma(2)) e^{i(k_1 + k_2) \cdot x}\{X_{\sigma(1)}, X_{\sigma(2)}\} \mu , \]
where in the second step, we used that \(P_{ex}\) acts trivially and the sum is over all permutations. Equation (4.20d) yields indeed the 2-gluon current that can be found in Berends-Giele [16]. It is also instructive to give the next level expression before turning to the general case. In particular, the action of \(\phi_3\) is
\[\phi_3(A(1), A(2), A(3)) = -(h_2 \circ \mu_2)(\phi_1(A(1)), \phi_2(A(2), A(3)))
\[= -(h_2 \circ \mu_2)(\phi_1(A(2)), \phi_2(A(1), A(3)))
\[= -(h_2 \circ \mu_2)(\phi_1(A(3)), \phi_2(A(1), A(2)))
\[= -(h_2 \circ \mu_3)(\phi_1(A(1)), \phi_1(A(2)), \phi_1(A(3))). \]

From (4.1b), we have
\[\mu_3(A(1), A(2), A(3)) = \sum_{\sigma \in \mathcal{S}_3} \star\{A(\sigma(1)), \star\{A(\sigma(2)), A(\sigma(3))\}\}
\[= -\sum_{\sigma \in \mathcal{S}_3} \{J(\sigma(1)), J(\sigma(2)), J(\sigma(3))\}_\mu e^{i(k_{\sigma(1)} + k_{\sigma(2)} + k_{\sigma(3)}) \cdot x}\{X_{\sigma(1)}, X_{\sigma(2)}, X_{\sigma(3)}\} \mu , \]
where the sum is over cyclic permutations only and
\[\{J(1), J(2), J(3)\}_\mu := (J(1) \cdot J(3))J_\mu(2) - (J(1) \cdot J(2))J_\mu(3). \]

Combining this with the expression (4.20d) and using the contracting homotopy (4.14), we immediately find that \(\phi_3\) is given by
\[\phi_3(A(1), A(2), A(3)) = P_{ex} \sum_{\sigma \in \mathcal{S}_3} \bar{J}_\mu(\sigma(1), \sigma(2), \sigma(3)) e^{i(k_{\sigma(1)} + k_{\sigma(2)} + k_{\sigma(3)}) \cdot x}\{X_{\sigma(1)}, X_{\sigma(2)}, X_{\sigma(3)}\} \mu , \]
where
\[\bar{J}_\mu(1, 2, 3) := \frac{\{J(1), J(2, 3)\}_\mu + \{J(1), J(2), J(3)\}_\mu}{(k_1 + k_2 + k_3)^2} .\]

The expression for the 3-gluon current as given by Berends-Giele [16] is simply
\[J_\mu(1, 2, 3) := \bar{J}_\mu(1, 2, 3) - \bar{J}_\mu(3, 1, 2), \]
and, upon using the antisymmetry and the Jacobi identity for the Lie bracket \([-,-]\), a short calculation reveals that (4.21d) becomes
\[\phi_3(A(1), A(2), A(3)) = \frac{1}{3} \sum_{\sigma \in \mathcal{S}_3} J_\mu(\sigma(1), \sigma(2), \sigma(3)) e^{i(k_{\sigma(1)} + k_{\sigma(2)} + k_{\sigma(3)}) \cdot x}\{X_{\sigma(1)}, X_{\sigma(2)}, X_{\sigma(3)}\} \mu . \]
where the sum here is over all permutations and $P_{\varepsilon\sigma}$ acts again trivially.

Let us now turn to the general case. The above discussion for 2- and 3-points motivates us to define

$$J_\sigma(1, \ldots, i) = g_{ab}J^b(1, \ldots, i) := -\text{tr}(\phi_i(A(1), \ldots, A(i))\tau_a)$$

(4.22)

with g_{ab} as given in (4.15). Hence,

$$\phi_i(A(1), \ldots, A(i)) = J^a(1, \ldots, i)\tau_a.$$

(4.23)

Furthermore, we also define

$$J^a(1, \ldots, i) := g^{ab}\sum_{\sigma\in S_i} \text{tr}(X_{\sigma(1)} \cdots X_{\sigma(i)}\tau_b) J_\mu(\sigma(1), \ldots, \sigma(i))$$

$$\times e^{i(k_{\mu(1)} + \cdots + k_{\mu(i)})\cdot x} dx^\mu,$$

(4.24)

$$J(1, \ldots, i) := J_\mu(1, \ldots, i) dx^\mu,$$

similar to Berends-Giele [16]. Then, the first term in the quasi-isomorphism

$$\phi_i(A(1), \ldots, A(i)) = -\frac{1}{2!} \sum_{k_1 + k_2 = i \sigma \in S(k_1, i)} (\text{h}_2 \circ \mu_2)(\phi_{k_1}(A(1), \ldots, A(\sigma(k_1))) \phi_{k_2}(A(\sigma(k_1 + 1), \ldots, A(\sigma(i))))$$

$$-\frac{1}{3!} \sum_{k_1 + k_2 + k_3 = i \sigma \in S(k_1, k_2, i)} (\text{h}_2 \circ \mu_3)(\phi_{k_1}(A(1), \ldots, A(\sigma(k_1))), \phi_{k_2}(A(\sigma(k_1 + 1), \ldots, A(\sigma(k_2))))$$

$$\phi_{k_3}(A(\sigma(k_1 + k_2 + 1), \ldots, A(\sigma(i))))$$

(4.25)

is given by

$$(I) := -\frac{1}{2!} \sum_{k_1 + k_2 = i \sigma \in S(k_1, i)} \mu_2(\phi_{k_1}(A(1), \ldots, A(\sigma(k_1))), \phi_{k_2}(A(\sigma(k_1 + 1), \ldots, A(\sigma(i))))$$

$$-\frac{1}{2!} \sum_{\sigma \in S_i} \sum_{j=1}^{i-1} \frac{1}{j!(i-j)!} \mu_2(\phi_j(A(1), \ldots, A(\sigma(j))), \phi_{i-j}(A(\sigma(j + 1), \ldots, A(\sigma(i))))$$

$$+ \frac{1}{2} \sum_{\sigma \in S_i} \sum_{j=1}^{i-1} \frac{1}{j!(i-j)!} \|J^a(\sigma(1), \ldots, \sigma(j)), J^b(\sigma(j + 1), \ldots, \sigma(i))\| f_{abc} g^{cd} \tau_d$$

$$\sum_{\sigma \in S_i} \|J(\sigma(1), \ldots, \sigma(j)), J(\sigma(j + 1), \ldots, \sigma(i))\| e^{i(k_{\mu(1)} + \cdots + k_{\mu(i)})\cdot x} g^{ab} \text{tr}(X_{\sigma(1)} \cdots X_{\sigma(i)} \tau_b) \tau_a,$$

(4.26)

where we have substituted (4.24) and used (4.17). In addition, $[\cdot, \cdot]$ is the bracket defined in (4.20c).

Likewise, the second term in (4.25) is given by

$$(II) := -\frac{1}{3!} \sum_{k_1 + k_2 + k_3 = i \sigma \in S(k_1, k_2, i)} \mu_3(\phi_{k_1}(A(1), \ldots, A(\sigma(k_1))), \phi_{k_2}(A(\sigma(k_1 + k_2 + 1), \ldots, A(\sigma(i))))$$

$$-\frac{1}{3!} \sum_{\sigma \in S_i} \sum_{j=1}^{i-1} \sum_{k=j+1}^{i-1} \frac{1}{j!(k-j)!(i-k)!} \mu_3(\phi_j(A(1), \ldots, A(\sigma(j))), \phi_{k-j}(A(\sigma(j + 1), \ldots, A(\sigma(k)))),$$

$$\phi_{i-k}(A(\sigma(k + 1), \ldots, A(\sigma(i))))$$

$$+ \frac{1}{2!} \sum_{\sigma \in S_i} \sum_{j=1}^{i-1} \sum_{k=j+1}^{i-1} \frac{1}{j!(k-j)!(i-k)!} \|J^a(\sigma(1), \ldots, \sigma(j)), J^b(\sigma(j + 1), \ldots, \sigma(k)), J^c(\sigma(k + 1), \ldots, \sigma(i))\|$$

$$\times f_{bcde} f_{aef} g^{de} g^{ef} \tau_g$$

$$\sum_{\sigma \in S_i} \|J(\sigma(1), \ldots, \sigma(j)), J(\sigma(j + 1), \ldots, \sigma(k)), J(\sigma(k + 1), \ldots, \sigma(i))\| e^{i(k_{\mu(1)} + \cdots + k_{\mu(i)})\cdot x} g^{ab} \text{tr}(X_{\sigma(1)} \cdots X_{\sigma(i)} \tau_b) \tau_a,$$

(4.27)

where we have again substituted (4.24), used twice the relations (4.17), and defined

045017-16
\[[J(1), J(2), J(3)]' := [J(1), J(2), J(3)] - [J(3), J(1), J(2)] \]

(4.28)

with \([\cdot, \cdot, \cdot]\) the bracket introduced in (4.21c). Hence, upon adding (I) and (II) and applying the contracting homotopy \(h_2\) from (4.14), we find

\[
J(1, \ldots, i) = \frac{1}{(k_1 + \cdots + k_i)^2} \hat{P}_{\text{ex}} \left\{ \sum_{j=1}^{i-1} [J(1, \ldots, j), J(j + 1, \ldots, i)] \right. \\
+ \sum_{j=1}^{i-2} \sum_{k=j+1}^{i-1} [J(1, \ldots, j), J(j + 1, \ldots, k), J(k + 1, \ldots, i)]' \right\}.
\]

(4.29)

This is precisely the Berends-Giele recursion [16] modulo the appearance of the projector \(\hat{P}_{\text{ex}}\). As before, it acts trivially, as follows from the current conservation property of the expression inside the curly bracket, that is, \((k_1 + \cdots + k_i) \cdot \{ \cdots \} = 0\).

 Altogether, we conclude that the quasi-isomorphism between the \(L_\infty\)-algebra governing the Yang-Mills theory in the second-order formulation and its minimal model encodes the Berends-Giele gluon current recursion relations. The actual scattering amplitudes \(A(1, \ldots, i)\) now follow directly from the homotopy Maurer-Cartan action (2.20) for the minimal model brackets (2.11) for this quasi-isomorphism. For \(i \geq 2\), we have

\[
A(1, \ldots, i + 1) = \langle A(1), \mu_i'(A(2), \ldots, A(i + 1)) \rangle_L,
\]

(4.30a)

with

\[
\mu_i'(A(1), \ldots, A(i)) = - \sum_{\sigma \in S_i} (k_1 + \cdots + k_i)^2 J_\mu(\sigma(1), \ldots, \sigma(i)) \partial^{(k_{\sigma(1)} + \cdots + k_{\sigma(i)})^2} \\
	imes g^{ab} \text{tr}(X_{\sigma(1)} \cdots X_{\sigma(i)} \tau_b) \tau_a \text{d}x^{\mu} |_{(k_1 + \cdots + k_i)^2 = 0},
\]

(4.30b)

where \(J_\mu(1, \ldots, i)\) as given in (4.29). Note that the expression \(\mu_i'(A(1), \ldots, A(i))\) is already co-closed and hence, the projection \(p\) in (2.11) acts by requiring that \((k_1 + \cdots + k_i)^2 = 0\) in the case at hand. Note also that the symmetry of the amplitude (4.30a) under the exchange of any two gluons is due to the cyclicity (2.12) of the inner product (4.2).

3. Minimal model from the strictification

We could also have constructed a minimal model and corresponding recursion relations for tree-level scattering amplitudes from the strictified \(L_\infty\)-algebra \((L_{YM}, \mu_i, \langle \cdot, \cdot \rangle_L)\). See [3] for the construction of the contracting homotopy in this case. Any resulting minimal model \(L_{YM}\) is certainly \(L_\infty\)-isomorphic to \(L_{YM}\), but the shape of the recursion relation is particularly suited for discussing the BCFW recursion relations [19,20] as shown in [18], because only trivalent vertices are present in \((L_{YM}, \mu_i, \langle \cdot, \cdot \rangle_L)\). In addition, this also simplifies the off-shell recursion relations (4.29).

ACKNOWLEDGMENTS

We thank Alexandros Arvanitakis, Bin Cheng, Heiko Gimperlein, Andrea Prinsloo, Alexander Schenkel, Paul Skerritt, and Alessandro Torrielli for helpful discussions. T. M. was partially supported by the EPSRC Grant No. EP/N509772.

APPENDIX A: PROOF OF THE MINIMAL MODEL RECURSION RELATIONS

To derive the recursion relations (2.11), we need to construct a quasi-isomorphism \(\phi: L^c \to L\) that allows us to pull back the higher products on \(L\) to \(L^c\) via formula (2.2). Our construction of \(\phi\) follows the idea of [2], where essentially the same construction was given in the case of \(A_\infty\)-algebras. In particular, we assume that we have a Maurer-Cartan element \(\alpha^c\) in \(L^c\) and map it to an element \(\alpha\) in \(L\). The fact that Maurer-Cartan elements are mapped to Maurer-Cartan elements under quasi-isomorphisms [cf. (2.21)] together with the assumption that \(\alpha^c\) (and therefore \(\alpha\)) is small will give us enough constraints to determine the quasi-isomorphisms and the higher products on \(L^c\).

1. Proof

We start from the contracting homotopy

\[
h \underbrace{L}_{\text{target}} \xrightarrow{\phi} L_{YM} \xrightarrow{\text{proj}} H^\bullet_{\mu_4}(L),
\]

(A1)

where we can assume that \(h^2 = 0\) and \(\phi \circ \text{proj} \circ \mu_4 \circ h\) and \(\phi \circ \mu_4\) are projectors onto \(L_{\text{Larm}}\), \(L_{\text{ex}}\), and \(L_{\text{coex}}\), respectively. Moreover, let \(\alpha^c \in L^c\) be a Maurer-Cartan element. Under a quasi-isomorphism \(\phi\), \(\alpha^c\) is mapped to

\[
a = \sum_{i \geq 1} \frac{1}{i!} \phi_i(\alpha^c, \ldots, \alpha^c).
\]

(A2)
A convenient choice is \(\phi_1 = \mathbf{e} \), and it remains to identify \(\phi_i \) for \(i > 1 \). We will do this by fixing \(a \) as a function of \(a' \).

Recall that (2.9) yields the unique decomposition

\[
a = a_{\text{harm}} + a_{\text{ex}} + a_{\text{coex}} \quad \text{with} \quad a_{\text{harm}, \text{ex}, \text{coex}} \in L_{\text{harm}, \text{ex}, \text{coex}}.
\]

(A3)

There is some freedom in the choice of \(\phi_i \), and without loss of generality, we may impose the gauge fixing condition

\[
h(a) = 0.
\]

(A4)

This is, in fact, a generalization of the Lorenz gauge fixing condition from ordinary gauge theory. Consequently, \(a_{\text{ex}} = (\mu_1 \circ h)(a) = 0 \). Moreover, the fact that \(\mu_1 \) is a chain map implies that \(\mu_1 (a_{\text{harm}}) = (\mu_1 \circ \mathbf{e} \circ p)(a) = 0 \) so that the homotopy Maurer-Cartan equation for \(a \) becomes

\[
\mu_1 (a_{\text{coex}}) + \sum_{i \geq 1} \frac{1}{i!} \mu_i (a_{\text{harm}} + a_{\text{coex}}, \ldots, a_{\text{harm}} + a_{\text{coex}}) = 0.
\]

(A5)

Upon acting with \(h \) on both sides of this equation, we obtain

\[
a_{\text{coex}} = -\sum_{i \geq 1} \frac{1}{i!} (h \circ \mu_i) (a_{\text{harm}} + a_{\text{coex}}, \ldots, a_{\text{harm}} + a_{\text{coex}}).
\]

(A6)

If we now assume that \(a' \) is small, say of order \(O(g) \) with \(g \ll 1 \) for \(g \) a formal parameter, we may rewrite (A2) as

\[
a = \sum_{i \geq 1} \frac{g^i}{i!} \phi_i (a', \ldots, a') = g \circ (a') + \frac{g^2}{2} \phi_2 (a', a') + \cdots
\]

\[
= a^{(i)}_{\text{harm}} + a^{(i)}_{\text{coex}} + \frac{g^2}{2} (a^{(2)}_{\text{harm}} + a^{(2)}_{\text{coex}}) + \cdots
\]

(A7a)

We can then compute the solution \(a \) of the homotopy Maurer-Cartan equation order by order in \(g \) using (A6). In this process, we can choose to put \(a^{(i)}_{\text{harm}} = 0 \) for \(i > 1 \) so that

\[
a = a^{(1)}_{\text{harm}} + \sum_{i \geq 2} \frac{g^i}{i!} a^{(i)}_{\text{coex}} = a_{\text{harm}} + a_{\text{coex}}.
\]

(A7b)

Substituting this expansion into (A6), we arrive at the recursion relation

\[
d_{\text{coex}}^{(i)} = \frac{(g \circ (\mu_i))}{i!} \left[\sum_{i \geq 1} \frac{1}{i!} (a^{(i)}_{\text{harm}} + a^{(i)}_{\text{coex}}, \ldots, a^{(i)}_{\text{harm}} + a^{(i)}_{\text{coex}}) \right]
\]

(A8)

for \(a_{\text{coex}} \). Comparison with (A2) then yields the quasi-isomorphism (2.11) when evaluated at degree 1 elements.

To recover also the brackets \(\mu_i \) on \(L \) listed in (2.11) by pullback, we note that upon applying the projector \(p \) to (A5) and using the fact that \(p \) is a chain map, we immediately find that

\[
\sum_{i \geq 2} \frac{1}{i!} (p \circ \mu_i) (a_{\text{harm}} + a_{\text{coex}}, \ldots, a_{\text{harm}} + a_{\text{coex}}) = 0.
\]

(A9)

Hence, after substituting the expansion (A7), we recover the brackets (2.11) for degree 1 elements.

Our derivation above is strictly speaking only applicable to Maurer-Cartan elements, which are elements of the \(L_\infty \)-algebra of degree 1. As noted in [3], however, we may enlarge every \(L_\infty \)-algebra \(L \) to the \(L_\infty \)-algebra \(L_c := \mathcal{C}(L[1]) \otimes L \) where \(\mathcal{C}(L[1]) \) are the smooth functions on the grade-shifted vector space \(L[1] \). Then, every element in \(L \) gives rise to a degree 1 element in \(L_c \), and, applying the above construction to \(L_c \) yields the full \(L_\infty \)-quasi-isomorphism and brackets listed in (2.11).

2. Cyclic \(L_\infty \)-algebras

Finally, we note that the above construction also extends to the cyclic case. For this, we need \(h \) chosen such that

\[
\langle L_{\text{coex}}, L_{\text{coex}} \rangle_L = 0.
\]

(A10)

This is always possible since cyclicity (2.12) for \(\mu_1 \) implies in general that

\[
\langle L_{\text{ex}}, L_{\text{ex}} \rangle_L = \langle L_{\text{harm}}, L_{\text{ex}} \rangle_L = 0.
\]

(A11)

The remaining freedom in the choice of \(h \) can therefore be used to ensure that the only nonvanishing entries of the underlying metric are

\[
\langle L_{\text{harm}}, L_{\text{harm}} \rangle_L, \quad \langle L_{\text{ex}}, L_{\text{coex}} \rangle_L \quad \text{and} \quad \langle L_{\text{coex}}, L_{\text{ex}} \rangle_L.
\]

(A12)

If we now pull back the cyclic structure from \(L \) to \(L^c \) and define

\[
\langle \ell^e_1, \ell^e_2 \rangle_L := \langle \phi_1 (\ell^e_1), \phi_1 (\ell^e_2) \rangle_L,
\]

(A13)

we have satisfied the first condition in (2.13) on a morphism of cyclic \(L_\infty \)-algebras. The second condition in (2.13) is implied by (A10) together with \(\text{im}(\phi) \subseteq L_{\text{coex}} \).
APPENDIX B: DYNKIN-SPECHT-WEVER LEMMA

1. Statement

For simplicity, let \(\mathfrak{a} \) be a matrix algebra and \(\mathfrak{I} \) be the Lie subalgebra generated by the elements that generate \(\mathfrak{a} \), that is, the free Lie algebra over \(\mathfrak{a} \). Consider the Dynkin map \(D: \mathfrak{a} \to \mathfrak{I} \) defined by

\[
\mathfrak{a} \ni \sum_{\sigma \in S_p} \lambda_\sigma X_{\sigma(1)} \cdots X_{\sigma(i)} \mapsto \sum_{\sigma \in S_p} \lambda_\sigma [X_{\sigma(1)}, [X_{\sigma(2)}, \ldots, \]
\[
\times [X_{\sigma(i-1)}, X_{\sigma(i)}] \ldots] \in \mathfrak{I}, \tag{B1}
\]

where \(X_1, \ldots, X_t \in \mathfrak{a} \) and the coefficients \(\lambda_\sigma \) are some numbers. The Dynkin-Specht-Wever lemma then asserts that if \(p(X) := \sum_{\sigma \in S_p} \lambda_\sigma X_{\sigma(1)} \cdots X_{\sigma(i_p)} \in \mathfrak{I} \), then

\[
D(p(X)) = i_p p(X). \tag{B2}
\]

Hence, for any homogeneous polynomial \(p(X) \in \mathfrak{a} \) of degree \(i_p \), we obtain \((D \circ D)(p(X)) = i_p D(p(X)) \).

2. Proof

To prove \(\text{(B2)} \), we follow [37]. First, we set \(\text{ad}(X)(Y) := [X, Y] \). Then, one can show by induction on the degree of the polynomial \(p(X) \) that if \(p(X) \in \mathfrak{I} \), then

\[
\text{ad}(p(X)) = p(\text{ad}(X)) \tag{B3a}
\]

with

\[
D(X_1 \cdots X_t) = [X_1, [X_2, \ldots, [X_{i-1}, X_i] \cdots]]
\]

\[
= \sum_{j=0}^{i-1} \sum_{\sigma \in S_p} (-1)^{i+j+1} X_{\sigma(1)} \cdots X_{\sigma(j)} X_i X_{\sigma(i-1)} \cdots X_{\sigma(j+1)}
\]

\[
= \sum_{j=0}^{i-1} \sum_{\sigma \in S_p} (-1)^{i+j+1} D(X_{\sigma(1)} \cdots X_{\sigma(j)} X_i X_{\sigma(i-1)} \cdots X_{\sigma(j+1)}), \tag{B6}
\]

where in the third step we have used \(\text{(B3a)} \).

Then, again using \(\text{(B2)} \), we obtain

\[
[D(X_1 \cdots X_i), D(X_{i+1} \cdots X_{i+j})] = \frac{1}{i+j} D([D(X_1 \cdots X_i), D(X_{i+1} \cdots X_{i+j})])
\]

\[
= (i+j) \sum_{\sigma \in S_{i+j}} \lambda_\sigma^{(i+j)} X_{\sigma(1)} \cdots X_{\sigma(i+j)}
\]

\[
= \sum_{\sigma \in S_{i+j}} \lambda_\sigma^{(i+j)} D(X_{\sigma(1)} \cdots X_{\sigma(i+j)}), \tag{B7}
\]

where the \(\lambda_\sigma^{(i+j)} \) are given in terms of the coefficients in \(\text{(B6)} \).
Likewise, again using (B2), we have
\[
\left[D(X_1 \cdots X_i), D(X_{i+1} \cdots X_{i+j}), D(X_{i+j+1} \cdots X_{i+j+k})\right] \\
= \frac{1}{(j+k)(i+j+k)} \left[D([D(X_1 \cdots X_i), D(X_{i+1} \cdots X_{i+j}), D(X_{i+j+1} \cdots X_{i+j+k})]\right] \\
= \frac{1}{(i+j+k)} \sum_{\sigma_2 \in S_{i+j+k}} \lambda_{\sigma_2}^{(i+j+k)} D([D(X_1 \cdots X_i), D(X_{i+\sigma_2(i)} \cdots X_{i+j+\sigma_2(j+k)})]) \\
= \sum_{\sigma_1 \in S_{i+j+k}} \sum_{\sigma_2 \in S_{i+j+k}} \lambda_{\sigma_1}^{(i+j+k)} \lambda_{\sigma_2}^{(j+j+k)} D(X_{\sigma_1(1)} \cdots X_{\sigma_1(i)} X_{\sigma_1(i+\sigma_2(1))} \cdots X_{\sigma_1(i+\sigma_2(j+k))}) \\
= \sum_{\sigma \in S_{i+j+k}} \lambda_{\sigma}^{(i+j+k)} D(X_{\sigma(1)} \cdots X_{\sigma(i+j+k)}),
\]
(B8a)

where the coefficients \(\lambda_{\sigma}^{(i,j)}\) are defined as follows: letting
\[
\sigma_3 := \sigma_1 \circ \sigma_2, \quad \text{with} \quad \sigma_2(\ell') := \begin{cases} \ell' & \text{for } \ell' \in \{1, \ldots, i\}, \\ i + \sigma_2(\ell - i) & \text{for } \ell' \in \{i + 1, \ldots, i + j+k\}, \end{cases}
\]
(B8b)

we obtain
\[
\sum_{\sigma_1 \in S_{i+j+k}} \sum_{\sigma_2 \in S_{i+j+k}} \lambda_{\sigma_1}^{(i+j+k)} \lambda_{\sigma_2}^{(j+j+k)} D(X_{\sigma_1(1)} \cdots X_{\sigma_1(i)} X_{\sigma_1(i+\sigma_2(1))} \cdots X_{\sigma_1(i+\sigma_2(j+k))}) \\
= \sum_{\sigma_1 \in S_{i+j+k}} \sum_{\sigma_2 \in S_{i+j+k}} \lambda_{\sigma_1}^{(i+j+k)} \lambda_{\sigma_2}^{(j+j+k)} D(X_{\sigma_1(1)} \cdots X_{\sigma_1(i+j+k)}),
\]
(B8c)

since when \(\sigma_1\) runs over all of \(S_{i+j+k}\) so does \(\sigma_3\). Consequently, we may set
\[
\lambda_{\sigma}^{(i,j,i+j+k)} := \sum_{\sigma' \in S_{i+j+k}} \lambda_{\sigma_1}^{(i+j+k)} \lambda_{\sigma_2}^{(j+j+k)}.
\]
(B8d)

APPENDIX C: GLUON RECURSION FOR GENERAL LIE GROUPS

Let us present a derivation of the Berends-Giele recursion from the quasi-isomorphism (4.25) in the case of a general gauge group not necessarily simple and compact, and which uses the Dynkin-Specht-Wever lemma discussed in the previous section.

We again consider plane waves of the form (4.18) and make the ansatz
\[
\phi_t(A(1), \ldots, A(i)) = -\frac{(-1)^i}{i} \sum_{\sigma \in S_i} J_\mu(\sigma(1), \ldots, \sigma(i)) e^{i(k_{\sigma(1)} + \ldots + k_{\sigma(i)}) \cdot x} \\
\times [X_{\sigma(1)}, [X_{\sigma(2)}, \ldots, [X_{\sigma(i-1)}, X_{\sigma(i)}] \cdots]] dx^\mu.
\]
(C1)

Upon substituting this into (4.25) and using the contracting homotopy (4.14), a straightforward calculation shows that
\[
J_\mu(1, \ldots, i) = \frac{1}{(k_1 + \ldots + k_i)^2} P e_x \left\{ \sum_{j=1}^{i-1} [J(1, \ldots, j), J(j+1, \ldots, i)]'_\mu \right. \\
\left. + \sum_{j=1}^{i-2} \sum_{k=j+1}^{i-1} [J(1, \ldots, j), J(j+1, \ldots, k), J(k+1, \ldots, i)]''_\mu \right\}
\]
(C2a)

with
\[
\| J(1, \ldots, j), J(j + 1, \ldots, i) \|_\mu := \frac{i}{2j(i - j)} \sum_{\sigma \in S_j} j^{(i,j)} \| J(\sigma(1), \ldots, \sigma(j)), J(\sigma(j + 1), \ldots, \sigma(i)) \|_\mu,
\]

\[
\| J(1, \ldots, j), J(j + 1, \ldots, k), J(k + 1, \ldots, i) \|_\mu := \frac{i}{3j(k - j)(i - k)} \sum_{\sigma \in S_j} j^{(j,k,j)}
\]

\[
\times \| J(\sigma(1), \ldots, \sigma(j)), J(\sigma(j + 1), \ldots, \sigma(k)), J(\sigma(k + 1), \ldots, \sigma(i)) \|_\mu,
\]

\[
\times \| J(1), J(2), J(3) \|_\mu := \| J(1), J(2), J(3) \|_\mu - \| J(3), J(1), J(2) \|_\mu.
\]

(C2b)

where \([-,-]_\mu and \([-,-,-]_\mu were introduced in (4.20c) and (4.21c) and the \(\lambda\)-coefficients are defined in (B7) and (B8), respectively. This is the Berends-Giele recursion for any gauge algebra.

