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Abstract

District heating networks are commonly addressed in the literature as one of the most effective solutions for decreasing the 
greenhouse gas emissions from the building sector. These systems require high investments which are returned through the heat
sales. Due to the changed climate conditions and building renovation policies, heat demand in the future could decrease, 
prolonging the investment return period. 
The main scope of this paper is to assess the feasibility of using the heat demand – outdoor temperature function for heat demand 
forecast. The district of Alvalade, located in Lisbon (Portugal), was used as a case study. The district is consisted of 665 
buildings that vary in both construction period and typology. Three weather scenarios (low, medium, high) and three district 
renovation scenarios were developed (shallow, intermediate, deep). To estimate the error, obtained heat demand values were 
compared with results from a dynamic heat demand model, previously developed and validated by the authors.
The results showed that when only weather change is considered, the margin of error could be acceptable for some applications
(the error in annual demand was lower than 20% for all weather scenarios considered). However, after introducing renovation 
scenarios, the error value increased up to 59.5% (depending on the weather and renovation scenarios combination considered). 
The value of slope coefficient increased on average within the range of 3.8% up to 8% per decade, that corresponds to the 
decrease in the number of heating hours of 22-139h during the heating season (depending on the combination of weather and 
renovation scenarios considered). On the other hand, function intercept increased for 7.8-12.7% per decade (depending on the 
coupled scenarios). The values suggested could be used to modify the function parameters for the scenarios considered, and 
improve the accuracy of heat demand estimations.
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Abstract 

Aluminum storage in rutile-based TiO2 nanoparticles was for the first time investigated. Electrochemical characteristics of rutile-
based TiO2 nanoparticles as an electrode for aluminum-ion batteries were studied using cyclic voltammetry, chronopotentiometry 
and electrochemical impedance spectroscopy. The first discharge capacity of 29.4 mAh·g-1 was achieved, and the value remains 
22.6 mAh·g-1 after 50 cycles. The highest coulombic efficiency achieved at 89.8%.  
 
Copyright © 2018 Elsevier Ltd. All rights reserved. 
Selection and peer-review under responsibility of the scientific committee of the 10th International Conference on Applied Energy 
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1. Introduction 

To satisfy the rapidly increasing demand of the electronic storage devices in the market, rechargeable batteries have 
been treated as the most viable solution due to its high efficiency in many applications, such as electric vehicles and 
renewable energy industries.[1] Currently, Lithium-ion batteries (LIBs) is the most attractive commercial battery 
products in the market due to its high energy density feature and low self-discharge rate.[2] However, the high-cost, 
limited lithium resources and the safety concerns, as well as market demand necessitate the development of alternative 
storage solutions. 

Numerous investigations on new rechargeable metal-ion batteries have been conducted.[3-6] Aluminum-ion 
batteries (AIBs) stand out not only due to the cost saving feature attributed to the aluminum abundance in the earth 
crust, the trivalent nature of aluminum offers more electrons to transfer and the lightweight feature also makes it a 
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promising candidate to replace the LIBs.[7] The smaller radius of Al3+ (53.5 pm) is also beneficial for the ions to 
insert/extract into/from the host materials, which makes it the most attractive candidate.[6] Currently, most AIBs 
operate with non-aqueous electrolytes, which can be flammable, toxic and expensive. Therefore, using aqueous 
electrolytes can be more cost-effective and safer.[7] 

TiO2 materials have been widely applied in electrochemical studies due to its good chemical stability and non-
toxicity feature. Different TiO2 crystalline phases have been used as host materials for lithium storage.[8] Current 
research on AIBs has mainly focused on anatase materials. Recently a self-synthesized anatase TiO2 as a working 
electrode for aluminum storage has shown promising results of 278 mAh·g-1 in aqueous AIBs.[9] However, there are 
limited works regarding other TiO2 phases. As the most thermal stable phase, rutile TiO2 as host electrode materials 
in LIBs has been widely reported and it worth studying in the AIBs.[2] Herein, we for the first time investigate the 
electrochemical aluminum storage into rutile TiO2 for aluminum-ion batteries and study the mechanisms of the Al3+ 
storage.  

2. Experimental  

The electrochemical performance of rutile TiO2 was studied in a three-electrode setup in an aqueous AlCl3 
electrolyte, using Pt wire and an Ag/AgCl (1 M KCl) electrode respectively as a counter electrode and a reference 
electrode. The TiO2 electrode was prepared following the routine procedures.[9] Rutile TiO2 (99.5 wt% trace metals 
based, Aldrich), Polyvinylidene difluoride (PVDF, Aldrich) and Acetylene carbon black (Strem Chemicals, INC.) 
were mixed with a weight ratio at 8:1:1, then dispersed in N-methylpyrrolidone (NMP, anhydrous 99.5 vol%, Sigma-
Aldrich) to make an electrode ink. The mixture was treated in an ultrasonic bath (Fisher Bioblock Scientific) under 35 
kHz for 1 h. Then, 5 μL of electrode ink was coated on a glassy carbon electrode (Jingke) with 2 mm diameter, dried 
at 50 °C in an oven for 2 h. 1M AlCl3 solution was prepared from 6 N standard (2 M) AlCl3 solution (Alfa Aesar) and 
18.2 MΩ Milli-Q water (Millipore Corporation).  

All electrochemical measurements were conducted at room temperature with a CHI 660C electrochemical 
workstation. Cyclic Voltammetry (CV) was performed between -0.4 to -1.3 V (vs. Ag/AgCl) at different scan rates 
from 1 mV·s-1 to 40 mV·s-1. The charge/discharge was performed with a potential window of -0.4 to -1.15 V (vs. 
Ag/AgCl). Electrochemical Impedance Spectroscopy (EIS) was performed at -1.1 V with a frequency range of 1 Hz 
to 1 MHz, with an amplitude of 5 mV.  

3. Results and discussion 

To study the reversible Al3+ storage in rutile TiO2, CV was conducted and the results were shown in Figure 1. In 
Figure 1a, a clear pair of redox peaks can be observed at -1.09 and -0.80 V (vs. Ag/AgCl), respectively corresponding 
to Al3+ intercalation and extraction. An inconspicuous cathodic peak occurs at -0.81 V (vs. Ag/AgCl). A tiny anodic 
peak at -1.09 V (vs. Ag/AgCl) can be observed as well, which disappears in the following tests with increasing scan 
rates. At a scan rate of 1 mV·s-1 (Fig. 1a), the trend of hydrogen evolution reaction starts near -1.3 V (vs. Ag/AgCl) in 
the cathodic process. The peak positions indicate ensures the Al3+ insertion in preference to the hydrogen evolution by 
the strong solvation of aqueous ions, which contribute to high hydrogen evolution overpotential.[6]  

To further evaluate the Al3+ insertion/extraction, CV at different scan rates was carried out and the results are shown 
in Figure 1b. The peak intensity of cathodic and anodic peak increases as the scan rate increases. At higher scan rate, 
the cathodic peak position moves more negative and closer to the hydrogen evolution potential. The inset shows the 
linear relationship between peak currents and the square root of the scan rate, which indicate that the solid phase 
diffusion reaction is dominant for Al3+ ions to insert into the rutile TiO2 nanoparticles. It has been proposed in the 
literature that Al3+ storage in TiO2 can follow the below reaction:[10] 

 

2 2xAl+TiO Al TiOx                                                                  (1) 
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Figure 1. a) CV at 1 mV·s-1; b) CV with different scan rates. The inset in b) is the relationship between the cathodic peak current densities and 
scan rates, symbols are experimental data and lines are fitted data. 

To demonstrate Al3+ insertion into rutile TiO2 electrode, the typical charge/discharge curves and electrochemical 
cycling performance are shown in Figure 2. A flat charge plateau at around -1.05 V (vs. Ag/AgCl) can be observed in 
Figure 2a, which is slightly higher than the insertion peak position from CV results. However, unlike the study of 
anatase materials, a clear discharge plateau appears around -0.95 V (vs. Ag/AgCl), which is lower than the potential 
result from CVs.[6] In Figure 2b, The discharge capacity at the 1st cycle is 29.4 mAh·g-1 and continuously decreases 
to 22.6 mAh·g-1 after 50 cycles, which is 76.7% of the initial discharge capacity. It drops quickly in the first 10 cycles 
than the following cycles. On the other hand, the initial charge capacity is 38.7 mAh·g-1, and it drops rapidly to 32.3 
mAh·g-1 in the 2nd cycle. Unlike to discharge profiles, the charge capacity increases after 30 cycles and this 
phenomenon may result by electrode coating degradation, which also leads to the reduction of coulombic efficiency. 
The highest coulombic efficiency reached 89.8% at the 7th cycle.  

Figure 2. a) Charge/discharge curves at different cycles; b) Cycling performance in 50 cycles at 0.5 A·g-1. The inset is the last 5 cycles.  

To better explain the degradation against cycle number, EIS measurement at different cycles was carried out and 
the results are shown in Figure 3a. The depressed semicircles can be observed at a high-frequency region in the Nyquist 
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plots corresponding to charge transfer process. Meanwhile, the linear plot at low-frequency range reflects the Al3+ 

diffusion impedance inside the electrode, also known as Warburg impedance, indicates the diffusion steps mainly 
controlled the electrode process both before and after the electrode being cycled. The appeared semicircles represent 
the charge-transfer process, while the increasing linear plot at low-frequency range represents the Warburg impedance 
which is attributed to the Al3+ diffusion in the electrode. An equivalent circuit model was constructed and showed in 
the insert figure of Figure 3.[9] The resistance Re represents the resistance of the electrolyte. In the first parallel circuit 
branch, the capacitance CSEI and resistance RSEI represents the capacitance and resistance of the interfacial film 
between the particles and the current collector, respectively. In the second branch, the capacitance Rct is the charge 
transfer resistance which reflecting the Al3+ insertion/extraction into/from the TiO2, and the capacitance Cic represents 
to the interfacial capacitance between electrode and electrolyte. Table 1 presents the values of all the components. 
From Table 1, the electrolyte resistance Re slightly decreases while the cycle number is increasing. And the charge 
transfer resistance keeps around 24.5 Ω. The slope of the low-frequency region represents the Warburg coefficient, 
and the decreases value indicates lower Warburg impedance. 

Figure 3. EIS Nyquist plots. Symbols are experimental data and lines are fitted data. The inset is the corresponding equivalent circuit. 

Table 1. Impedance parameters. 

 Cycles Re (Ω) CSEI (F) RSEI (Ω) Cic (F) Rct (Ω) W (Ω) 
After 1st cycle 4.690 4.790E-003 88.45 6.272E-008 24.37 2.839E-003 
After 2nd cycle 4.612 5.004E-003 98.19 6.485E-008 24.58 2.554E-003 
After 5th cycle 4.547 5.175E-003 108.3 6.807E-008 24.39 2.352E-003 
After 10th cycle 4.489 5.515E-003 108.4 6.877E-008 24.68 2.203E-003 

4. Conclusion  

The aluminum storage behavior in rutile TiO2 nanoparticles in a 1 M AlCl3 aqueous electrolyte was investigated. 
The aluminum insertion process is mainly controlled by solid phase diffusion reaction. The initial discharge capacity 
is 29.4 mAh·g-1, which remains 22.6 mAh·g-1 after 50 cycles, with the highest coulombic efficiency of 89.8%. EIS 
measurements show that the impedance increases gradually with the cycle number, different from the anatase TiO2 
where the impedance at the 1st cycle is higher than the following cycles. This work may contribute to developing new 
TiO2 host materials for the aqueous AIBs. 
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