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Abstract

Aluminum storage in rutile-based TiO2 nanoparticles was for the first time investigated. Electrochemical characteristics of rutile-
based TiO2 nanoparticles as an electrode for aluminum-ion batteries were studied using cyclic voltammetry, chronopotentiometry
and electrochemical impedance spectroscopy. The first discharge capacity of 29.4 mAh-g™! was achieved, and the value remains
22.6 mAh-g! after 50 cycles. The highest coulombic efficiency achieved at 89.8%.
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1. Introduction

To satisfy the rapidly increasing demand of the electronic storage devices in the market, rechargeable batteries have
been treated as the most viable solution due to its high efficiency in many applications, such as electric vehicles and
renewable energy industries.[1] Currently, Lithium-ion batteries (LIBs) is the most attractive commercial battery
products in the market due to its high energy density feature and low self-discharge rate.[2] However, the high-cost,
limited lithium resources and the safety concerns, as well as market demand necessitate the development of alternative
storage solutions.

Numerous investigations on new rechargeable metal-ion batteries have been conducted.[3-6] Aluminum-ion
batteries (AIBs) stand out not only due to the cost saving feature attributed to the aluminum abundance in the earth
crust, the trivalent nature of aluminum offers more electrons to transfer and the lightweight feature also makes it a
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promising candidate to replace the LIBs.[7] The smaller radius of AI** (53.5 pm) is also beneficial for the ions to
insert/extract into/from the host materials, which makes it the most attractive candidate.[6] Currently, most AIBs
operate with non-aqueous electrolytes, which can be flammable, toxic and expensive. Therefore, using aqueous
electrolytes can be more cost-effective and safer.[7]

TiO, materials have been widely applied in electrochemical studies due to its good chemical stability and non-
toxicity feature. Different TiO, crystalline phases have been used as host materials for lithium storage.[8] Current
research on AIBs has mainly focused on anatase materials. Recently a self-synthesized anatase TiO, as a working
electrode for aluminum storage has shown promising results of 278 mAh-g’!' in aqueous AIBs.[9] However, there are
limited works regarding other TiO, phases. As the most thermal stable phase, rutile TiO, as host electrode materials
in LIBs has been widely reported and it worth studying in the AIBs.[2] Herein, we for the first time investigate the
electrochemical aluminum storage into rutile TiO for aluminum-ion batteries and study the mechanisms of the AI**
storage.

2. Experimental

The electrochemical performance of rutile TiO, was studied in a three-electrode setup in an aqueous AICl;
electrolyte, using Pt wire and an Ag/AgCl (1 M KCl) electrode respectively as a counter electrode and a reference
electrode. The TiO, electrode was prepared following the routine procedures.[9] Rutile TiO; (99.5 wt% trace metals
based, Aldrich), Polyvinylidene difluoride (PVDF, Aldrich) and Acetylene carbon black (Strem Chemicals, INC.)
were mixed with a weight ratio at 8:1:1, then dispersed in N-methylpyrrolidone (NMP, anhydrous 99.5 vol%, Sigma-
Aldrich) to make an electrode ink. The mixture was treated in an ultrasonic bath (Fisher Bioblock Scientific) under 35
kHz for 1 h. Then, 5 pL of electrode ink was coated on a glassy carbon electrode (Jingke) with 2 mm diameter, dried
at 50 °C in an oven for 2 h. 1M AICl; solution was prepared from 6 N standard (2 M) AICI; solution (Alfa Aesar) and
18.2 MQ Milli-Q water (Millipore Corporation).

All electrochemical measurements were conducted at room temperature with a CHI 660C electrochemical
workstation. Cyclic Voltammetry (CV) was performed between -0.4 to -1.3 V (vs. Ag/AgCl) at different scan rates
from 1 mV-s'! to 40 mV-s™'. The charge/discharge was performed with a potential window of -0.4 to -1.15 V (vs.
Ag/AgCl). Electrochemical Impedance Spectroscopy (EIS) was performed at -1.1 V with a frequency range of 1 Hz
to 1 MHz, with an amplitude of 5 mV.

3. Results and discussion

To study the reversible Al** storage in rutile TiO2, CV was conducted and the results were shown in Figure 1. In
Figure 1a, a clear pair of redox peaks can be observed at -1.09 and -0.80 V (vs. Ag/AgCl), respectively corresponding
to AI*" intercalation and extraction. An inconspicuous cathodic peak occurs at -0.81 V (vs. Ag/AgCl). A tiny anodic
peak at -1.09 V (vs. Ag/AgCl) can be observed as well, which disappears in the following tests with increasing scan
rates. At a scan rate of 1 mV-s™! (Fig. 1a), the trend of hydrogen evolution reaction starts near -1.3 V (vs. Ag/AgCl) in
the cathodic process. The peak positions indicate ensures the Al*" insertion in preference to the hydrogen evolution by
the strong solvation of aqueous ions, which contribute to high hydrogen evolution overpotential.[6]

To further evaluate the AI** insertion/extraction, CV at different scan rates was carried out and the results are shown
in Figure 1b. The peak intensity of cathodic and anodic peak increases as the scan rate increases. At higher scan rate,
the cathodic peak position moves more negative and closer to the hydrogen evolution potential. The inset shows the
linear relationship between peak currents and the square root of the scan rate, which indicate that the solid phase
diffusion reaction is dominant for AI*" ions to insert into the rutile TiO, nanoparticles. It has been proposed in the
literature that Al** storage in TiO, can follow the below reaction:[10]

XAHTIO, <> Al TiO, 1
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Figure 1. a) CV at 1 mV-s™!; b) CV with different scan rates. The inset in b) is the relationship between the cathodic peak current densities and
scan rates, symbols are experimental data and lines are fitted data.

To demonstrate Al** insertion into rutile TiO; electrode, the typical charge/discharge curves and electrochemical
cycling performance are shown in Figure 2. A flat charge plateau at around -1.05 V (vs. Ag/AgCl) can be observed in
Figure 2a, which is slightly higher than the insertion peak position from CV results. However, unlike the study of
anatase materials, a clear discharge plateau appears around -0.95 V (vs. Ag/AgCl), which is lower than the potential
result from CVs.[6] In Figure 2b, The discharge capacity at the 1% cycle is 29.4 mAh-g! and continuously decreases
to 22.6 mAh-g™! after 50 cycles, which is 76.7% of the initial discharge capacity. It drops quickly in the first 10 cycles
than the following cycles. On the other hand, the initial charge capacity is 38.7 mAh-g!, and it drops rapidly to 32.3
mAh-g! in the 2™ cycle. Unlike to discharge profiles, the charge capacity increases after 30 cycles and this
phenomenon may result by electrode coating degradation, which also leads to the reduction of coulombic efficiency.
The highest coulombic efficiency reached 89.8% at the 7™ cycle.
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Figure 2. a) Charge/discharge curves at different cycles; b) Cycling performance in 50 cycles at 0.5 A-g™'. The inset is the last 5 cycles.

To better explain the degradation against cycle number, EIS measurement at different cycles was carried out and
the results are shown in Figure 3a. The depressed semicircles can be observed at a high-frequency region in the Nyquist
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plots corresponding to charge transfer process. Meanwhile, the linear plot at low-frequency range reflects the Al3*
diffusion impedance inside the electrode, also known as Warburg impedance, indicates the diffusion steps mainly
controlled the electrode process both before and after the electrode being cycled. The appeared semicircles represent
the charge-transfer process, while the increasing linear plot at low-frequency range represents the Warburg impedance
which is attributed to the AI** diffusion in the electrode. An equivalent circuit model was constructed and showed in
the insert figure of Figure 3.[9] The resistance Re represents the resistance of the electrolyte. In the first parallel circuit
branch, the capacitance Csgr and resistance Rsgr represents the capacitance and resistance of the interfacial film
between the particles and the current collector, respectively. In the second branch, the capacitance R is the charge
transfer resistance which reflecting the AI>* insertion/extraction into/from the TiO», and the capacitance Ci. represents
to the interfacial capacitance between electrode and electrolyte. Table 1 presents the values of all the components.
From Table 1, the electrolyte resistance R slightly decreases while the cycle number is increasing. And the charge
transfer resistance keeps around 24.5 Q. The slope of the low-frequency region represents the Warburg coefficient,
and the decreases value indicates lower Warburg impedance.
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Figure 3. EIS Nyquist plots. Symbols are experimental data and lines are fitted data. The inset is the corresponding equivalent circuit.

Table 1. Impedance parameters.

Cycles R. (9) Cse (F) Rser (2) Cic (F) Rua(2) W (9
After 1* cycle 4.690 4.790E-003 88.45 6.272E-008 24.37 2.839E-003
After 2™ cycle 4.612 5.004E-003 98.19 6.485E-008 24.58 2.554E-003
After 5 cycle 4.547 5.175E-003 108.3 6.807E-008 24.39 2.352E-003
After 10" cycle 4.489 5.515E-003 108.4 6.877E-008 24.68 2.203E-003

4. Conclusion

The aluminum storage behavior in rutile TiO, nanoparticles in a 1 M AICl; aqueous electrolyte was investigated.
The aluminum insertion process is mainly controlled by solid phase diffusion reaction. The initial discharge capacity
is 29.4 mAh-g’!, which remains 22.6 mAh-g"! after 50 cycles, with the highest coulombic efficiency of 89.8%. EIS
measurements show that the impedance increases gradually with the cycle number, different from the anatase TiO,
where the impedance at the 1% cycle is higher than the following cycles. This work may contribute to developing new
Ti0; host materials for the aqueous AIBs.
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