Prediction of Channel Excess Attenuation for Satellite Communication Systems at Q-Band Using Artificial Neural Network

Citation for published version:

Digital Object Identifier (DOI):
10.1109/LAWP.2019.2932904

Link:
Link to publication record in Heriot-Watt Research Portal

Document Version:
Peer reviewed version

Published In:
IEEE Antennas and Wireless Propagation Letters

Publisher Rights Statement:
© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

General rights
Copyright for the publications made accessible via Heriot-Watt Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
Heriot-Watt University has made every reasonable effort to ensure that the content in Heriot-Watt Research Portal complies with UK legislation. If you believe that the public display of this file breaches copyright please contact open.access@hw.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Abstract—This paper proposes the use of an artificial neural network (ANN) for estimating the fading of a Q-band (39.402 GHz) satellite channel exploiting knowledge of its previous state as well as the present weather conditions. The ANN is trained using weather data and propagation measurements at Q-band obtained during a period of nine months by the Aldo Paraboni receivers of RAL Space at Chilbolton. Subsequently, the estimation obtained by the ANN is compared with actual propagation measurements on data obtained over a period of three months. Statistical analysis demonstrates agreement between the ANN estimation and the measurement within a 1 dB range with a probability exceeding 98.8%. The significance of this work lies with the opportunities it raises to deliver real-time fading estimations using low-cost weather sensors combined with feedback on the channel state from the return link, which can be used in the deployment of propagation impairment mitigation techniques (PIMTs).

Index Terms—Satellite communication systems, channel excess attenuation, artificial neural network, weather conditions.

I. INTRODUCTION

The role of satellite communications in emerging wireless communication systems stems from their capability to deliver worldwide broadband coverage [1]. While traditional satellite services have relied on C- and Ku-bands, the transition from broadcast to broadband services and the ever increasing need for higher bandwidth at reduced costs drives the exploitation of higher millimeter wave (mmW) bands. Currently, the use of Q/V-band for the feeder link of satellite communication systems is being rolled out as means to free Ka-band spectrum to revenue generating user links and reduce the per bit cost of the ground segment [2].

Despite aforementioned advantages, atmospheric fading at Q/V-band is significantly higher compared to that at C-band or Ku-band. Consequently, the traditional approach of allowing for a sufficiently high margin in the link budget is no longer efficient within the existing technology base. Instead, alternative fade mitigation techniques are preferred, such as adaptive coding and modulation and dynamic power control [3], [4]. Critically, the efficient deployment of these techniques relies on accurate real-time knowledge of the channel fading that will enable the optimum reconfiguration of link parameters such as the modulation and coding rate, or the power amplifier's input backoff [5], [6].

The existing models of channel impairments can be classified into deterministic models, empirical models, and stochastic models [7], [8]. Deterministic models [9]–[12] are generated using ray-tracing techniques which determine the transmission mechanism and path of electromagnetic wave. They are accurate but complex and not flexible. Empirical models [13]–[15] are directly generated by fitting curves with measurement data. They are easy-to-use but cannot represent the propagation features of physical channels. Stochastic models are established with certain [17] or mixed distributions [18], or even different states represented using Markov chains [19], such as Suzuki model [20], Loo’s model [21], and Lutz’s model [22]. They can achieve a good trade-off between accuracy and generality. Besides, International telecommunication union offers a series of documents to calculate free-space attenuation, atmospheric gases attenuation, rain attenuation, clouds and fog attenuation, and ionospheric attenuation. However, they are accurate but too complex [23]–[27].

Aforementioned models were generated by conventional channel modeling methods. They can describe channel characteristics but cannot accurately predict the received signal attenuation in a certain time resulting from channel impairments. Recently, artificial neural network (ANN) widely used in various research areas has good performance on certain prediction [28], [29]. In principle, the channel state information (CSI) for broadband services can be reported to the gateway by virtue of the return link. However the non-negligible latency associated with the combined forward and return links imposes a delay in the knowledge of the CSI. Additional instrumentation should then be deployed in order to enable real time estimation of the fading. This includes spaceborne beacons with associated
ground receivers or radiometers, which provide a calibrated reading of the atmosphere’s brightness temperature. However, these provisions add a non-negligible value to the overall costs. Addressing aforementioned needs, this contribution proposes a cost-efficient methodology to obtain real-time estimation of the atmospheric fading. The proposed approach exploits an ANN which takes as input earlier fading values, which can be obtained from the return link, as well as present weather information, which can be obtained with low-cost weather stations. Exploiting Q-band propagation and weather data obtained during a period of one year by the RAL Space Aldo Paraboni receiver station in Chilbolton [30], we demonstrate that once training has been undertaken, the ANN can then provide an accurate estimation of the real-time fading.

II. System Model

The flowchart of the ANN enabled approach we adopted for predicting channel excess attenuation associated with a satellite link is shown in Fig. 1. Exploiting the Aldo Paraboni Q-band beacon, we firstly record the excess attenuation associated with the channel. Together we also record local weather conditions. The data is then split into three datasets, for training, validation and testing respectively. We used data recorded over a period of one year and split them in the three datasets following a proportion of 2:1:1. The training dataset and validation dataset, both containing input and output vectors, are used to train the network for the parameter selection and configuration of the neural network [31]. When the training process is finished, the input vectors of test dataset are put into the trained ANN to get predicted channel excess attenuation. The predicted performance of the trained ANN is evaluated by comparing the predicted channel excess attenuation and the output vectors of test dataset (i.e. the true measured value).

The architecture of the proposed ANN for predicting the channel excess attenuation is presented in Fig. 2. The output vector Y is the present channel excess attenuation h. In order to evaluate the significance of each input parameter, we explore four different variations of the input vectors, i.e., X_1, X_2, X_3, and X_4, which can be expressed as

$$X_1 = [\alpha, \beta, \gamma, \vartheta, \varphi] \quad (1)$$
$$X_2 = [\alpha, \beta, \gamma, \vartheta, \varphi, h'] \quad (2)$$
$$X_3 = [\alpha, \beta, \gamma, \vartheta, \varphi, \varepsilon, \kappa] \quad (3)$$
$$X_4 = [\alpha, \beta, \gamma, \vartheta, \varphi, \varepsilon, \kappa, h'] \quad (4)$$
$$Y = [h] \quad (5)$$

where $\alpha, \beta, \gamma, \vartheta, \varphi, \varepsilon, \kappa$ are the present value for air temperature, relative humidity, rainfall rate, visibility, thickness of rainfall amount, average particle diameter, and average particle speed, h' is the channel excess attenuation in the previous one minute.

The vector X_1 consists of five typical parameters of current weather conditions that can be obtained with low-cost standard instrumentation, namely: air temperature, relative humidity, rainfall rate, visibility, and thickness of rainfall amount. The variable X_3 includes two further parameters that would require
TABLE I
THE NUMBERS AND PERCENTAGES OF PARAMETERS OF FOUR MODELS.

<table>
<thead>
<tr>
<th>Layers</th>
<th>A model</th>
<th>B model</th>
<th>C model</th>
<th>D model</th>
</tr>
</thead>
<tbody>
<tr>
<td>First dense layer</td>
<td>80</td>
<td>1.53%</td>
<td>96</td>
<td>1.83%</td>
</tr>
<tr>
<td></td>
<td>912</td>
<td>2.33%</td>
<td>112</td>
<td>2.73%</td>
</tr>
<tr>
<td></td>
<td>128</td>
<td>2.43%</td>
<td>128</td>
<td>2.43%</td>
</tr>
<tr>
<td>Second dense layer</td>
<td>512</td>
<td>1.86%</td>
<td>112</td>
<td>3.13%</td>
</tr>
<tr>
<td></td>
<td>312</td>
<td>9.73%</td>
<td>312</td>
<td>9.73%</td>
</tr>
<tr>
<td>Third dense layer</td>
<td>2048</td>
<td>7.20%</td>
<td>2048</td>
<td>7.20%</td>
</tr>
<tr>
<td></td>
<td>2048</td>
<td>18.91%</td>
<td>2048</td>
<td>18.91%</td>
</tr>
<tr>
<td>Fourth dense layer</td>
<td>38</td>
<td>0.67%</td>
<td>38</td>
<td>0.67%</td>
</tr>
<tr>
<td></td>
<td>112</td>
<td>2.13%</td>
<td>112</td>
<td>2.13%</td>
</tr>
<tr>
<td>Fifth dense layer</td>
<td>512</td>
<td>1.86%</td>
<td>112</td>
<td>3.13%</td>
</tr>
<tr>
<td></td>
<td>312</td>
<td>9.73%</td>
<td>312</td>
<td>9.73%</td>
</tr>
<tr>
<td>Sixth dense layer</td>
<td>512</td>
<td>1.86%</td>
<td>112</td>
<td>3.13%</td>
</tr>
<tr>
<td></td>
<td>312</td>
<td>9.73%</td>
<td>312</td>
<td>9.73%</td>
</tr>
<tr>
<td>Total</td>
<td>5216</td>
<td>5232</td>
<td>5248</td>
<td>5264</td>
</tr>
</tbody>
</table>

TABLE II
THE MEANS, STANDARD DEVIATIONS, AND PCC BETWEEN MEASUREMENT DATA AND PREDICTED DATA BY X1, X2, X3, AND X4.

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Standard Deviation</th>
<th>Correlation Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement</td>
<td>0.4041</td>
<td>1.2338</td>
<td>1</td>
</tr>
<tr>
<td>X1</td>
<td>0.4007</td>
<td>0.9477</td>
<td>0.761</td>
</tr>
<tr>
<td>X2</td>
<td>0.4079</td>
<td>1.211</td>
<td>0.9549</td>
</tr>
<tr>
<td>X3</td>
<td>0.4028</td>
<td>0.914</td>
<td>0.7696</td>
</tr>
<tr>
<td>X4</td>
<td>0.412</td>
<td>1.2075</td>
<td>0.9549</td>
</tr>
</tbody>
</table>

where N denotes the data numbers of dataset, y_n and y_n^p are true value and predicted value, respectively.

The learning rates for all the dense layers were initialized at 0.0001. The root-mean-square propagation (RMSProp) is used to optimize the weights of our multi-layer perceptron with the smooth factor of 10^{-6} and the momentum of 0.9. The update rule for weight β is defined as

$$E[g^2]_t = 0.9E[g^2]_{t-1} + 0.1g^2_t$$

$$\beta_{t+1} = \beta_t - \frac{\eta}{\sqrt{E[g^2]_t + \kappa}} g_t$$

where t, η, and κ denote the iteration index, the learning rate, and the smooth factor, respectively, g_t is the gradient of the current iteration t [31] [32].

The Xavier uniform initializer, which is also recognized as the Glorot uniform initializer, is applied to initialize the weights in each layer [33]. The weight was generated with a uniform distribution randomly within $[-\varepsilon, \varepsilon]$ where

$$\varepsilon = \sqrt{\frac{6}{\ell_{in} + \ell_{out}}}$$

where ℓ_{in} and ℓ_{out} are the numbers of input units and output units in the weight tensor. The neuron biases in dense layers is initialized with the constant 0. The rectified linear units (ReLU) in our multi-layer perceptron are provided positive inputs to accelerate the early stages of learning.

III. RESULTS AND ANALYSIS

A. Data collection

A series of radio propagation measurements at Q-band (39.402 GHz) in Chilbolton, Hampshire, UK are carried out using the Aldo Parodi Payload propagation beacon [30]. The weather condition data is collected by the Chilbolton Facility for Atmospheric and Radio Research (CFARR) Campbell Scientific PWS100 present weather sensor [30]. The instrument is mounted approximately 10 m above ground on the roof of a cabin at the Chilbolton Observatory site. We take the radio propagation measurement data and weather condition data from 1st Jan. 2017–31st Dec. 2017. For the trade-off between accuracy and complexity, the received signal and parameters of weather conditions are sampled by 1/60 Hz. The excess attenuation is calculated based on the received signal [30].

B. Comparison in the time domain

In Fig. 3(a), a total of 3000 samples of measurement data and predicted data by input vectors X_1, X_2, X_3, and X_4 are shown. As observed, the predicted data follows well the trends of the channel excess attenuation, thus qualitatively confirming the predicting ability of the proposed method.

Fig. 3(b), which is a zoom in version of the selected red part of Fig. 3(a), compares the performance when the four different input vectors are used. There are 12 significant peaks which are meaningful to be predicted in the 150 samples shown in Fig. 3(b). The prediction by input vectors X_2 and X_4, which has the channel excess attenuation in the previous one minute as the input vector, can predict all 12 peaks in 150 samples.
The prediction by input vectors X_1 and X_3, which only has the weather conditions as input vector, cannot predict the variation of channel attenuation at peak 5, 6, and 7. Moreover, the predictions by input vectors X_1 and X_3 at peak 4, 8, and 10 are lower than the measurement data, not as accurate as those obtained from input vectors X_2 and X_4.

C. Statistical analysis

In order to quantify the performance of the proposed method, next we present statistical analysis of the predicted results vs the actual measured results. The means, standard deviations, and Pearson product-moment correlation coefficient (PCC) between measurement data and predicted data are given in Table II. The means of predicted data by four different input vectors are roughly equal with the mean of measurement data. However, their standard deviations show some significant statistical differences. The standard deviations of predictions by input vectors X_2 and X_3, which have the channel excess attenuation in the previous one minute as input vector, are closer with that of measurement data. The PCC between the measurement data and the predicted data by input vectors X_2 and X_4 are both 0.9549, nearly to 1, which shows their effectiveness. Instead, the PCC between measurement data and predicted data by input vectors X_1 and X_3 are much lower.

The MSE of predicted data for the train set, validation set, and test set are presented in Table III. The MSE trends in the three datasets are relatively stable, which demonstrate the validation and stationarity of our ANN. The MSEs of predictions by input vectors X_2 and X_4 are much lower than those of predictions by input vectors X_1 and X_3. The cumulative distribution functions (CDFs) of the absolute error of predicted data against the measured ones are shown in Fig. 4. Compared with predictions by input vectors X_1 and X_3, the CDFs of absolute error of predicted data by X_2 and X_4 are much higher and with a faster rise. The percentages of absolute error within 1dB by both X_1 and X_3 are above 90%. Adding the channel attenuation in the previous one minute as input (X_2 and X_4), the percentage of absolute error within 1dB is 98.85%. The CDF of the absolute error of predicted data by X_1 is very similar with the CDF of absolute error of predicted data by X_3, which suggests that the additional weather data associated with a disdrometer is not particularly helpful for predicting the fading.

IV. Conclusions

In this paper, we have proposed a method of estimating channel excess attenuation in mmW satellite links using ANN. The data used to train the ANN were obtained by measurement campaigns of local weather conditions and satellite communication signal by Alphasat beacon receiver at Q-band in Chilbolton, Hampshire, UK. By analyzing time series as well as statistical characteristics obtained by the proposed ANN against the measured data, we have demonstrated that it is possible to obtain very accurate estimations of the channel excess attenuation using information obtained from low-cost weather instrumentation and CSI from the return link, especially the CDF of absolute error between the ANN estimation and the measurement within a 1 dB range is with a probability exceeding 98.8%. We also found predictions which have the channel excess attenuation in last minute as input vector obtain better performance significantly and predictions which have more two parameters of weather information as input vector obtain better performance slightly. The proposed methodology can thus provide pertinent pathways for the efficient and low-cost deployment of propagation impairment mitigation techniques such as adaptive coding and modulation and dynamic power control.

REFERENCES

Fig. 3. The time series of measurement data and predicted data by X_1, X_2, X_3, and X_4.

Fig. 4. The CDFs of absolute error of predicted data by X_1, X_2, X_3, and X_4.

