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ABSTRACT
We study the sonic horizon formation problem for quantum system incorporating septic nonlinearity, which is modeled by the nonlinear
Schrödinger equation (NLSE) with nonlinearity up to septic order. Based on the F-expansion method combined with modulus-phase transfor-
mation, we derived the soliton solutions of such NLSE for the one-dimensional and three-dimensional scenarios, from which the sonic horizon
formation dynamical variables are derived. We identify that the distribution of system flow velocity and sound velocity, which determine the
occurrence of the sonic horizon, agree well with the corresponding quantities obtained from pure numerical evaluation, demonstrating the
applicability of the theoretical approach adopted in this study.

© 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5110578., s

I. INTRODUCTION

Black hole-related problems are fascinating subjects in funda-
mental physical phenomena study. Among the various intriguing
features, event horizon is a typical landmark for black hole. The
interior of the horizon is the region of black hole where everything,
including light cannot escape due to the strong gravitational pull.
In recent years, as close analog of black hole, the sonic blackhole in
ultracold atomic systems has drawn special attention. As pointed out
by Unruh,1 in a sonic black hole, the propagation of sound takes the
role of traveling light, the sonic horizon is just the boundary between
the supersonic flow and subsonic flow. Some quantum fluids, such
as Bose-Einstein condensates (BEC) are the ideal choice for realizing
the sonic black hole and studying black hole-related physics. Unlike
the uncontrollability and unrepeatability of astrophysical black hole,
quantum fluids can be easily manipulated by nonlinearity modula-
tion of Feshbach resonance technique and system external trapping
adjustment. Recently, experiments demonstrated the formation of
the sonic black hole together with the associated Hawking radiation
in elongated (one-dimensional) BEC.2,3

Usually, the formation of sonic black holes in quantum sys-
tem involve drastic change of constituents density, so higher-order
nonlinear effects have to be considered. Recent studies show that
the higher-order nonlinear effects4,5 with contribution up to septic
order are present in many systems such as organic materials,6 highly
nonlinear media like dye solutions,7 ferroelectrics,8 chalcogenide
glasses,9 and colloids.10 For BEC, the septic nonlinearity comes from
inter-particle multi-body interaction in the system. Nowadays, with
relatively more experimental and simulated study11 of the sonic
black hole, more precise analytical study for this phenomena and
related topics calls for the corresponding nonlinear Schrödinger
equation (NLSE) model12–19 to incorporate nonlinearity up to septic
order.

Prior experimental and simulation work on quintic, septic non-
linearity demonstrate that higher-order nonlinearity can regularize
the soliton related dynamics and prevent the higher-dimension spa-
tial solitons20–22 from collapsing. However, compared to the rela-
tively more analytical study of the NLSE incorporating only cubic
nonlinearity, more strict theoretical investigation for the NLSE with
nonlinearity up to quintic and even septic order are rather rare.
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In this study, for a typical quantum system such as BEC where
sonic black hole is to be formed, we first investigate one-
dimensional NLSE modeling the evolution of the system incor-
porating full cubic-quintic-septic nonlinearity and harmonic trap-
ping potential. Via the F-expansion method23–25 with modified
modulus-phase transformation, we derive the typical exact soliton
solution of the NLSE for the cubic-quintic-septic nonlinearity,
cubic-quintic, cubic cases respectively for comparison purpose.
The obtained dark soliton solution for the cubic-quintic-septic
nonlinearity, where sonic horizon can occur, is visually demon-
strated. For the actual study of the three-dimensional BEC where
sonic black hole can be studied more generally, based on the
self-similar approach, we also derive the soliton-related evolu-
tion for the three-dimensional NLSE with cubic-quintic-septic
nonlinearity where sonic horizon can form in a more general
manner.

To validate our theoretical work, we calculate the sonic horizon
dynamics by deriving the system flow velocity based on the analytical
soliton solution obtained for the system incorporating full cubic-
quintic-septic nonlinearity. We achieve good agreement between
our analytically derived flow velocity and the flow velocity from pure
numerical simulation.

This work is organized as follows. The next two sections
demonstrate the theoretical NLSE model that incorporates cubic-
quintic-septic nonlinearity and the methodology for deriving the
sonic horizon-related analytical solutions of the NLSE for the
one-dimensional and three-dimensional cases. Section IV calcu-
lates the sonic horizon related dynamical variables based on the
analytical solutions derived. The last section gives concluding
remarks.

II. SOLITON DYNAMICS FOR ONE DIMENSIONAL NLSE
WITH NONLINEARITY UP TO SEPTIC ORDER

Usually the typical one-dimensional BEC system, where the
sonic horizon forms, is relatively easy to manipulate and analytically
handle, and many typical settings like BEC in elongated harmonic
trapping potential are quasi one-dimensional (Trapping potential
U(x, y, z) = 1

2(kxx
2 + kyy2 + kzz2), where ky, kz ≫ kx). With

nonlinearity up to septic order, the 1D NLSE takes the following
form

ih̵
∂Ψ(x, t)

∂t
+

h̵2

2m
∂2Ψ
∂x2 − kx

2Ψ + (g1∣Ψ∣2 + g2∣Ψ∣4 + g3∣Ψ∣6)Ψ = 0

(1)

where k = 1
2mΩ2(Ω = Ωx). Next, we show that Eq. (1) is ana-

lytically solvable with the expansion method. We proceeds from
the coupled modulus-phase transformation, that takes the following
form,

x′ =
√

2mω
h̵

σ(t′)x, (2a)

t′ = Ωt, (2b)

Ψ(x, t) = σ1/2(t′) exp[iσt
′(t′)
σ(t′) x

2)]φ(x′, t′) (3)

Plugging Eq. (2) and (27) into Eq. (1), we transform equation as
follows,

iφt + σ2(t)φxx + [ k(t)
σ2(t) +

1
4
(σt(t)
σ(t) )

2

− 1
4
(σt(t)
σ(t) )t

]x2φ

+ (g1σ(t)∣φ∣2 + g2σ2(t)∣φ∣4 + g3σ3(t)∣φ∣6)φ = 0 (4)

We then take the ansatz for 𝜑 in Eq. (4) as

φ(x, t) = v(x, t)eiθ(x,t), (5)

and plugging Eq. (5) into Eq. (4), we then obtain the equations for
v(x, t) and θ(x, t) as follows,

vθt + σ2(t)(vvxx + vθ2
x) + α(t)x2v + β1(t)v3 + β2(t)v5

+β3(t)σ2(t)v7 = 0 (6a)

vt + σ2(t)(2vxθx + vθxx) = 0 (6b)

where α(t) = k(t)/σ2(t)+ 1
4(σt(t)/σ(t))

2 − 1
4(σt(t)/4σ(t))t ,βn(t)

= −gnσn(t)(n = 1, 2, 3). Equation (6) is now transformed to the
form from which the expansion method can be used. The expan-
sion method is implemented through the formulation of the base-
function G(ξ) with ξ = p(t)x + q(t). The solutions of Eq. (6) are then
expressed as

v(x, t) = h(t)G(ξ), (7a)

θ(x, t) = Φ2(t)x2 + Φ1(t)x + Φ0(t) (7b)

where G(ξ) is defined as

(dG(ξ)
dξ
)2 = H(G) = a8G8 + a6G6 + a4G4 + a2G2 + a0 (8)

Plugging Eqs. (7) into Eqs. (6) and making use of Eq. (8), we reach a
polynomial of xiGj( dG(ξ)dξ )

k (i, j, k are integers), setting the coefficient
formula of each term to zero, we reach the following set of equations,

x2Gi(ξ) : Φ′2(t) + 4σ2(t)Φ2
2(t) + α(t) = 0, (9a)

xGi(ξ) : Φ′1(t) + 4σ2(t)Φ2(t)Φ1(t) = 0, (9b)

G8(ξ) : 8σ2(t)p2(t)a8 − g3σ3(t)h6(t) = 0, (9c)

G6(ξ) : 6σ2(t)p2(t)a6 − g2σ2(t)h4(t) = 0, (9d)

G4(ξ) : 4σ2(t)p2(t)a4 − g1σ(t)h2(t) = 0, (9e)

G2(ξ) : 2σ2(t)p2(t)a2 −Φ′0(t) = 0, (9f)

xG′(ξ) : p′(t) + 4σ2(t)Φ2(t)p(t) = 0, (9g)

G′(ξ) : q′(t) + 2σ2(t)p(t)Φ1(t) = 0, (9h)

G(ξ) : h′(t) + 2σ2(t)Φ2(t)h(t) = 0 (9i)
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we can see from Eqs. (9) that

σ(t)p(t) = C0,σ(t)Φ1(t) = C1, (10a)

σ(t)h2(t) = C2, (10b)

a8 =
g3C3

2

8C2
1

, (10c)

a6 =
g2C2

2

6C2
1

, (10d)

a4 =
g1C2

4C2
1

(10e)

where C1, C2 are constants to be determined by the initial exper-
iment setting of the system, also from Eqs. (10) a8, a6 and a4 are
constants expressed through the nonlinear interaction strength con-
stants g1, g2 and g3. So a2 and a0 can be freely adjusted according
to the specific nonlinear features of the solutions we are interested.
For comparison purpose, we derive the typical nonlinear solution
of Eq. (1) for three categorical orders of nonlinear interaction. we
will identify the typical feature for the sonic horizon formation with
septic order nonlinearity.

A. Cubic-quintic-septic nonlinearity
Here, the septic order nonlinear interaction constant g3 ≠ 0.

The base function G(ξ) in Eq. (8) is formulated as

H(G) = a8G8 +a6G6 +a4G4 +a2G2 +a0 = a8(G2−A)2(G2−B)2 (11)

From Eqs. (10), we have

A = − g2

3g3C2
+
√

g2
2

3g2
3C2

2
− g1

g3C2
2

(12a)

B = − g2

3g3C2
−
√

g2
2

3g2
3C2

2
− g1

g3C2
2

(12b)

a2 =
g2

6C2
1
(2g2

2

9g3
− g1) (12c)

a0 =
g3C3

2

8C2
1
( g1

g3C2
2
− 2g2

2

9g2
3C2

2
) (12d)

For the situation where g2/g3 < 0 and g1/g3 > 0, A = a2 > 0, B = b2 >
0 (|a| > |b|), from Eq. (8)

dG(ξ)
(G2 − a2)(G2 − b2) = a

1/2
8 dξ (13)

Eq. (13) can be integrated to the following form,

log
(1 −G/2)1/2(1 + G/b)1/b

(1 + G/a)1/a(1 −G/b)1/b = 2a1/2
8 (b

2 − a2)ξ (14)

Since g3 ≫ g2, a ∼ b ∼ g2/g3 ≫ 1, G/a ≪ 1 and G/b ≪ 1, expand
the fractional in the logarithm function of the LHS of Eq. (14) to
the second order terms (G/a)2 and (G/b)2. Eq. (14) is analytically
solvable under this scenario with the following solution

G(x, t) =
2ab tanh(2a1/2

8 (A − B)ξ)

(A−B)+
√
(A−B)2 + 2(b2/a3 + a2/b3) tanh2(2a1/2

8 (A−B)ξ)
(15)

Plugging Eq. (15) into Eqs. (7a), (5), (27) and utilizing Eq. (10b), we
get

∣ψ(x, t)∣ = ρ1/2(t)φ(x, t) = ρ1/2(t)h(t)G(x, t)

=
2C1/2

2 ab tanh(2a1/2
8 (A − B)ξ)

(A−B)+
√
(A−B)2 +2(b2/a3 +a2/b3) tanh2(2a1/2

8 (A−B)ξ)
(16)

which is of dark soliton type. Fig. 1 shows the plot of this solution
|ψ|2 with cubic-quintic-septic nonlinearity. So typical dark soliton
behavior exists for one-dimensional quantum system with nonlin-
earity up to septic order. We will show later the derivation of system
flow velocity and sound velocity for such system from phase and
modulus of ψ(x, t), which demonstrate the formation of the sonic
horizon.

B. Cubic-quintic nonlinearity
When the septic nonlinearity is not taken into account, so that,

g3 = 0, a8 = 0, and through the appropriate selection of Φ0(t) (which
is a free parametric function as shown earlier) so that a0 = 0, so the
septic Eq. (11) reduces to the following form

H(G) = a6G6 + a4G4 + a2G2 = k6G6((G−2 − c)2 − d) (17)

where c = − a4
2a6

, d = a2
4

4a2
6
− a6

a2
, k6 = a2. For d > 0, based on the formu-

lation of G(x, t) in Eq. (8) and Eq. (17), G(x, t) takes the following
analytical format

G(x, t) =
√

1
d1/2 cosh(a1/2

2 ξ) + c
(18)

FIG. 1. |ψ|2 (in unit of 4C2a2b2

((A−B)+
√
(A−B)2+2(b2/a3+a2/b3))2

) vs. a1/2
8 (A − B)ξ from

Eq. (16) with cubic-quintic-septic nonlinearity.
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The solution of the wave function for this case is

∣ψ(x, t)∣ = C1/2
√

1
d1/2 cosh(a1/2

2 ξ) + c
(19)

which is of bright soliton type. Fig. 2 shows the plot of this solution
|ψ| with cubic-quintic nonlinearity.

C. Cubic nonlinearity
In this scenario, g2 = g3 = 0, such that a8 = a6 = 0. Eq. (1) is

just the classic (1+1)-dimensional nonlinear Schrödinger equation
(NLSE) with only cubic nonlinearity and harmonic trapping poten-
tial. Here, we just follow the line of analytical solution derivation
based on the expansion approach and investigate the classic soliton
solution of this category of cubic NLSE. To proceed, We choose two
specific categories of polynomials for G in its formulation Eq. (8)
regarding the value of a0.
Case 1 (a0 = 0):
In this case,

H(G) = a4G4 + a2G2 = k4G4(G−2 − f ) (20)

where k4 = a2, f = − a4
a2

, when f > 0, G(x,t) that satisfies dG(ξ)
dξ

=
√
H(G) has the following analytical solution:

G(x, t) =
√
∣a2

a4
∣sech(∣a2∣1/2ξ) (21)

so

∣ψ(x, t)∣ = C1/2
2

√
∣a2

a4
∣sech(∣a2∣1/2ξ) (22)

which is the solution of bright soliton type.
Case 2 (a0 = a2

2
4a4

):
In this case,

H(G) = a4G4 + a2G2 + a0 = a4(G2 − u)2 (23)

where u = − a2
2a4

. With u > 0, G(x, t) has the following solution

G(x, t) = 2∣a2

a4
∣1/2 tanh(∣2a2∣1/2ξ) (24)

FIG. 2. |ψ| (in unit of C1/2) vs. a1/2
2 ξ from Eq. (19) for cubic-quintic nonlinearity with

d = 0.01 and c = 1.0.

so that ∣ψ(x, t)∣ = 2C1/2
2 ∣

a2
a4
∣1/2∣ tanh(∣2a2∣1/2ξ)∣ which is solution

of dark soliton type. Besides those of (13) with quadratic forms
(13), (17), (20) and (23), other nonlinear interaction constants
values of g1, g2 and g3 (that determines a4, a6 and a8 respec-
tively) will make H(G) take more general form. The analytical
solutions for G(x, t) and ψ(x, t) determined by Eq. (8) may not
be expressed through the rudimentary functions as that shown in
Eqs. (16), (19), (21) and (24), but the analytical formulation G(x, t)
and ψ(x, t) can be of bright soliton type as well as dark soli-
ton type (through appropriate signs setting of g1, g2 and g3). The
soliton features under such scenario may require partial numer-
ical evaluation. We will see later that the analytical soliton solu-
tion for the cubic-quintic-septic case gives rather precise descrip-
tion of the sonic horizon dynamics of the quantum system under
investigation.

III. SOLITON EVOLUTION FOR THREE DIMENSIONAL
NLSE WITH CUBIC-QUINTIC-SEPTIC NONLINEARITY

To study the sonic horizon dynamical behavior for actual quan-
tum system setting, we need to consider the more general three-
dimensional scenario. The three-dimensional NLSE with specific
cubic-quintic-septic nonlinearity is formulated as follow

i
∂

∂t
ψ = [−∇2 + kr2 + (g1∣ψ∣2 + g2∣ψ∣4 + g3ψ∣6)]ψ. (25)

To derive the analytical solutions for the above Eq. (25), we use the
self-similar approach based on the developed one-dimensional soli-
ton solutions of the 1D NLSE model (also with cubic-quintic-septic
nonlinearity). To eliminate any integrable constraint in the solution
analysis process of the three-dimensional NLSE, we also introduce
a parametric function 𝜛(t) similar to σ(t) in the one-dimensional
case, and similar to the 1D NLSE case, the associated transformation
takes the following form

r′ =𝜛(t′)r, (26a)

t′ = ∫ 𝜛2(t)dt. (26b)

We then assume that the wave function transforms as follow,

ψ(r, t) =𝜛3/2(t′) exp [ − i
4
𝜛t′(t′)
𝜛3(t′) ∑j

x′2j ]φ(r′, t′). (27)

Switching notations from (r′, t′) to (r, t), Eq. (25) now takes the
following form:

iφt +△φ + (s0(t)∣φ∣2 + s1(t)∣φ∣4 + s2(t)∇2φ∣)φ + ω(t)r2φ = 0,
(28)

with si(t) = gi(t)𝜛2i+2(t) (i = 0, 1), s2(t) = g2𝜛3(t), andω(t) = {4k(t)
+𝜛2

t (t)/𝜛2(t)−[𝜛t(t)/𝜛(t)]t}/[4𝜛4(t)]. The general (1+1) self-
similar projective equation for the 3D NLSE (25) takes the following
form

iuτ + εu𝜍𝜍 + k′(t)𝜍2 + (δ1∣u∣2 + δ2∣u∣4 + δ3∣u∣6)u = 0, (29)

which is equivalent to Eq. (1) only with different notation for the
parameters. Next, we choose the similarity ansatz for φ as follow:

φ(r, t) = A(t)u[𝜍(r, t), τ(t)] exp[ia(r, t)], (30)
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where u(𝜍, τ) is in the forms like Eqs. (16), (19) and (22) or other
analytical solution format that might not expressible in rudimentary
function form.

The implementation of the self-similarity approach, combined
with the parametric function 𝜛(t) will eliminate the traditional inte-
grability constraints, as shown in the ensuing steps. A(t), 𝜍(r, t),
τ(t), and a(r, t) in expression (30) are functions of spatial and time
coordinates to be determined in the ensuing steps. Substituting the
ansatz (30) into Eq. (28) and formulating the obtained equation in
the form of Eq. (29), we get a collection of relationship equations as
follows

2s0(t)A2 − δ1τt = 0, (31a)

2s1(t)A4 − δ2τt = 0, (31b)

2s2(t)A2 − δ3τt = 0, (31c)

∑
j
𝜍jj = 0, (31d)

∑
j
𝜍2
j − ετt = 0, (31e)

𝜍t + 2∑
j
𝜍jaj = 0, (31f)

2At + 2A∑
j
ajj = 0, (31g)

at + a2
x + a2

y + a2
z − (ω(t) + k′(t))∑

j
x2
j = 0, (31h)

Eqs. (31) are solvable via parametric function 𝜛(t) introduced. The
analytical solutions of Eqs. (31) are,

A(t) =
√

3δ
εs

G, (32a)

𝜍(r, t) = −6D1 ∫ G2dt + G∑
j
xj + D2, (32b)

τ(t) = 3
ε ∫ G2dt + D3, (32c)

a(r, t) = st
4s∑j

x2
j + D1G∑

j
xj − 3D2

1 ∫ G2dt + D4, (32d)

Here s(t) = s0(t), j = x, y, z, G = exp[−∫st/sdt] and D1,2,3,4 are constants
after integration. The self-consistence equation eliminates the inte-
gral constraint via the introduction of 𝜛(t) and takes the following
form

stt
s
− 4(ω(t) + k′(t)) = 0. (33)

where the functions si(t) (i = 0, 1, 2) and ω(t) depend on 𝜛(t),
Eq. (33) is just the equation for𝜛(t), making gi(t) (i= 1, 2, 3) and k(t)
acting as free parametric functions. Combined with Eq. (33), The
solution (30) gives the analytical soliton solution of the 3D NLSE
(25) with cubic-quintic-septic nonlinearity, from which the sonic
horizon dynamics can be calculated in a more general manner.

IV. SONIC HORIZON FORMATION FOR THE SYSTEM
MODELED BY CUBIC-QUINTIC-SEPTIC NONLINEARITY

Now we proceeds with the analysis of sonic horizon formation
for the elongated system modeled with cubic-quintic-septic nonlin-
earity. In section II, we see that the soliton feature is clearly shown
through the solution modulus of the wave function of Eq. (1). The
phase function θ(x, t) contains the kinetic motion information of
the system. From Eq. (9), p(t) is expressed by σ(t) in Eq. (10a), so
Φ2(t) is expressed by σ(t) from Eq. (9g) and Φ1(t) is expressed by
σ(t) in Eq. (9b). These demonstrate that parametric functions Φ2(t)
and Φ1(t) depend on σ(t) (so that Φ2(t) = σ̇(t)

2σ(t) , Φ1(t) = C1/σ(t)).
The equation for σ(t) is formulated (from Eqs. (10a), (9g), and (9a))
as:

d
dt
( σ̇
σ3 ) + 4

σ̇2

σ4 +
k
σ2 − (

σ̇
2σ
)2 +

d
dt
( σ̇

4σ
) = 0 (34)

Eq. (34) has the following solution

ρ(t) =
√
A0 + B0 sinωt (35)

where σ0, C1, and C2 are integral constants,

ω = 2

√
k
m

, (36)

A0 =
¿
ÁÁÀ(σ

2
0

2
+

h̵2

4makσ2
0
)2 − C2h̵2

4C1mak
, (37)

B0 =
σ2

0

2
+

C2h̵2

4C1makσ2
0

(38)

We note that in the definition of θ(x, t), x is x′ =
√

2mω
h̵ σ(t′)x. The

analytical expression for the system’s flow velocity is

v(x, t) = ∂θ(x′, t))
∂x

= 2Φ2(t)σ2(t)x + Φ1(t)σ(t) =
σ̇(t)

2σ(t)x + C1,

(39)

Fig. 3 shows that the theoretically derived flow velocity (with full
cubic-quintic-septic nonlinearity) in comparison with the corre-
sponding velocity value from numerical analysis. Based on the actual
definition of the system flow velocity, the numerical system flow

FIG. 3. Plots of the system flow velocity v vs. x (dashed line) from theoretical
derivation (left) and numerical analysis (right). cs (solid line) is the sound velocity,
which is proportional to the modulus of the system wave function.
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velocity is generated by the gradient calculation of the phase func-
tion of the numerically generated wave function. The numerical
wave function is generated from the same initial setting (initial wave
function) at time t = 0 as that for the analytically derived wave func-
tion at t = 0. The cross point between the flow velocity curve and
the sound velocity curve indicates the location of the sonic horizon.
From Eq. (39), we can see that the flow velocity is time dependent,
so that the occurrence and the spatial location of the sonic horizon
are also time dependent. Moreover, for Fig. 3, we see that the agree-
ment between our derived flow velocity and the numerical calculated
distribution is very good, demonstrating the applicability of our the-
oretical treatment presented here for NLSE with cubic-quintic-septic
nonlinearity.

V. CONCLUSION

In this study, the sonic horizon formation problem for quan-
tum system incorporating cubic-quintic-septic nonlinearity is inves-
tigated based on the analytical study of the NLSE model with non-
linearity up to septic order. Via the F-expansion method combined
with coupled modulus-phase transformation, we derived the soli-
ton solution for the NLSE with cubic, quintic, and septic nonlin-
earity respectively for the one-dimensional case first. Based on the
self-similar approach, we then derived the soliton solution for the
three-dimensional NLSE, showing the typical nonlinear feature of
the septic nonlinear media. The analytical results obtained allowed
us to calculate the sonic formation dynamics and derive the key sys-
tem kinetic variables. We show that the sonic horizon formation
location from our derived system flow velocity and sound velocity
agrees very well with those obtained from pure numerical analy-
sis, demonstrating the applicability our theoretical approach. The
analytical results derived in this work can be used to guide rele-
vant experimental study for sonic horizon formation in system with
septic nonlinearity.
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