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Abstract
We study generalised Navier–Stokes equations governing the motion of an electro-
rheological fluid subject to stochastic perturbation. Stochastic effects are implemented
through (i) random initial data, (ii) a forcing term in the momentum equation rep-
resented by a multiplicative white noise and (iii) a random character of the variable
exponent p = p(ω, t, x) (as a result of a random electric field).We show the existence
of a weak martingale solution provided the variable exponent satisfies p ≥ p− > 3n

n+2
(p− > 1 in two dimensions). Under additional assumptions we obtain also stochasti-
cally strong solutions.

Keywords Electro-rheological fluids · Stochastic Navier–Stokes equations ·
Martingale solution · Pathwise solution

Mathematics Subject Classification 60H15 · 35R60 · 76D03 · 35Q30

1 Introduction

Electro-rheological fluids are special smart fluids which change their material proper-
ties due to the application of an electric field firstly observed by Winslow [32]. Since
then a vast development in the chemical constitution of electro-rheological fluids has
taken place and nowadays dramatic changes by a factor of 103 in 1ms in the viscosity
are possible. This provides the opportunity for the gainful exploitation of this fact in
technological applications for instance in clutches, shock absorbers, valves, actuators
and exercise equipment.
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Stoch PDE: Anal Comp

The simplest approach for the modelling of such suspensions is to treat them in a
homogenised sense within the framework of continuummechanics and in this respect,
we restrict ourself to incompressible fluids with density � > 0. The conservation of
mass and the balance of linear momentum are given by

{
∂t (�v) − div S = − div(�v ⊗ v) − ∇π + �f + fe in Q,

div v = 0 in Q,
(1.1)

where Q = (0, T )×O denotes the parabolic cylinder (O is a bounded domain in Rn ,
n = 2, 3) and⊗ is the tensor product inRn (that iswe have a⊗b = abT for a,b ∈ R

n).
Here v : Q → R

n is the velocity field, π : Q → R the pressure, S : Q → R
n×n

the viscous stress tensor whereas f : Q → R
n is the external mechanical body force

and fe : Q → R
n the electromagnetic force. The material properties of an electro-

rheological fluid—according to Rajagopal and Růžička [23,24]—are described by the
relation

S = α21
(
(1 + |ε(v)|2) p−1

2 − 1
)
E ⊗ E + (α31 + α33|E|2)(1 + |ε(v)|2) p−2

2 ε(v)

+ α51(1 + |ε(v)|2) p−2
2 (E ⊗ ε(v)E + E ⊗ ε(v)E). (1.2)

Here E : Q → R
n is the electric field (which is a solution to the quasi-static Maxwell

equations and is not influenced by the motion of the fluid), ε(v) = 1
2

(∇v+ ∇vT
)
the

symmetric gradient of the velocity field and αi j are material constants. The exponent
p = p(|E|2) depends on the strength of the electric field (and hence on time and
space) and satisfies in Q

1 < p− ≤ p ≤ p+ < ∞. (1.3)

In the mathematical literature about electro-rheological fluids (starting with [26]) it is
common to study the constitutive law

S = μ(1 + |ε(v)|)p(·)−2ε(v), μ > 0, (1.4)

which contains the same mathematical difficulties as (1.2) but simplifies the calcula-
tions. Essentially, there are two parts in the model where randomness can occur:

• The electromagnetic force is mainly influenced by the gradient of the electric field
E and the electric polarization P such that fe = [∇E]P. All missing quantities
which are neglected here (for instance magnetic field and magnetic polarization)
can be summarized in some random perturbation. In addition, it can incorporate
physical uncertainties and turbulence in the fluid motion.

• The exponent p depends on the strength of the electric field which is a solu-
tion to Maxwell’s equation, the latter having been widely studied in literature.
Randomness naturally appears in the Maxwell equation (see, for instance [7,16]
for stochastic Maxwell equations), and the randomness in the Maxwell equation
transfers to randomness in the exponent in the model (1.6). In conclusion, the
assumption of a random exponent is very reasonable and required by applications.
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Second, it is not possible to give an explicit formula for the exponent p. Its depen-
dence on the electric field has to be determined via physical experiments. Hence some
(random) derivation from the “real” exponent is expected.

In this respect, the aim of this paper is to give a rigorous analysis of the following
stochastic model for electro-rheological fluids (without loss of generality we assume
that � = 1 and fe = 0)

⎧⎨
⎩
dv = div S dt − div(v ⊗ v) dt − ∇π dt + f dt + �(v)dW in Q,

div v = 0 in Q,

v(0) = v0 in O,

(1.5)

with S given by

S = μ(1 + |ε(v)|)p(·)−2ε(v), μ > 0. (1.6)

We suppose that the electric fieldE is given and that p = p(ω, t, x) satisfies (1.3). The
quantity W denotes a cylindrical Wiener process with values in some Hilbert space
and � is nonlinear in v with linear growth, cp. Sect. 2.2 for further details.

In the general three-dimensional case, regularity and uniqueness of solutions to
(1.5)–(1.6) is a longstanding open problem (already in the deterministic situation)
even if p ≡ 2, leading to the classical Navier–Stokes equations for Newtonian fluids.
Consequently, the solution is understood weakly in space–time (in the sense of dis-
tributions) and also weakly in the probabilistic sense (i.e., the underlying probability
space is part of the solution). This concept of stochastically weak solutions already
appears on the level of stochastic ODEs if uniqueness is not available.

As far as stochastic PDEs are concerned, a milestone was the existence of martin-
gale solutions to the stochastic Navier–Stokes equation [(1.5)–(1.6) with p ≡ 2] by
Flandoli–Gatarek [13]. Today there exists an abundant amount of literature concern-
ing the dynamics of incompressible Newtonian fluids driven by stochastic forcing. We
refer to the lecture notes by Flandoli [12], the monograph of Kuksin and Shyrikian
[20], the survey by Romito [25] as well as the references cited therein for a recent
overview. Much less is known if other fluid types are concerned. Just very recently, an
analysis of non-Newtonian fluids (see [4,30,33]) and compressible fluids (see [6,28])
subject to stochastic forcing started.

The analysis the system (1.5)–(1.6) brings a completely new aspect into play:
a random variable exponent. As a consequence, solutions are located in a random
function space generated by the a priori information

E

[∫
Q

|ε(v)(ω, t, x)|p(ω,t,x) dx dt

]
< ∞.

So, we have

ε(v)(ω, ·) ∈ Lp(ω,·)(Q) for P-a.e. ω ∈ �,
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where

Lp(·)(G) =
{
f ∈ L1(G) :

∫
G

| f (y)|p(y) dy < ∞
}

(1.7)

for G ⊂ R
m and p : G → [1,∞) measurable. Variable exponent Lebesgue spaces

(and Sobolev spaces) as in (1.7) have been studied extensively over the last two decades
motivated by the model for electro-rheological fluids from [23,24], and we refer to
[11] for a comprehensive treatment. As far as stochastic problems are concerned, a
first analysis of problems involving random variable exponents can be found in [31]
(see also [3] for a previous result on a stochastic p(t, x)-Laplacian). In this work, the
existence and uniqueness of weak solutions of a stochastic p(ω, t, x)-Laplacian type
equation is established by use of the variational approach, and problems connected to
compactness and non-uniqueness as in the Navier-Stokes context do not occur.

In order to complete system (1.5)we have to describe the behaviour of the fluid at the
boundary. The boundary conditions in real world applications are quite complicated
and of substantial influence on the fluid motion. Nevertheless, our goal is to focus on
the effect of a random variable exponent as well as stochastic perturbations imposed
through stochastic volume forces. So, for a first analysiswe considerperiodic boundary
conditions, where the physical domain is identified with the flat torus

T
n =

(
[0, 1]

∣∣∣{0,1}
)n

.

The first main result of this paper is the existence of a weak martingale solution
to (1.5)–(1.6) under periodic boundary conditions where the variable exponent p is
Lipschitz continuous in x and satisfies

inf
�×Q

p >
3n

n + 2
, (1.8)

see Theorem 2.2 for the precise statement. This generalises the results from [30] to the
case of variable exponents. As a consequence of the nature of martingale solutions we
are not able to describe the variable exponent as a given function defined on � × Q.
Instead, we rather describe a probability law on C0([0, T ] × T

n).
Our approach is based on a finite-dimensional Galerkin approximation and a refined

stochastic compactness method involving Skorokhod’s representation theorem. Since
the system (1.5)–(1.6) is nonlinear in the gradient of the velocity field we have to
demonstrate its compactness first. This is achieved by fractional estimates for ∇v
inspired by the results from [21, Chap. 5], where deterministic problems with constant
p are considered. Under more restrictive assumptions on the variable exponent p, we
are able to show pathwise uniqueness of solutions. As a consequence, we obtain
pathwise solutions (see Theorem 2.10) using the method by Gyöngy–Krylov [15].
Eventually, we are concerned with the existence of analytically strong solutions (see
Definitions 2.6, 2.12), where Eq. (1.5)1 holds almost everywhere in space. This is
based on the existence of second derivatives of the velocity field. Because of the non-
standard growth character of (1.6) this is much more involved than the situation with
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constant p. By simply differentiating Eq. (1.5)1 we are left with an a priori unbounded
integral, cp. (5.9). This issue can be overcome by combining a parabolic interpolation
as in [2] with an improved moment estimate, cp. Theorem 3.2. Consequently, we
obtain weak (or even strong) pathwise solutions to (1.5)–(1.6), see Theorem 2.7 and
Corollary 2.13.

The paper is organised as follows. In Sect. 2 we present the mathematical frame-
work, the various solution concepts to (1.5)–(1.6) as well as the main results. In Sect. 3
we study the finite-dimensional approximation to (1.5)–(1.6) and derive uniform a pri-
ori estimates. Section 4 is dedicated to the existence of martingale solutions. Under
more restrictive assumptions on the exponent p, we then show existence of stochas-
tically strong solutions. In the final section we establish the existence of analytically
strong solutions subject to suitable additional assumptions imposed on the data.

2 Framework andmain results

2.1 Function space setup

In this section we briefly introduce the function spaces to be dealt with in the main
part of the paper. Incorporating the periodic boundary conditions, all spatial function
spaces are defined on the torus T

n . Specifically, we define for 0 < κ < ∞ and
1 < q < ∞ the corresponding Bessel–Sobolev spaces by

Wκ,q(Tn) :=
{

v : Tn → R
n : ‖v‖qκ,q :=

∑
k∈Z

〈k〉κq |ck(v)|q < ∞
}

,

Wκ,q
div (Tn) := Wκ,q(Tn)n ∩ {v ∈ L1(Tn;Rn) : div(v) = 0

in the sense of distributions},

where 〈ξ 〉 := √
1 + |ξ |2 and ck(v) are the Fourier coefficients of v : Tn → R

n with
respect to the standard Fourier basis {x �→ exp (2π i k · x)}k . Given a real Banach
space (X , ‖·‖), we moreover introduce the fractional Sobolev space Wκ,q(0, T ; X)

as the collection of all measurable v : [0, T ] → X such that v ∈ Lq(0, T ; X) (in the
sense of Bochner integrability) and

[v]κ,q :=
∫ T

0

∫ T

0

‖v(s) − v(t)‖qX
|s − t |1+κq

d s d t < ∞.

Let us note that the former space could be defined similarly by use of Fourier coef-
ficients, however, we refrained from doing so to emphasize the non-periodicity with
respect to time.

We continue with a brief introduction of variable exponent Lebesgue spaces and
refer to [11] for a detailed exposition. For a given continuous function p : Q → [1,∞)

with Q = (0, T ) × T
n we define the variable exponent Lebesgue space Lp(·)(Q) by

Lp(·)(Q) = sup
{
f ∈ L1(Q) :

∫
Q

| f (t, y)|p(t,y) dy dt < ∞
}
.
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It is a Banach space together with the Luxemburg norm

‖ f ‖p(·) = inf
{
k ≥ 0 :

∫
Q

∣∣∣ f (t, y)
k

∣∣∣p(t,y) dy dt ≤ 1
}
. (2.1)

For most of the interesting functional analytical properties of Lp(·)(Q) some mild
regularity of p is needed. We say that a function g : Q → R is log-Hölder continuous
in Q if there exists a constant c ≥ 0 such that

|g(X) − g(Y )| ≤ c

log(e + 1/|X − Y |) ,

for all X �= Y ∈ Q. The smallest such constant c is the log-Hölder constant of g. We
define P log(Q) to consist of those exponents p ∈ L1(Q) for which 1

p : Q → (0, 1]
is log-Hölder continuous. The norm ‖p‖P log(Q) is the log-Hölder constant of 1/p.
For p ∈ P log(Q) almost all properties of the classical Lebesgue spaces extend to
Lp(·)(Q). In particular smooth functions are dense with respect to the norm given in
(2.1).

Lastly, we shall sometimes surpress the target space and write, e.g., Wκ,q(Tn)

instead of Wκ,q(Tn)n . However, no ambiguities will arise from this.

2.2 Probability setup

Let (�,F ,P) be a probability space endowed with a filtration (Ft ) = (Ft )t≥0 which
is a nondecreasing family of sub-σ -fields ofF , i.e.,Fs ⊂ Ft for 0 ≤ s ≤ t ≤ T . We
further assume that (Ft )t≥0 is right-continuous and F0 contains all the P-negligible
events inF .

For a Banach space (X , ‖·‖X ) and corresponding Borel σ -algebraB(X), we denote
by for 1 ≤ p < ∞ by Lp(�; X) the Banach space of all measurable functions
v : (�,F ) → (X ,B(X)) such that

E
[‖v‖p

X

] =
∫

�

‖v‖p
X dP < ∞.

Let U be a Hilbert space with orthonormal basis (ek)k∈N and let L2(U,L2(Tn)) be the
set of Hilbert–Schmidt operators from U to L2(Tn). Moreover, define the auxiliary
space U0 ⊃ U as

U0 :=
{
e =

∞∑
k=1

αkek :
∞∑
k=1

α2
k

k2
< ∞

}
,

‖e‖2U0
:=

∞∑
k=1

α2
k

k2
, e =

∞∑
k=1

αkek .

(2.2)
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Throughout the paper we consider a cylindrical (Ft )-Wiener process W = (Wt )t≥0
which has the form

W =
∑
k∈N

βkek (2.3)

with a sequence (βk) of independent real valued (Ft )-Wiener processes. The embed-
ding U ↪→ U0 is Hilbert–Schmidt and trajectories of W are P-a.s. continuous
with values in U0 (see [8]). Now, for � ∈ L2(�;L2(0, T ;L2(U,L2(Tn)))) (Ft )-
progressivelymeasurable1 we have that

∫ t
0 � dW defines aP-almost surely continuous

L2(Tn)-valued (Ft )-martingale (cp. [8] for stochastic calculus in infinite dimensions).
Moreover, we can multiply with test-functions because

∫
Tn

∫ t

0
� dW · ϕ dx =

∞∑
k=1

∫ t

0

∫
Tn

�ek · ϕ dx dβk, ϕ ∈ L2(Tn),

is well-defined.
In the SPDEs appearing in this paper we consider a noise coefficient�(v) (depend-

ing on the solution v) with values in L2(U,L2(Tn)). We suppose the following linear
growth assumptions on�: For each z ∈ L2(Tn) there is amapping�(z) : U → L2(Tn)

defined by �(z)ek = gk(z(·)). In particular, we suppose that gk ∈ C1(Rn) and the
following conditions for some L ≥ 0

∑
k∈N

|gk(ξ)|2 ≤ L(1 + |ξ |2),
∑
k∈N

|∇gk(ξ)|2 ≤ L, ξ ∈ R
n . (2.4)

2.3 Martingale solutions

Now we are in position to give a precise formulation of the meaning of a martingale
solutions. We start with a weak martingale solution. This solution is weak on both
senses. Derivatives have to be understood in the sense of distributions (weak in the
PDE-sense) and the underlying probability space is not a priori given but is part of the
problem (weak in the probabilistic sense). Accordingly, the initial condition is given
as a Borel probability measure on L2

div(T
n). The same applies for the forcing f which

will be given as a Borel probability measure on L2(Q). As usual the moments of data
measured via

Cr (�0,�f ) =
∫
L2
div(T

n)

∥∥u∥∥2r
L2(Tn)

d�0(u) +
∫
L2(Q)

∥∥g∥∥2rL2(Q)
d�f (g)

for r ≥ 1 transfer to the solution. Solutions as described above are called martingale
solutions due to the connection to the so-called Stroock–Varadhanmartingale problem
(see, e.g., [19, Chap. 5.4]).

1 We understand progressive measurability for non-continuous processes in the sense of random distribu-
tions introduced in [5, Sect. 2.2].
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Definition 2.1 (Weak martingale solution) Let � be a Borel probability law on
L2
div(T

n) × L2(Q) × C0([0, T ] × T
n) with marginals �0,�f ,�p. Then a quintu-

ple

(
(�,F , (Ft ),P), v, f, p,W )

is called a weak martingale solution to (1.5)–(1.6) with the initial datum �0, right-
hand-side �f and exponent �p provided

(a) (�,F , (Ft ),P) is a stochastic basis with a complete right-continuous filtration,
(b) W is an (Ft )-cylindrical Wiener process,
(c) f ∈ L2(�,F ,P;L2(Q)) is (Ft )-progressively measurable,
(d) p ∈ L2(�,F ,P;C0([0, T ] × T

n)) is (Ft )-progressively measurable,
(e) the velocity field satisfies v ∈ Cw([0, T ];L2(Tn)), ε(v) ∈ Lp(·)(Q), P-a.s. and is

(Ft )-progressively measurable,
(f) we have � = P ◦ (v(0), f, p)−1,
(g) for all ϕ ∈ C∞

div(T
n) and all t ∈ [0, T ] there holds P-a.s.2

∫
Tn

v(t) · ϕ dx +
∫ t

0

∫
Tn

μ(1 + |ε(v)|)p(·)−2ε(v) : ε(ϕ) dx dσ

−
∫ t

0

∫
Tn

v ⊗ v : ε(ϕ) dx dσ

=
∫
Tn

v(0) · ϕ dx +
∫
Tn

∫ t

0
f · ϕ dx dσ

+
∫
Tn

∫ t

0
�(v) dW · ϕ dx .

We obtain the following result.

Theorem 2.2 (Weak martingale solution) Suppose that

∫
L2
div(T

n)

∥∥u∥∥2
W1,2(Tn)

d�0(u) < ∞,

∫
L2(Q)

∥∥g∥∥2L2(0,T ;W1,2(Tn))
d�f (g) < ∞, (2.5)

as well as Cr (�0,�f ) < ∞ for all 1 ≤ r < ∞. Moreover, assume that

�p
{
h ∈ P log(Q) : p− ≤ h ≤ p+, ‖h‖∞ + ‖∇h‖∞ ≤ cp

} = 1, (2.6)

where cp < ∞ and

3n

n + 2
< p− ≤ p+ <

n + 2

n
p− (2.7)

2 By : we denote the inner product between matrices, that is A : B = ∑
i j Ai j Bi j for A,B ∈ R

n×n .
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for some deterministic constants p− and p+. Additionally, suppose that
∫
C0([0,T ]×Tn)

∥∥h∥∥P log(Q)
d�p(h) < ∞. (2.8)

Finally, assume that � satisfies (2.4). Then there is a weak martingale solution to
(1.5)–(1.6) in the sense of Definition 2.1. We have the energy estimate

E

[
sup

t∈(0,T )

∫
Tn

|v(t)|2 dx +
∫
Q

|ε(v)|p(·) dx dt
]r

≤ c
(
1 + Cr (�0,�f )

)
. (2.9)

for any r ≥ 1.

Remark 2.3 Let us explain the assumptions on upper and lower bound on p in (2.7).

• The lower bound is the same as in the case of constant p from [30] in the two and
three dimensional case (we do not consider higher dimensions as they are not of
physical interest).

• It will become clear from the proof of Theorem (2.2) that the assumption (2.7) can
be relaxed to

3n − 4

n
< p− ≤ p+ < np− + 4 (2.10)

provided p− ≥ 2 (where the lower bound is redundant for n = 2, 3). We decided
for the version in (2.7) as it is physically meaningful that p− is as low as possible
whereas non-Newtonian fluids with growth-exponent higher than p = 3 are not
known (the case p = 3 refers to the the classical Smagorinsky model [29]).

Remark 2.4 By slightly refining our estimates it is possible to weaken the assumption
in (2.6) from a deterministic constant cp to a random variable cp with arbitrary high
moments. This seems more realistic in view of the random character of the exponent.

Remark 2.5 In contrast to the deterministic case we need assumptions between p− and
p+ to balance our estimates. In the deterministic case this can be avoided by localizing
the problem and arguing on a small parabolic cube where p− and p+ are arbitrary
close (recall that p is continuous). This is not possible here because of the random
character of p.

The method we are using in the proof of Theorem 2.2 originates from [21, Chap. 5],
where the deterministic problem with constant p is studied. The key idea is to analyse
fractional derivatives of the velocity gradient. This method is only very powerful in
the case of periodic boundary conditions, where a test with �vN (vN is the Galerkin
approximation of the velocity field) is possible. The situation in the two-dimensional
situation is much better than the 3D case as we have

∫
Tn

vN ⊗ vN : ∇vN dx = 0.
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Due to this we can expect solutions which are strong in PDE sense. Before we give a
proper definition we have to introduce the pressure function (as we need a formulation
which holds a.e. in space without test-functions).

Assume that
(
(�,F , (Ft ),P), v, f, p,W ) is a weak martingale solution to (1.5)–

(1.6) in the sense of Definition 2.1. In particular, we have P-a.s.

∫
Tn

v(t) · ϕ dx +
∫ t

0

∫
Tn

μ(1 + |ε(v)|)p(·)−2ε(v) : ε(ϕ) dx dσ

−
∫ t

0

∫
Tn

v ⊗ v : ε(ϕ) dx dσ

=
∫
Tn

v(0) · ϕ dx +
∫
Tn

∫ t

0
f · ϕ dx dσ

+
∫
Tn

∫ t

0
�(v) dW · ϕ dx

for all ϕ ∈ C∞
div(T

n) and all t ∈ [0, T ]. Now, for ϕ ∈ C∞(Tn) we can insert ϕ −
∇�−1 divϕ and obtain

∫
Tn

v(t) · ϕ dx +
∫ t

0

∫
Tn

μ(1 + |ε(v)|)p(·)−2ε(v) : ε(ϕ) dx dσ

−
∫ t

0

∫
Tn

v ⊗ v : ε(ϕ) dx dσ

=
∫
Tn

v(0) · ϕ dx +
∫ t

0

∫
Tn

πdet divϕ dx dσ

+
∫
Tn

∫ t

0
f · ϕ dx dσ

+
∫
Tn

∫ t

0
�(v) dW · ϕ dx +

∫
Tn

∫ t

0
�π dW · ϕ dx, (2.11)

where

πdet = π1
det + π2

det + π3
det,

π1
det = �−1 div div

(
μ(1 + |ε(v)|)p(·)−2ε(v)

)
,

π2
det = −�−1 div div

(
v ⊗ v

)
,

π3
det = �−1 div f,

�π = −∇�−1 div�(v).

This corresponds to the stochastic pressure decomposition introduced in [4, Chap. 3].
However, the situation with periodic boundary conditions we are considering here is
much easier as the harmonic component of the pressure disappears. From a strong
solution (in the PDE-sense) we expect that (2.11) holds without the use of the test-
functions, i.e. we have
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v(t) = v(0) +
∫ t

0

[
div

(
μ(1 + |ε(v)|)p(·)−2ε(v)

)
− div

(
v ⊗ v

) − ∇πdet + f
]
dσ

+
∫ t

0

[
�(v) + �π

]
dW

P-a.s. for all t ∈ [0, T ]. We remark that already under the assumptions of Theorem 2.2
we have enough spatial regularity to define div

(
v ⊗ v

)
as an L1-function (in fact

p− ≥ 2n+2
n+2 is required). So, the critical point is whether second derivatives of v exists

and div
(
(κ+|ε(v)|)p−2ε(v)

)
is an L1-function. The required regularity of the pressure

terms follows immediately from this and continuity properties of �−1 on Lebesgue
and Sobolev spaces. Let us finally mention that regularity of v is usually measured via
the nonlinear function Fp(·, ε(v)), where

Fp(ω, t, x, η) = (1 + |η|) p(ω,t,x)−2
2 η, η ∈ R

n×n .

Now we are ready to define a strong martingale solution.

Definition 2.6 (Strong martingale solution) Let � be a Borel probability law on
L2
div(T

n) × L2(Q) × C0([0, T ] × T
n) with marginals �0,�f ,�p. Then a quintu-

ple

(
(�,F , (Ft ),P), v, f, p,W )

is called a strong martingale solution to (1.5)–(1.6) with the initial datum �0, right-
hand-side �f and exponent �p provided it is a weak martingale solution in the sense
of Definition 2.1 and the following holds.

(a) We have Fp(·, ε(v)) ∈ L2(0, T ;W1,2(Tn)) P-a.s.,
(b) there are πdet and �π (Ft )-progressively measurable such that πdet ∈ L1(Q) and

�π ∈ L2(0, T ;L2(U;L2(Tn))) P-a.s. as well as

v(t) = v(0)+
∫ t

0

[
div

(
μ(1 + |ε(v)|)p(·)−2ε(v)

)
− div

(
v ⊗ v

)− ∇πdet + f
]
dσ

+
∫ t

0

[
�(v) + �π

]
dW (2.12)

P-a.s. for all t ∈ [0, T ].

Theorem 2.7 (Strong martingale solution) Let the assumptions of Theorem 2.2 be
satisfied. Suppose that either we have

(i) n = 2 and 1 < p− ≤ p+ < 4 or;
(ii) n = 3 and 11

5 < p− ≤ p+ ≤ p− + 4
5 .
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Then there is a strong martingale solution to (1.5)–(1.6) in the sense of Definition 2.6.
We have the estimate

E

[
sup

t∈(0,T )

∫
Tn

|∇v(t)|2 dx +
∫
Q

|∇Fp(·, ε(v))|2 dx dt
]

≤ c(�0,�f ). (2.13)

Remark 2.8 • We remark that the most interesting situation for physical applications
is when p can vary between 1 and 2 as assumed in part (i) of Theorem 2.7. This
refers to a range between a Newtonian fluid (p = 2) and a plastic material (p close
to 1) which has been observed in experiments on electro-rheological fluids.

• Similar to (2.7) (ii) it is also possible to gain a result in two dimensions if p+ ≥ 4.
In this case the assumption reads as p+ < p− + 1. However this situation is
outside the range of physical interest and we leave the details to the reader.

2.4 Stochastically strong solutions

We are now concerned with the question whether a solution to (1.5)–(1.6) can be
constructed on a given probability space and with a given initial velocity v0 (which
is a a random variable rather than a probability law). This goes hand in hand with the
question of unique solvability and holds already on the level of stochastic ODEs (see,
e.g., [19, Chap. 5]). We start with a formulation which is weak in the PDE-sense.

Definition 2.9 (Weak stochastically strong solution) Let (�,F , (Ft ),P) be a stochas-
tic basis with a complete right-continuous filtration and let W be an (Ft )-cylindrical
Wiener process. Let v0 be an L2(Tn)-valued F0-measurable random variable. Let
f and p be (Ft )-progressively measurable processes such that f ∈ L2(Q) and
p ∈ C0([0, T ] × T

n) with p ≥ 1 P-a.s. A function v is called a weak stochasti-
cally strong solution solution to (1.5)–(1.6) provided

(a) the velocity field satisfies v ∈ Cw([0, T ];L2(Tn)), ε(v) ∈ Lp(·)(Q), P-a.s. and is
(Ft )-progressively measurable,

(b) we have v(0) = v0 P-a.s.,
(c) for all ϕ ∈ C∞

div(T
n) and all t ∈ [0, T ] there holds P-a.s.

∫
Tn

v(t) · ϕ dx +
∫ t

0

∫
Tn

μ(1 + |ε(v)|)p(·)−2ε(v) : ε(ϕ) dx dσ

−
∫ t

0

∫
Tn

v ⊗ v : ε(ϕ) dx dσ

=
∫
Tn

v(0) · ϕ dx +
∫
Tn

∫ t

0
f · ϕ dx dσ

+
∫
Tn

∫ t

0
�(v) dW · ϕ dx .

We obtain the following result (recall Remark 2.3 for the assumptions on p in (2.16)
below).
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Theorem 2.10 (Weak stochastically strong solution) Let v0 be an L2(Tn)-valuedF0-
measurable random variable. Let f and p be (Ft )-progressivelymeasurable processes
such that f ∈ L2(Q) and p ∈ C0([0, T ] × T

n) P-a.s. Suppose that

E
∥∥v0∥∥2rL2(Tn)

< ∞, E
∥∥f∥∥2rL2(Q)

< ∞, E‖p‖P log(Q) < ∞. (2.14)

for all 1 ≤ r < ∞ as well as

E
∥∥v0∥∥2W1,2(Tn)

< ∞, E
∥∥f∥∥2L2(0,T ;W1,2(Tn))

< ∞. (2.15)

Moreover, assume that we have P-a.s.

p− ≤ p ≤ p+, ‖p‖∞ + ‖∇ p‖∞ ≤ cp,

where cp < ∞ and

n + 2

2
≤ p− ≤ p+ < np− + 4. (2.16)

Finally, assume that � satisfies (2.4). Then there is a weak stochastically strong solu-
tion to (1.5)–(1.6) in the sense of Definition 2.9. We have the energy estimate

E

[
sup

t∈(0,T )

∫
Tn

|v(t)|2 dx +
∫
Q

|ε(v)|p(·) dx dt
]r

≤ cE

[ ∫
Tn

|v0|2 dx +
∫
Q

|f |2 dx dt
]r

.

(2.17)

Remark 2.11 As in the deterministic case (see [10,21]) the assumptions on p− yielding
uniqueness are rather restrictive. The same bounds are needed in Theorem 2.10 for
the existence of stochastically strong solutions.

Having a look at Definitions 2.6 and 2.9 we can expect strong stochastically strong
solutions if the assumptions of Theorems 2.7 and 2.10 are satisfied. These solutions
are strong in both senses.

Definition 2.12 (Strong stochastically strong solution) Let (�,F , (Ft ),P) be a
stochastic basis with a complete right-continuous filtration and let W be an (Ft )-
cylindrical Wiener process. Let v0 be an L2(Tn)-valued F0-measurable random
variable. Let f and p be (Ft )-progressively measurable processes such that f ∈ L2(Q)

and p ∈ C0([0, T ] × T
n) with p ≥ 1 P-a.s. A function v is called a strong stochasti-

cally strong solution to (1.5)–(1.6) provided it is a weak stochastically strong solution
in the sense of Definition 2.9 and the following holds.

(a) We have Fp(·, ε(v)) ∈ L2(0, T ;W1,2(Tn)) P-a.s.,
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(b) there are πdet and �π (Ft )-progressively measurable such that
πdet ∈ L1(0, T ;W1,1(Tn)) and �π ∈ L2(0, T ;L2(U;L2(Tn))) P-a.s. as well as

v(t) = v(0) +
∫ t

0

[
div

(
μ(1 + |ε(v)|)p(·)−2ε(v)

)
− div

(
v ⊗ v

)

− ∇πdet + f
]
dσ +

∫ t

0

[
�(v) + �π

]
dW (2.18)

P-a.s. for all t ∈ [0, T ].

By combining the ideas of the proofs of Theorems 2.7 and 2.10we obtain the following
corollary (see end of Sect. 5 for the proof).

Corollary 2.13 Let the assumptions of Theorem 2.7 be satisfied. Suppose in addition
that p− ≥ n+2

2 . Then there is a strong stochastically strong solution to (1.5)–(1.6) in
the sense of Definition 2.12.

3 Galerkin approximation

Our approach is a stochastic variant of the usual Galerkin ansatz, thereby reducing the
problem of interest to an stochastic ordinary differential equation. In this respect, we
firstly record the following fundamental fact on eigenvector expansions for the Stokes
operator, the proof of which can be found in the appendix of [21]:

Lemma 3.1 There is a sequence (λk) ⊂ R and a sequence of functions (wk) ⊂
W1,2

div (T
n) such that the following hold:

(a) For each k ∈ N, wk is an eigenvector to the eigenvalue λk of the Stokes-operator
in the sense that

〈wk,ϕ〉W1,2(Tn) = λk

∫
Tn

wk · ϕ dx for all ϕ ∈ W1,2
div (T

n),

(b)
∫
Tn wk · wm d x = δkm for all k,m ∈ N,

(c) 1 ≤ λ1 ≤ λ2 ≤ · · · and λk → ∞,
(d) 〈 wk√

λk
, wm√

λm
〉W1,2(Tn) = δkm for all k,m ∈ N,

(e) (λ
−1/2
k wk) is a Hilbert space basis of W1,2

div (T
n).

We consider the Skorokhod representation of the law �⊗�, where � is the law of a
cylindrical Wiener process on U. We obtain a probability space (�,F ,P), a random
variable (v0, f, p) with law �, as well as a cylindrical Wiener processW = ∑

k βkek .
Finally, we set
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Ft : = σ
(
σ [v0] ∪ σ [p|[0,t]] ∪ σ [f |[0,t]]

∪
∞⋃
k=1

σ [Wk |[0,t]] ∪ {N ∈ F : P(N ) = 0}
)
, t ∈ [0, T ].

Our objective for the rest of the section is to establish the existence of solutions vN of
the system (1.1) in the particular form

vN =
N∑

k=1

cNk wk = CN · ωN , ωN = (w1, . . . ,wN ), (3.1)

where CN = (cNi ) : � × (0, T ) → R
N . Our aim is hereafter to solve (k = 1, . . . , N )

∫
Tn

dvN · wk dx +
∫
Tn

Sp(·, ε(vN )) : ε(wk) dx dt

=
∫
Tn

vN ⊗ vN : ∇wk dx dt

+
∫
Tn

f · wk dx dt +
∫
Tn

�(vN ) dWN · wk dx,

vN (0) = PNv0.

(3.2)

with

Sp(ω, t, x, η) = μ(1 + |η|)p(ω,t,x)−2η.

Here PN : L2
div(T

n) → XN := span {w1, . . . ,wN } is the orthogonal projection, i.e.

PNu =
N∑

k=1

〈u,wk〉L2wk .

The equation above is to be understood P a.s. and for a.e. t and we set

WN =
N∑

k=1

ekβk = eN · βN .

It is equivalent to solving

{
dCN = [

μ(t,CN )
]
dt + �(CN ) dβN

t

CN (0) = C0
(3.3)
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with the abbreviations

μ(CN ) =
(

−
∫
Tn

Sp(·,CN · ε(wN )) : ε(wk) dx

+
∫
Tn

(CN · wN ) ⊗ (CN · wN ) : ∇wk dx

)N

k=1

+
(∫

Tn
f(t) · wk dx

)N

k=1
,

�(CN ) =
(∫ n

T

�(CN · WN )el · wk dx

)N

k,l=1
,

C0 =
(
〈v0,wk〉L2(Tn)

)N

k=1
.

We apply the results from [22, Theorem 3.1.1]. In the following we will check the
assumptions. We have by the monotonicity of Sp

(
μ(t,CN ) − μ(t, C̃N )

) · (CN − C̃N )
= −

∫
Tn

(
Sp(·, ε(vN )) − Sp(·, ε(ṽN ))

) : (
ε(vN ) − ε(ṽN )

)
dx

+
∫
Tn

(
vN ⊗ vN − ṽN ⊗ ṽN

) : (
ε(vN ) − ε(ṽN )

)
dx

≤
∫
Tn

(
vN ⊗ vN − ṽN ⊗ ṽN

) : (
ε(vN ) − ε(ṽN )

)
dx .

If |CN | ≤ R and |C̃N | ≤ R there holds

(
μ(t,CN ) − μ(t, C̃N )

) · (CN − C̃N ) ≤ c(R, N )|CN − C̃N |2.

Here we took into account boundedness of wk and ∇wk . This implies weak mono-
tonicity in the sense of [22, (3.1.3)] using Lipschitz continuity � in CN , cp. (2.4). On
account of

∫
Tn vN ⊗ vN : ε(vN ) dx = 0 there holds further

μ(t,CN ) · CN = −
∫
Tn

Sp(·, ε(vN )) : (ε(vN ) dx

+
∫
Tn

f(t) · vN dx ≤ c (1 + ‖f(t)‖2‖vN‖2)
≤ (1 + ‖f(t)‖2)(1 + ‖vN‖2) ≤ c (1 + ‖f(t)‖2)(1 + |CN |2).

So we have using the linear growth of � which follows from 2.4

μ(CN ) · CN + |�(CN )|2 ≤ c(+‖vN‖22)
(
1 + |CN |2).
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As the integral
∫ T
0 (1 + ‖f(t)‖2) dt is finite P-a.s. this yields weak coercivity in the

sense of [22, (3.1.4)]. We obtain a unique strong solutionCN ∈ L2(�;C[0, T ]) to the
SDE (3.3).

We obtain the following a priori estimate.

Theorem 3.2 Assume (1.6) with p : � × Q → (1,∞), (2.4) and for some r ≥ 1

∫
L2
div(T

n)

∥∥u∥∥2r
L2(Tn)

d�0(u) < ∞,

∫
L2(Q)

∥∥g∥∥2rL2(Q)
d�f (g) < ∞. (3.4)

Then there holds uniformly in N

E

[
sup

t∈(0,T )

∫
Tn

|vN (t)|2 dx +
∫
Q

|ε(vN )|p(·) dx dt
]r

≤ Cr (�0,�f ),

Cr (�0,�f ) = c

(
1 +

∫
L2
div(T

n)

∥∥u∥∥2r
L2(Tn)

d�0(u) +
∫
L2(Q)

∥∥g∥∥2rL2(Q)
d�f (g)

)
,

(3.5)

provided Cr (�0,�f ) is finite.

Proof We apply Itô’s formula to the function f (C) = 1
2 |C|2 which shows

1

2
‖vN (t)‖2

L2(Tn)
= 1

2
‖CN (0)‖2

L2(Tn)
+

N∑
k=1

∫ t

0
cNk d(cNk ) + 1

2

N∑
k=1

∫ t

0
d〈〈cNk 〉〉

= 1

2
‖PNv0‖2L2(Tn)

−
∫ t

0

∫
Tn

Sp(·, ε(vN )) : ε(vN ) dx dσ

+
∫ t

0

∫
Tn

f · vN dx dσ +
∫
Tn

∫ t

0
vN · �(vN ) dWN dx

+ 1

2

∫
Tn

∫ t

0
d
〈〈 ∫ ·

0
�(vN ) dWN

〉〉
dx .

Here we used dvN = ∑N
k=1 dc

N
k wk ,

∫
Tn vN ⊗ vN : ∇vN dx = 0 and property (ii) of

the base (wk). Now we can follow, taking the r -th power, and the supremum, building
expectations and using (1.6) that

E

[
sup
(0,T )

∫
Tn

|vN (t)|2 dx +
∫ T

0

∫
Tn

|ε(vN )|p(·) dx dσ
]r

≤ cE

[
1 + ‖v0‖2L2(Tn)

+ J1(T ) + sup
(0,T )

J2(t) + J3(T )

]r
.

Here we abbreviated

J1(t) =
∫ t

0

∫
Tn

|f ||vN | dx dσ,
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J2(t) =
∫
Tn

∫ t

0
vN · �(vN ) dWN dx,

J3(t) =
∫
Tn

∫ t

0
d
〈〈 ∫ ·

0
�(vN ) dWN

〉〉
dx .

We obviously have

J1 ≤
∫ t

0

∫
Tn

|f |2 dx dσ +
∫ t

0

∫
Tn

|vN |2 dx dσ.

Straightforward calculations show on account of (2.4)

E[J3]r = E

[ N∑
k=1

∫ t

0

(∫
Tn

�(vN )ek dx
)2

dσ

]r

≤ E

[ ∞∑
k=1

∫ t

0

∫
Tn

|gk(vN )|2 dx dσ
]r

≤ cE

[
1 +

∫ t

0

∫
Tn

|vN |2 dx dσ
]r

.

On account of Burgholder–Davis–Gundi inequality, Young’s inequality and (2.4) we
gain

E

[
sup

t∈(0,T )

|J2(t)|
]r

= E

[
sup

t∈(0,T )

∣∣∣∣
∫ t

0

∫
Tn

vN · �(vN ) dx dWN
∣∣∣∣
]r

= E

[
sup

t∈(0,T )

∣∣∣∣
∫ t

0

N∑
k=1

∫
Tn

vN · gk(vN ) dx dβk

∣∣∣∣
]r

≤ cE

[ ∫ T

0

N∑
k=1

(∫
Tn

vN · gk(vN ) dx

)2

dt

] 1
2

≤ cE

[(∫ T

0

( ∞∑
k=1

∫
Tn

|vN |2 dx
∫
Tn

|gk(vN )|2 dx
)
dt

] r
2

≤ cE

[
1 +

∫ T

0

(∫
G

|vN |2 dx
)2

dt

] r
2

≤ δ E

[
sup

t∈(0,T )

∫
G

|vN |2 dx
]r

+c(δ)E

[
1+

∫ T

0

∫
G

|vN |2 dx dt
]r

,

where δ > 0 is arbitrary. This finally proves the claim by Gronwall’s lemma for δ

sufficiently small using �0 = P ◦ v−1
0 and �f = P ◦ f−1. ��
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4 Analytically weak solutions

This section is devoted to the proof of Theorems 2.2 and 2.10. In view of compactness,
our main concern is the derivation of fractional estimates for ∇vN . Based on this we
are able to apply the stochastic compactness method employing Skorokhod’s theorem
to pass to the limit in the Galerkin approximation from the previous section.

4.1 Fractional differentiability

To set up fractional estimates in a convenient manner, we introduce the concave func-
tion for θ ≥ 0

g(θ) = gλ(θ) :=
{

1
1−λ

(1 + θ)1−λ, λ �= 1

ln(1 + θ), λ = 1

for

λ = 2(q−p−)

np−−qn+4 ,

where q = max{3, p+ + �} with � > 0 arbitrarily small. The additional power �

arises from the elementary inequality

ln(1 + |ξ |) ≤ c�(1 + |ξ |�) ξ ∈ R
n×n . (4.1)

Note that the denominator in the definition of λ is positive as long as

p− >
qn − 4

n
. (4.2)

Similar to [30, Sect. 3] we have the following theorem.

Theorem 4.1 Suppose that

∫
L2
div(T

n)

∥∥u∥∥2
W1,2(Tn)

d�0(u) < ∞,

∫
L2(Q)

∥∥g∥∥2L2(0,T ;W1,2(Tn))
d�f (g) < ∞. (4.3)

Moreover, assume that P-a.s. p ∈ C0([0, T ] × T
n) such that P-a.s. we have

1 < p− ≤ p ≤ p+, ‖∇ p‖∞ ≤ cp, (4.4)

where cp < ∞ and that (4.2) holds. Finally, assume that � satisfies (2.4). Then we
have
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a) If p− ≥ 2 then there holds uniformly in N:

E

[ ∫ T

0

‖∇2vN (t)‖22
(1 + ‖∇vN (t)‖22)λ

dt

]
≤ C1(�0,�f ).

a) If p− < 2 then there holds uniformly in N:

E

[ ∫ T

0

‖∇2vN (t)‖2p−

(1 + ‖∇vN (t)‖22)λ(1 + ‖∇vN (t)‖p−)2−p− dt

]
≤ C1(�0,�f ).

Proof We start with the evolution of ‖∇vN (t)‖2
L2(Tn)

. Applying Itô’s formula to the

mapping C �→ ‖∇v‖22, where C = (c1, . . . , cN ) and v are related through v =∑N
k=1 ckwk . We obtain

1

2
‖∇vN (t)‖2

L2(Tn)
= 1

2
‖∇PNv0‖2L2(Tn)

−
∫ t

0

∫
Tn

DξS(·, ε(vN ))(∂γ ε(vN ), ∂γ ε(vN )) dx dσ

−
∫ t

0

∫
Tn

DxS(·, ε(vN )) : ∂γ ∇vN dx dσ +
∫ t

0

∫
Tn

div
(
vN ⊗ vN

) : �vN dx dσ

+
∫ t

0

∫
Tn

∂γ vN · ∂γ

(
�(vN ) dW

)
dx + 1

2

∫
Tn

∫ t

0
d
〈〈 ∫ ·

0
∂γ

(
�(vN ) dW

)〉〉
dx,

where the sum is taken over all γ ∈ {1, . . . , n}. Now we apply Itô’s formula to the
mapping CN �→ gλ(‖∇v‖22) and obtain

gλ(‖∇vN (t)‖22) = gλ(‖∇vN (0)‖22) +
∫ t

0

1

(1 + ‖∇vN‖22)λ
d‖∇vN‖22

− λ

2

∫ t

0

1

(1 + ‖∇vN‖22)λ+1
d
〈〈‖∇vN‖22

〉〉
,

where we have

∫ t

0

2

(1 + ‖∇vN‖22)λ
d‖∇vN‖22

= −
∫ t

0

1

(1 + ‖∇vN‖22)λ
∫
Tn

DξS(·, ε(vN ))(∂γ ε(vN ), ∂γ ε(vN )) dx dσ

−
∫ t

0

2

(1 + ‖∇vN‖22)λ
∫
Tn

DxS(·, ε(vN )) : ∂γ ∇vN dx dσ

+
∫ t

0

2

(1 + ‖∇vN‖22)λ
∫
Tn

div
(
vN ⊗ vN

) : �vN dx dσ
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+
∫ t

0

2

(1 + ‖∇vN‖22)λ
∫
Tn

∂γ vN · ∂γ

(
�(vN ) dW

)
dx

+
∫ t

0

∫
Tn

1

(1 + ‖∇vN‖22)λ
d
〈〈 ∫ ·

0
∂γ

(
�(vN ) dW

)〉〉
dx

= −J1 − J2 + J3 + J4 + J5.

Moreover, there holds

−λ

2

∫ t

0

1

(1 + ‖∇vN‖22)λ+1
d
〈〈‖∇vN‖22

〉〉 ≤ 0.

P-a.s. such that this term can be neglected. We start with the lower estimate

J1 ≥ c
∫ t

0

1

(1 + ‖∇vN‖22)λ
∫
Tn

(1 + |ε(vN )|)p(·)−2|∇ε(vN )|2 dx dσ

≥ c
∫ t

0

1

(1 + ‖∇vN‖22)λ
∫
Tn

(1 + |ε(vN )|)p−−2|∇ε(vN )|2 dx dσ.

All other terms will be estimate form above. By Young’s inequality we obtain using
(4.1)

J2 ≤ c
∫ t

0

1

(1 + ‖∇vN‖22)λ
∫
Tn

ln(1 + |ε(vN )|)(1 + |ε(vN )|)p(·)−1|∇ε(vN )| dx dσ

≤ κ

∫ t

0

1

(1 + ‖∇vN‖22)λ
∫
Tn

(1 + |ε(vN )|)p(·)−2|∇ε(vN )|2 dx dσ

+ c(κ)

∫ t

0

1

(1 + ‖∇vN‖22)λ
∫
Tn

(
1 + |∇vN |q) dx dt,

where κ > 0 is arbitrary. For κ small enough we will be able to absorb the corre-
sponding term in J1. Moreover, we have

J3 ≤
∫ t

0

1

(1 + ‖∇vN‖22)λ
∫
Tn

|∇vN |3 dx dσ

≤
∫ t

0

1

(1 + ‖∇vN‖22)λ
∫
Tn

(
1 + |∇vN |q) dx dσ

using integration by parts. Finally, we obtain from (2.4)

J5 =
∑
k

∫ t

0

1

(1 + ‖∇vN‖22)λ
(∫

Tn
∇gk(vN ) dx

)2

dt

≤
∑
k

∫ t

0

1

(1 + ‖∇vN‖22)λ
∫
Tn

|∇gk(vN )|2 dx dt
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≤ c
∫ t

0

1

(1 + ‖∇vN‖22)λ
∫
Tn

|∇vN |2 dx dt

≤ c
∫ t

0

1

(1 + ‖∇vN‖22)λ
∫
Tn

(
1 + |∇vN |q) dx dt .

Applying expectations (note that E[J4] = 0) and choosing κ small enough we end up
with

Egλ(‖∇vN (t)‖22) + E

∫ t

0

1

(1 + ‖∇vN‖22)λ
∫
Tn

(1 + |ε(vN )|)p(·)−2|∇ε(vN )|2 dx dσ

≤ cE

[
gλ(‖∇vN (0)‖22) +

∫ t

0

1

(1 + ‖∇vN‖22)λ
∫
Tn

(
1 + |∇vN |q) dx dt

]
. (4.5)

The last term on the right-hand side cannot be controlled so far. In order to suitably
bound ‖∇vN‖qq , let 2 > q ≥ n(q − p−)/q , existence of which follows from (4.2) and
q > 2, and put

α := p−(np− + 2q − qn)

2(np− + qq − qn)
so that 1 − α = (q − p−)(np− + 2q − 2n)

2(np− + qq − qn)
(4.6)

so that, in particular, np−/(n − q) ≥ q . By Lyapunov’s interpolation inequality, we
obtain

‖∇vN‖q ≤ ‖∇vN‖θ1
2 ‖∇vN‖θ2

np−/(n−q)

‖∇vN‖q ≤ ‖∇vN‖θ3
p−‖∇vN‖θ4

np−/(n−q)
,

(4.7)

where

θ1 := 2(np− + qq − qn)

q(np− + 2q − 2n)
, θ2 := (q − 2)np−

q(np− + 2q − 2n)
, θ3 := np− + qq − qn

qq
,

θ4 := n(q − p−)

qq
.

We then obtain

‖∇vN‖qq = ‖∇vN‖q(1−α)

q ‖∇vN‖qα

q

≤ ‖∇vN‖q(1−α)θ1
2 ‖∇vN‖q(1−α)θ2+qαθ4

np−/(n−q)
(1 + ‖∇vN‖p−)qαθ3

= ‖∇vN‖2q12 (1 + ‖∇vN‖p−)q2(‖∇vN‖np−/(n−q))
q3 = (∗),

(4.8)

where q1, q2, q3 are defined in the obvious manner. To estimate (∗), we note that for
P ⊗ L 1-a.e. (ω, t) ∈ � × [0, T ] there holds by Korn’s inequality.

‖∇u(ω, t, ·)‖ np−
n−q

≤ c‖ε(u(ω, t, ·))‖ np−
n−q
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Next we claim that there exists a constant C > 0 independent of N ∈ N such that

‖∇vN‖np−/(n−q) ≤ C

(∫
Tn

DξS(·, ε(vN ))(∂γ ε(vN ), ∂γ ε(vN )) dx

) q
2p− ×

× (
1 + ‖∇vN‖p−)

2−q
2

(4.9)

holds P—a.e. in �. The estimate (4.9) is a consequence of the interpolation of

L
np−
n−q (Tn) between L p−

(Tn) and L
np−
n−2 (Tn), Sobolev’s embedding W 1,2(Tn) ↪→

L
2n
n−2 (Tn) (if n = 2 we have to replace n

n−2 by an arbitrary finite exponent) and
the inequality

∣∣∇(1 + |ε(vN )|) p−
2

∣∣2 ≤ c(1 + |ε(vN )|) p−−2
2 |∇ε(vN )|2

≤ cDξS(·, ε(vN ))(∂γ ε(vN ), ∂γ ε(vN )).

Using (4.9), we further estimate (4.8) by use of Young’s inequality for any r > 1 and
κ > 0

(∗) ≤ C‖∇vN‖q(1−α)θ1
2

(
1 + ‖∇vN‖p−)

2−q
2 (q(1−α)θ2+qαθ4)+qαθ3

×
(∫

Tn
DξS(·, ε(vN ))(∂γ ε(vN ), ∂γ ε(vN )) dx

) q
2p− (q(1−α)θ2+qαθ4)

≤ C(κ, r)
(
‖∇vN‖q(1−α)θ1

2

(
1 + ‖∇vN‖p−)

2−q
2 (q(1−α)θ2+qαθ4)+qαθ3

) r
r−1

+ κ

(∫
Tn

DξS(·, ε(vN ))(∂γ ε(vN ), ∂γ ε(vN )) dx

) q
2p− (q(1−α)θ2+qαθ4)r

.

To determine the relevant parameters, we shall now require

q

2p− (q(1 − α)θ2 + qαθ4)r = 1,

(2 − q

2
(q(1 − α)θ2 + qαθ4) + qαθ3

) r

r − 1
= p−. (4.10)

Indeed (4.10) is satisfied indeed provided α is defined by (4.6) and we have

r = 4

qn − np− und r ′ = 4

np− − qn + 4
. (4.11)

On the other hand, this implies

q(1 − α)θ1r
′ = 4(q − p−)

np− − qn + 4
.
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We obtain

(∗) ≤ C(κ, r)‖∇vN‖q(1−α)θ1
r

r−1
2

(
1 + ‖∇vN‖p−)p

−

+ κ

∫
Tn

DξS(·, ε(vN ))(∂γ ε(vN ), ∂γ ε(vN )) dx .

Inserting this into (4.5), choosing κ small enough can recalling the definition of λ

yields by Korn’s inequality

Egλ(‖∇vN (t)‖22) + E

∫ t

0

1

(1 + ‖∇vN‖22)λ
∫
Tn

(1 + |ε(vN )|)p(·)−2|∇ε(vN )|2 dx dσ

≤ cE

[
gλ(‖∇v0‖22) +

∫ t

0

∫
Tn

(
1 + |∇vN |p−)

dx dt

]

≤ cE

[
gλ(‖∇v0‖22) +

∫ t

0

∫
Tn

(
1 + |ε(vN )|p−)

dx dt

]

≤ cE

[
gλ(‖∇v0‖22) +

∫ t

0

∫
Tn

(
1 + |ε(vN )|p(·)) dx dt

]
(4.12)

where the right-hand side is uniformly bounded by C1(�0,�f ), cp. Theorem 3.2. If
p− ≥ 2 the claim follows directly by Korn’s inequality. If p− < 2 we estimate using
again Korn’s inequality

‖∇2vN (t)‖2p− ≤ c

(∫
Tn

|∇ε(vN )|p−
dx

) 2
p−

= c

(∫
Tn

(1 + |ε(vN )|)p− p−−2
2 |∇ε(vN )|p−

(1 + |ε(vN )|)p− 2−p−
2 dx

) 2
p−

≤ c
∫
Tn

(1 + |ε(vN )|)p−−2|∇ε(vN )|2 dx
(∫

Tn
(1 + |∇vN |)p−

dx

) 2−p−
p−

.

So, the claim follows again from (4.12) and p− ≤ p. ��
Corollary 4.2 Let assumptions of Theorem 4.1 be satisfied. Assume in addition that

p− >
qn
n+2 if p− < 2. Then for any p < min{p−, 2n

n−2 } there is β > 0 such that

E

[ ∫ T

0
‖∇vN‖p

β,p dt

]
≤ C1(λ0,�f )

uniformly in N.

Proof If p− < 2 we set (recall that p− >
qn
n+2 )

β = ((n + 2)p− − qn)p−

2((n + 5)p− − qn − (p−)2)
∈

(
0,

1

2

)
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and obtain

E

[ ∫ T

0
‖∇2vN (t)‖2βp−

]
= E

[ ∫ T

0

(
(1 + ‖∇vN (t)‖22)λ(1 + ‖∇vN (t)‖p−)2−p−)β

×
( ‖∇2vN (t)‖2p−

(1 + ‖∇vN (t)‖22)λ(1 + ‖∇vN (t)‖p−)2−p−
)β

dt

]

≤ E

[ ∫ T

0

(
(1 + ‖∇vN (t)‖22)

λβ
1−β (1 + ‖∇vN (t)‖p−)

(2−p−)
β

1−β dt

]1−β

× E

[ ∫ T

0

‖∇2vN (t)‖2p−

(1 + ‖∇vN (t)‖22)λ(1 + ‖∇vN (t)‖p−)2−p− dt

]β

≤ C1(λ0,�f )
β
E
[
I1 + I2

]1−β (4.13)

where

I1 =
∫ T

0
(1 + ‖∇vN (t)‖p−)

(2−p−)
β

1−β dt,

I2 =
∫ T

0
‖∇vN (t)‖

2λβ
1−β

2 (1 + ‖∇vN (t)‖p−)
(2−p−)

β
1−β dt .

We can estimate I1 by

E[I1] ≤ cE
∫ T

0

∫
Tn

(
1 + |∇vN (t)|p−)

dx dt

≤ cE
∫ T

0

(
1 + |∇vN (t)|p(·)) dx dt ≤ C1(λ0,�f )

(4.14)

using (2 − p−)
β

1−β
≤ p− and Theorem 3.2. For I2 we use the interpolation interpo-

lation inequality

‖v‖2 ≤ ‖v‖
(n+2)p−−2n

2p−
p− ‖v‖

n(2−p−)

2p−
np−
n−p−

,

which holds for p− ∈ ( 2n
n+2 , 2), and the continuous embedding

W 2,p−
(Tn) ↪→ W

1, np−
n−p− (Tn).

As a consequence of Theorem 3.2 (setting δ = 2p−
n(2−p−)

1−β
λ

) we can estimate I2 by

E[I2] ≤ cE
∫ T

0
‖∇2vN (t)‖

n(2−p−)

p−
λβ
1−β

p− (1 + ‖∇vN (t)‖p−)

[
(2−p−)+ (n+2)p−−2n

p− λ
]

β
1−β dt
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≤ cE

(∫ T

0
‖∇2vN (t)‖2βp−

) 1
δ
(∫ T

0
(1 + ‖∇vN (t)‖p−)p

−
dt

) 1
δ′

≤ κ E

∫ T

0
‖∇2vN (t)‖2βp− dt + c(κ)E

∫ T

0

∫
Tn

(
1 + |∇vN |p−)

dx dt

≤ κ E

∫ T

0
‖∇2vN (t)‖2βp− dt + c(κ)E

∫ T

0

(
1 + |∇vN |p(·)) dx dt

≤ κ E

∫ T

0
‖∇2vN (t)‖2βp− + C1(�0,�f ), (4.15)

where κ > 0 is arbitrary. Combining (4.13)–(4.15) and choosing κ small enough we
have shown

E

[ ∫ T

0
‖∇2vN‖2βp− dt

]
≤ C1(�0,�f ). (4.16)

In order to proceed we use the interpolation inequality

‖v‖1+σ,p− ≤ ‖v‖1−σ
1,p−‖v‖σ

2,p−

for σ = 2β(p−−p)
p(p−−2β)

. We obtain

E

∫ T

0
‖vN‖p

1+σ,p− dt ≤ E

∫ T

0
‖vN‖(1−σ)p

1,p− ‖vN‖σ p
2,p− dt

≤
(
E

∫ T

0
‖vN‖p−

1,p− dt

) (1−σ)p
p−

(
E

∫ T

0
‖vN‖2β2,p− dt

)1− (1−σ)p
p− ≤ C1(�0,�f )

as a consequence of Theorems 3.2 and (4.17).
If p− ≥ 2 estimate (4.17) can be shown much easier. Indeed, we have by Theo-

rems 3.2 and 4.1

E

[ ∫ T

0
‖∇2vN‖2β2 dt

]
= E

[ ∫ T

0
(1 + ‖∇vN (t)‖22)λβ

‖∇2vN (t)‖2β2
(1 + ‖∇vN (t)‖22)λβ

dt

]

≤
[
E

∫ T

0

‖∇2vN (t)‖22
(1 + ‖∇vN (t)‖22)λ

dt

]β[
E

∫ T

0
(1 + ‖∇vN (t)‖22)

p−
2 dt

]1−β

≤ C1(�0,�f ). (4.17)

In order to proceed we use the interpolation inequality

‖v‖1+σ,p ≤ ‖v‖1−
σ
s

1,p ‖v‖
σ
s
1+s,p
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which holds for any 0 < σ < s. Combining this with the embedding (recall that
p < 2n

n−2 )

W 2,2(Tn) ↪→ W 1+s,p(Tn), s = 2n − (n − 2)p

2p
,

we obtain for σ = s 2β(p−−p)
p(p−−2β)

E

∫ T

0
‖vN‖p

1+σ,p dt ≤ E

∫ T

0
‖vN‖p(1− σ

s )

1,p ‖vN‖
σ p
s
2,2 dt

≤
(
E

∫ T

0
‖∇vN (t)‖p−

p dt

) p
p− (1− σ

s )

(
E

∫ T

0
‖∇2vN (t)‖2β2 dt

)1− p
p− (1− σ

s )

.

The claim follows again from Theorem 3.2 combined with Korn’s inequality (recall
that p < p−) and (4.17). ��

4.2 Compactness

Before we can apply the stochastic compactness method we need to gain some infor-
mation concerning the time regularity of vN . We go back to the system (3.2) and see
that for any ϕ ∈ C∞

div(T
n)n there holds

∫
Tn

dvN · PN
� ϕ dx +

∫
Tn

S(·, ε(vN )) : ε(PN
� ϕ) dx dt

=
∫
Tn

vN ⊗ vN : ∇PN
� ϕ dx dt

+
∫
Tn

f · PN
� ϕ dx dt +

∫
Tn

�(vN ) dWN · PN
� ϕ dx .

(4.18)

Here PN
� denotes the orthogonal projection on XN with respect to theW �,2(Tn) inner

product, where � is chosen such that W�,2
div(T

n) ↪→ W1,∞
div (Tn). We now define for

t ∈ [0, T ] the functionals HN (t, ·) on C∞
div(T

n) by

HN (t,ϕ) := −
∫ t

0

∫
Tn

H
N : ∇PNϕ d x d σ, ϕ ∈ C∞

div(T
n), (4.19)

where for N ∈ N

H
N := −Sp(·, ε(vN )) + vN ⊗ vN − ∇�−1f, (4.20)
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so that by Theorem 3.2 and the hypotheses collected in Definition 2.1, there
holds

H
N ∈ Lp0(�,F ,P;Lp0(0, T ;Lp0(Tn))) (4.21)

uniformly in N ∈ N for some p0 > 1. Here, �−1 is the solution operator of the
Poisson problem on the torus as has been recalled in Sect. 2.1. Now we claim that

sup
N∈N

E

[
‖HN‖

W1,p0 ([0,T ];W−�,p0
div (Tn))

]
< ∞. (4.22)

Recall that � ∈ N is chosen so large such that W�,2
div(T

n)n ↪→ W1,∞
div (Tn)n . To see

(4.22), note that

‖ d

d t
HN (t, ·)‖

Lp0 (0,T ;W−�,p0
div (Tn)))

=
∥∥∥∥ sup

‖ϕ‖�,p′0≤1

d

d t
HN (t,ϕ)

∥∥∥∥
Lp0 (0,T )

=
∥∥∥∥ sup

‖ϕ‖�,p′0≤1

∫
Tn

H
N : ∇PN

� ϕ d x

∥∥∥∥
Lp0 (0,T )

≤
∥∥∥∥ sup

‖ϕ‖�,p′0≤1
‖HN (t, ·)‖Lp0 ‖∇PN

� ϕ‖
Lp′0

∥∥∥∥
Lp0 (0,T )

≤ C

(∫ T

0
‖HN (t, ·)‖p0

Lp0 d σ

) 1
p0

.

In consequence, raising the previous inequality to the p0-th power and taking expec-
tations in conjunction with (4.21) gives (4.22). On the other hand, we have for all
0 ≤ s < t ≤ T

E

[∥∥∥∥
∫ t

0
�(vN ) dWN

σ −
∫ s

0
�(vN ) dWN

∥∥∥∥
θ

L2(Tn)

]
= E

[∥∥∥∥
∫ t

s
�(vN ) dWN

θ

L2(Tn)

]

= E

[∥∥∥∥
∫ t

s

∞∑
k=1

�(vN )ek d βN
k

∥∥∥∥
θ

L2(Tn)

]

≤ E

[∥∥∥∥
∫ t

s

∞∑
k=1

gk(vN ) d βN
k

∥∥∥∥
2· θ

2

L2(Tn)

]

= E

[( ∫ t

s

∞∑
k=1

‖gk(vN )‖2
L2(Tn)

d σ
) θ

2
]

(2.4)≤ CE

[( ∫ t

s
(1 + ‖vN‖2

L2(Tn)
) d σ

) θ
2
]
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= C |t − s| θ
2

(
E

[
sup

t∈(0,T )

(1 + ‖vN‖2
L2(Tn)

]) θ
2

(3.5)≤ C |t − s| θ
2 .

At this point we are in position to apply the Kolmogorov continuity criterion to con-
clude that there exists 0 < κ < 1 such that

sup
N∈N

E

[∥∥∥∥
∫ ·

0
�(vN ) dWN

∥∥∥∥
Cκ ([0,T ];L2(Tn))

]
< ∞. (4.23)

Let us note that since W
�,p′

0
div (Tn) ↪→ W1,2

div (T
n) ↪→ L2(Tn) and 1 < p0 < ∞

we have L2(Tn) ↪→ W−�,p0(Tn). Hence (4.23) implies that
E[‖∫ ·

0 �(vN ) dWN‖Cκ ([0,T ];W−�,p0 (Tn))
] is uniformly bounded in N . Combining this

with (4.22), a straightforward interpolation argument yields some 0 < μ < 1 such
that

sup
N∈N

E

[
‖vN‖

Cμ([0,T ];W−�,p0
div (Tn)n)

]
< ∞. (4.24)

In view of compactness, let us now define the path space

X : = Xv ⊗ Xp ⊗ Xf ⊗ XW , (4.25)

where

Xv: = C([0, T ];W−�,p0
div (Tn)n) ∩ L p(0, T ;W 1,p

div (Tn)),

Xp: = C0([0, T ] × T
n),

Xf : = L2(0, T ;W 1,2(Tn)),

XW : = C([0, T ];U0).

Here p is some fixed but arbitrary number in
(
1,min{p−, 2n

n−2 }
)
. We obtain the fol-

lowing.

Proposition 4.3 The set {L[vN , p, f,W ]; N ∈ N} is tight on X .

Proof By a fractional version of Aubin–Lions theorem (see [13, Theorem 5.1.22]) we
have compactness of the embedding

Cμ([0, T ];W−�,p0
div (Tn)) ∩ Lp(0, T ;W1+β,p

div (Tn)n)

↪→↪→ Lp(0, T ;W1,p
div (Tn)n).

(4.26)

On the other Arcelà-Ascoli’s theorem yields

Cμ([0, T ];W−�,p0
div (Tn)) ↪→↪→ C([0, T ];W−�,p0

div (Tn)).
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So,we obtain tightness ofL[vN ] onXv from (4.24), Corollary 4.2 andTschebyscheff’s
inequality. Tightness of the law of p on Xp follows by using (2.8) and the compact
embedding

P log(Q) ↪→↪→ C0([0, T ] × T
n).

The latter one is a simple consequence of Arcela–Ascoli’s theorem. Finally the laws
of f and W of on their corresponding path spaces are tight as being Radon measures
on Polish spaces. ��

Prokhorov’s Theorem (see [17, Theorem 2.6]) implies that {L[vN , p, f,W ]; N ∈
N} is also relatively weakly compact. This means we have a weakly convergent sub-
sequence. Now we use Skorohod’s representation theorem [17, Theorem 2.7] to infer
the following result.

Proposition 4.4 There exists a complete probability space (�̃, F̃ , P̃) with X -valued
Borel measurable random variables (ṽN , p̃N , f̃N , W̃ N ), N ∈ N, and (ṽ, p̃, f̃, W̃ )

such that (up to a subsequence)

(a) the law of (ṽN , p̃N , f̃N , W̃ N ) on X is given by L[vN , p, f,W ], N ∈ N,
(b) the law of (ṽ, p̃, f, W̃ ) on X is a Radon measure,
(c) (ṽN , p̃N , f̃N , W̃ N ) converges P̃-almost surely to (ṽ, p̃, f̃, W̃ ) in the topology of

X , i.e.

ṽN → ṽ in C([0, T ];W−�,p0
div (Tn)) P̃-a.s.,

ṽN → ṽ in L p(0, T ;W 1,p
div (Tn)) P̃-a.s.,

p̃N → p̃ in C0([0, T ] × T
n) P̃-a.s.,

f̃N → f̃ in L2(0, T ;W 1,2(Tn)) P̃-a.s.,

W̃ N → W̃ in C([0, T ];U0) P̃-a.s.

(4.27)

4.3 Conclusion

The variables ṽ, p̃, f̃, W̃ are progressively measurable with respect to their canonical
filtration, namely,

F̃t := σ

(
σ [ṽ|[0,t]] ∪ σ [ p̃|[0,t]] ∪ σ [f̃|[0,t]]

∪
∞⋃
k=1

σ [W̃k |[0,t]] ∪ {N ∈ F̃ : P̃(N ) = 0}
)

, t ∈ [0, T ].

In view of Lemma [5, Chap. 2, Lemma 2.1.35], the process W̃ is a cylindrical
Wiener processes with respect to its canonical filtration. It follows from Corollary
[5, Chap. 2, Corollary 2.1.36] that W̃ is a cylindrical Wiener process with respect to
(F̃t )t≥0.
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Modifying slightly the proof, the result of [5, Chap. 2, Theorem 2.9.1] remains
valid in the current setting. Hence, as a consequence of the equality of laws from
Proposition 4.4, the approximate Eq. (3.2) is satisfied on the new probability space,
i.e. we have

∫
Tn

ṽN · wk dx +
∫ t

0

∫
Tn

μ(1 + |ε(ṽN )|) p̃N (·)−2ε(ṽN ) : ε(wk) dx dt

=
∫
Tn

ṽN (0) · wk dx +
∫ t

0

∫
Tn

ṽN ⊗ ṽN : ∇wk dx dt

+
∫ t

0

∫
Tn

f̃N · wk dx dt +
∫ t

0

∫
Tn

�(ṽN ) dW̃ N · wk dx

P̃-a.s. for all t ∈ [0, T ]. Using the convergence from (4.27) it is easy to pass to the
limit and we obtain

∫
Tn

ṽ(t) · ϕ dx +
∫ t

0

∫
Tn

μ(1 + |ε(ṽ)|) p̃(·)−2ε(ṽ) : ε(ϕ) dx dσ

=
∫
Tn

ṽ(0) · ϕ dx +
∫ t

0

∫
Tn

ṽ ⊗ ṽ : ε(ϕ) dx dσ

+
∫
Tn

∫ t

0
f̃ · ϕ dx dσ +

∫
Tn

∫ t

0
�(ṽ) dW̃ · ϕ dx

(4.28)

for all ϕ ∈ C∞
div(T

n) and all t ∈ [0, T ] P̃-a.s. where, for the limit passage in the
stochastic integral, we use [9, Lemma 2.1].

4.4 Stochastically strong solutions

Let us start by showing pathwise uniqueness.

Proposition 4.5 (Pathwise uniqueness) Let the assumptions of Theorem 2.10 be valid.
In particular, we suppose p− ≥ n+2

2 . Let v1, v2 be two weak stochastically strong
solutions to (1.5)–(1.6) in the sense of Definition 2.9 defined on the same stochastic
basis with the same Wiener process W, the same forcing f and the same exponent p.
If

P

[
v1(0) = v2(0)

]
= 1,

then

P

[
v1(t) = v2(t), for all t ∈ [0, T ]

]
= 1.

Proof We set w = v1 − v2 and apply Itô’s formula to w �→ 1
2

∫
Tn |w|2 dx (recall that

by our assumptions on p− the term
∫
Tn v⊗v : ∇v dx is well-defined). This procedure

can be made rigorous by applying a regularization to the equation for w. Eventually,
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the standard one-dimensional Itô formula can be applied to |w�|2 pointwise in x ,
where � is the regularization parameter. Smooth approximations converge in L p(Q)

and L p′
(Q) as we have p ∈ P log(Q) P-a.s. by assumption, cf. [11, Theorem 9.1.7].

We obtain using w(0) = 0

1

2
‖w(t)‖2

L2(Tn)
= −

∫ t

0

∫
Tn

(
Sp(·, ε(v1)) − Sp(·, ε(v2))

)
: ε(v1 − v2) dx dσ

+
∫ t

0

∫ (
(∇v1)v1 − (∇v2)v2) · w dx

+ 1

2

∫
Tn

∫ t

0
d
〈〈 ∫ ·

0

(
�(v1) − �(v2)

)
dW

〉〉
dx

+
∫
Tn

∫ t

0
w · (�(v1) − �(v2)

)
dW dx .

By monotonicity of Sp the first term on the right-hand side is non-negative and we
have by Korn’s inequality

∫
Tn

(
Sp(·, ε(v1)) − Sp(·, ε(v2))

)
: ε(v1 − v2) dx ≥ μ‖ε(w)‖22 ≥ μ

c ‖∇w‖22

as p− ≥ 2. The critical part is the term arising from the convective term. Here, we
follow ideas of [21, Theorem 4.29] and write

∫
Tn

(
(∇v1)v1 − (∇v2)v2) · (v1 − v2) dx

=
∫
Tn

(∇v1)w · w dx ≤ ‖∇v1‖p−‖w‖22p−
p−−1

.

Now, we use the interpolation

‖v‖q ≤ ‖v‖α
2‖∇v‖1−α

2 , α = 2n − q(n − 2)

2q
,

valid for all q ∈ [2, 2n
n−2 ] if n ≥ 3 and q ∈ [2,∞) if n = 2, cp. [21, Lemma 4.35].

Choosing q = 2p−
p−−1 we obtain

∫
Tn

(
(∇v1)v1 − (∇v2)v2) · (v1 − v2) dx ≤ ‖∇v1‖p−‖w‖

2p−−n
p−

2 ‖∇w‖
n
p−
2

≤ μ‖∇w‖22 + c(μ)‖∇v1‖
2p−

2p−−n

p− ‖w‖22
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using also Young’s inequality. Finally, we estimate the correction term by

∫
Tn

∫ t

0
d
〈〈 ∫ ·

0

(
�(v1)− �(v2)

)
dW

〉〉
dx=

∞∑
k=1

∫ t

0

(∫
Tn

(
gk(v1)−gk(v2)

)
dx

)2

dσ

≤
∞∑
k=1

∫ t

0

∫
Tn

∣∣gk(v1) − gk(v2)
∣∣2 dx dσ

≤
∫ t

0

∫
Tn

|v1 − v2|2 dx dσ

using (2.4). Summarising, we obtain

d ‖w‖2
L2 ≤ c

(
‖∇v1‖

2p−
2p−−n

p− + 1
)
‖w‖22 dt

+
∫
Tn

w · (�(v1) − �(v2)
)
dW dx (4.29)

for some finite constant c > 0. We now define G : � × [0, T ] → R by

G(ω, t) := c
(
‖∇v1(ω, t)‖

2p−
2p−−n

p− + 1
)

so that in particular G ∈ L1(0, T ) for P—a.e. ω ∈ �. This is a consequence of
2p−

2p−−n ≤ p− (which follows from the assumption p− ≥ n+2
n ) and ∇v1 ∈ L p−

(Q)

P-a.s. (which follows from ε(v1) ∈ L p(·)(Q) P-a.s. and Korn’s inequality). We then
obtain by use of Itô’s formula (similar to [27])

d
(
e− ∫ t

0 G d s ‖w‖2L2

)
= −G e− ∫ t

0 G d s ‖w‖2L2 d t + e− ∫ t
0 G d s d ‖w‖2L2

(4.29)≤ e− ∫ t
0 G d s

∫
Tn

w · (�(v1) − �(v2)
)
dW dx

(4.30)

by definition of G. Now we apply the expectation to both sides of the inequality and
consequently obtain

E

[
e− ∫ t

0 G d s ‖w‖2L2

]
= 0.

Consequently we obtain v1 = v2 P-a.s. and the proof of Proposition 4.5 is complete.
��

Based on the pathwise uniqueness we will employ the Gyöngy–Krylov characteri-
zation of convergence in probability introduced in [15]. It applies to situations when
pathwise uniqueness and existence of a martingale solution are valid and allows to
establish existence of a stochastically strong solution. We consider two sequences
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(Nn), (Nm) ⊂ N diverging to infinity. Let vn := vNn and vm := vNm . We consider
the collection of joint laws of (vn, vm, p, f,W ) on the extended path space

X J = X 2
v ⊗ Xp ⊗ Xf⊗XW ,

Similarly to Proposition 4.3 we obtain the following result.

Proposition 4.6 The set

{L[vn, vm, p, f,W ]; n,m ∈ N}

is tight on X J .

Let us take any subsequence (vnk , vmk , p, f,W ). By the Skorokhod representation
theorem we infer (for a further subsequence but without loss of generality we keep
the same notation) the existence of a probability space (�̄, F̄ , P̄) with a sequence of
random variables (v̂nk , v̌mk , p̄k, f̄k, W̄k) converging almost surely in X J to a random
variable (v̂, v̌, p̄, f̄, W̄ ). Moreover,

L[v̂nk , v̌mk , p̄k, f̄k, W̄ k] = L[vnk , vmk , p, f,W ]

on X J for all k ∈ N. Observe that in particular, L[vnk , vmk , p̄
k, f̄k, W̄ k] converges

weakly to the measure L[v̂, v̌, p̄, f̄, W̄ ]. As in (4.28) we can show that (v̂, p̄, f̄, W̄ )

and (v̌, p̄, f̄, W̄ ) are weak martingale solutions to (1.5)–(1.6) defined on the same
stochastic basis (�̄, F̄ , (F̄t ), P̄), where (F̄t )t≥0 is the P̄-augmented canonical filtra-
tion of (v̂, v̌, p̄, f̄, W̄ ).We employ the pathwise uniqueness result fromProposition 4.5.
Indeed, it follows from our assumptions on the approximate initial laws �0 that
v̂(0) = v̌(0) = 1 P̄-a.s. Therefore, the solutions v̂ and v̌ coincide P̄-a.s. and we
have

L[v̂, v̌, W̄ ]
(
(v1, v2, p, f,W ) ∈ X J : v1 = v2

)
= P̄(v̂ = v̌) = 1.

Now, we have all in hand to apply the Gyöngy–Krylov theorem. It implies that the
original sequence vN defined on the initial probability space (�,F ,P) converges
in probability in the topology of Xv to the random variable v. Therefore, we finally
deduce that v is a weak stochastically strong solution to (1.5)–(1.6). ��

5 Analytically strong solutions

5.1 A-priori bounds

In this sectionwe establish the existence result, Theorem2.2.We beginwith a strength-
ening of the a-priori estimate given by Theorem 3.2. Note that we work under the
additional assumption that either we have

(i) n = 2 and 1 < p− ≤ p+ < 4 or;
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(ii) n = 3 and 11
5 < p− ≤ p+ ≤ p− + 4

5 .

Theorem 5.1 Let the assumptions of Theorem 2.7 be satisfied. Let vN be the Galerkin
approximation constructed in Sect. 3. Then there exists a constant c > 0 such that

E

[
sup

t∈(0,T )

∫
Tn

|∇vN (t)|2 dx +
∫
Q

|∇ξFp(·, ε(vN ))|2 dx dt
]

≤ c
( ∫

L2
div(T

n)

∥∥u∥∥2
L2(Tn)

d�0(u),

∫
L2(Q)

∥∥g∥∥2L2(0,T ;W1,2(Tn))
d�f (g)

) (5.1)

uniformly in N ∈ N.

Corollary 5.2 Under the assumptions of Theorem 5.1 we have

E

[ ∫
Q

|∇2vN |min(p−,2) dx dt

]

≤ c
( ∫

L2
div(T

n)

∥∥u∥∥2r
L2(Tn)

d�0(u),

∫
L2(Q)

∥∥g∥∥2rL2(0,T ;W1,2(Tn))
d�f (g)

) (5.2)

uniformly in N ∈ N.

Proof of Corollary 5.2 If p− ≥ 2 the claim follows immediately from Theorem 5.1,
the definition of Fp and Korn’s inequality. So, let us assume that p− < 2. By Korn’s
and Young’s inequality we obtain

E

[ ∫
Q

|∇2vN |p−
dx dt

]
≤ cE

[ ∫
Q

|∇ε(vN )|p−
dx dt

]

≤ cE

[
1 +

∫
Q

|∇ε(vN )|p dx dt
]

= cE

[
1 +

∫
Q
(1 + |ε(vN )|)p 2−p

2 (1 + |ε(vN )|)p p−2
2 |∇ε(vN )|p dx dt

]

≤ cE

[ ∫
Q
(1 + |ε(vN )|)p dx dt +

∫
Q
(1 + |ε(vN )|)p−2|∇ε(vN )|2 dx dt

]
.

Now, the first term is bounded by Theorem 3.2 and the second one by Theorem 5.1.
Clearly, c > 0 does not depend on N , and hence the statement of the corollary follows.

��
Proof of Theorem 5.1 In a similar vein as for Theorem3.2, the core of the proof consists
in a suitable Itô-expansion. We hereafter apply Itô’s formula to the function fγ (u) :=
1
2‖∂γ u‖2

L2(Tn)n
(with γ ∈ {1, 2} for n = 2 and γ ∈ {1, 2, 3} for n = 3) and obtain

1

2
‖∂γ vN (t)‖2

L2(Tn)
= 1

2
‖∂γPNv0‖2L2(Tn)

+
∫ t

0
f ′(vN ) dvNσ + 1

2

∫ t

0
f ′′(vN ) d〈vN 〉σ
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= 1

2
‖∂γPNv0‖2L2(Tn)

+
∫
Tn

∫ t

0
∂γ vN · d∂γ vNσ dx

+ 1

2

∫
Tn

∫ t

0
d
〈〈 ∫ ·

0
∂γ

(
�(vN ) dW

)〉〉
σ
dx

=: (I )+(II)+(III). (5.3)

We consider the three integrals separately.

1. We begin with (I ). By continuity of the projection, we record the estimate

‖∂γPNv0‖2L2(Tn)
≤ ‖PNv0‖2W1,2(Tn)

≤ C‖v0‖2W1,2(Tn)
.

2.Deferring the estimation of (III) to the end of the proof, we turn to (II). Summing
over γ , we find

(II) = −(II)1 − (II)2 + (II)3 + (II)4 + (II)5,

(II)1 :=
∫ t

0

∫
Tn

DξS(·, ε(vN ))(∂γ ε(vN ), ∂γ ε(vN )) dx dσ,

(II)2 :=
∫ t

0

∫
Tn

∂γ S(·, ε(vN )) : ∂γ ε(vN ) dx dσ,

(II)3 :=
∫ t

0

∫
Tn

∂γ vN · ∂γ

(
�(vN ) dWσ

)
dx,

(II)4 :=
∫ t

0

∫
Tn

∂γ vN · ∂γ f d x d σ,

(II)5 :=
∫
Tn

div(vN ⊗ vN ) · ∂2γ v
N dx .

Ad (II)1. Using the assumptions for S in (1.6) we obtain

(II)1 ≥ c̃
∫ t

0

∫
Tn

(1 + |ε(vN )|2) p(·)−2
2 |∂γ ε(vN )|2 dx dσ. (5.4)

Ad (II)2. We now turn to the second term (II)2. By uniform Lipschitz continuity
of p(ω, ·) we obtain

|∂γ S(·, ε(vN ))| ≤ c ln(1 + |ε(vN )|)(1 + |ε(vN )|)p(·)−2|ε(vN )| (5.5)

with an absolute constant c > 0 for all N ∈ N. We find by virtue of Young’s
Inequality for arbitrary δ > 0

(II)2 ≤ c

(
1 +

∫ t

0

∫
Tn

ln(1 + |ε(vN )|)(1 + |ε(vN )|p(·)−1)|∂γ ε(vN )| dx dσ
)

≤ c(δ)

(
1 +

∫ t

0

∫
Tn

ln2(1 + |ε(vN )|)(1 + |ε(vN )|p(·)) dx dσ
)
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+ δ

(∫ t

0

∫
Tn

(1 + |ε(vN )|p(·)−2)|∂γ ε(vN )|2 dx dσ
)

= c(δ)I′ + δII′.

Choosing δ > 0 sufficiently small, δII′ may be absorbed into the left side of the
overall inequality by the coercive estimation of (II)1 (cp. (5.4)), and therefore it
remains to give a suitable upper bound for c(δ)I′. It is easy to see that for every
2 < μ < 3 there exists a constant C = C(μ) > 0 such that for all t > 0 there
holds t2 log2(1 + t) ≤ C(1 + tμ). Using the Gagliardo–Nirenberg interpolation
inequality on the torus [14, Theorem7.28],weobtain for 1 ≤ q, r ≤ ∞, 0 ≤ α ≤ 1
the implication

1

p
=

(1
r

− 1

n

)
α + 1 − α

q
�⇒ ‖u‖Lp

≤ C‖u‖α

W1,r ‖u‖1−α
Lq for u ∈ (W1,r ∩Lq)(Tn), (5.6)

where C > 0 only depends on q, r and n. Now set p = μ, q = 2 and r = 2, so
that the condition in (5.6) is satisfied with α = μ−2

μ
. Then we have 1 − α = 2

μ
and so by Young’s inequality with δ > 0 to be fixed later

‖v‖μ

Lμ(Tn)
≤ C‖v‖μ−2

W1,2‖v‖2
L2

≤ C
(
δ‖v‖2

W1,2 + Cδ‖v‖
4

4−μ

L2

)

= C
(
δ
(‖v‖2

L2 + ‖∇v‖2
L2

)) + Cδ‖v‖
4

4−μ

L2

)
(5.7)

for every v ∈ W1,2(Tn).
This estimation is implicit in [10, Chap. Eq. (4.62)].We apply the previous estimate
to v := (1 + |ε(vN )|2)p(·)/4 to find

I′ ≤ C
∫ t

0

∫
Tn

(1 + |ε(vN )|2)μp(·)/4 dx dσ

≤ C + Cδ

∫ t

0

(
‖(1 + |ε(vN )|2)p(·)/4‖2

L2 + ‖∇(1 + |ε(vN )|2)p(·)/4‖2
L2

)
d σ

+ Cδ

∫ t

0
‖(1 + |ε(vN )|2)p(·)/4‖

4
4−μ

L2

)
d σ

≤ C + Cδ

∫
QT

|ε(vN )|p(·) dx dσ + Cδ

∫ t

0
‖∇(1 + |ε(vN )|2)p(·)/4‖2

L2 d σ

+ Cδ

∫ t

0
‖(1 + |ε(vN )|2)p(·)/4‖

4
4−μ

L2

)
d σ. (5.8)
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By (5.5), we obtain

∫ t

0
‖∇(1 + |ε(vN )|2)p(·)/4‖2

L2 d σ

≤ C
∫ t

0

∫
Tn

(1 + |ε(vN )|2) p(·)
2 ln2

(
1 + |ε(vN )|2) dx dσ

+ C
∫ t

0

∫
Tn

(1 + |ε(vN )|2) p(·)−2
2 |∂γ ε(vN )|2 dx dσ.

So that, choosing δ > 0 small enough and absorbing the first term of the right
side of the previous inequality into I′, we end up with (recall 2 < μ < 3 so that
4/(4 − μ) ≤ 4),

I′ ≤ C + Cδ

∫
QT

|ε(vN )|p(·) dx dσ

+ Cδ

∫ t

0

∫
Tn

(1 + |ε(vN )|2) p(·)−2
2 |∂γ ε(vN )|2 dx dσ

+ Cδ

∫ t

0
‖(1 + |ε(vN )|2)p(·)/4‖4

L2 d σ

≤ C + C
∫
QT

|ε(vN )|p(·) dx dσ

+ Cδ

∫ t

0

∫
Tn

(1 + |ε(vN )|2) p(·)−2
2 |∂γ ε(vN )|2 dx dσ

+ Cδ

∫ t

0

∫
Tn

|ε(vN )|p(·) 2
4−μ dx d σ = I′1 + · · · + I′4.

The terms I′1 and I′2 are already in a convenient form. For δ small enough conse-
quently may absorb I′3 into the right side of (5.4).
Ad (II)3. We decompose

(II)3 =
∫
Tn

∫ t

0
∂γ vN · ∂γ

(
�(vN )ek dβk

)
dx

=
∑
k

∫
Tn

∫ t

0
∂γ vN · ∂γ

(
gk(vN ) dβk

)
dx

=
∑
k

∫
Tn

∫ t

0
∇ξ gk(v

N )(∂γ vN , ∂γ vN ) dβk dx

+
∑
k

∫
Tn

∫ t

0
∂γ vN · ∂γ gk(vN ) dβk dx

=
∫
Tn

∫ t

0
Gξ (∂γ vN , ∂γ vN ) dβk dx .
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Onaccount of assumption (2.4), Burkholder–Davis–Gundy inequality andYoung’s
inequality we obtain for arbitrary δ > 0

E

[
sup

0<t<T
|(II)13|

]
≤ E

[
sup

0<t<T

∣∣∣
∫ t

0

∑
k

∫
Tn

∇gk(vN )(∂γ vN , ∂γ vN ) dx dβk

∣∣∣
]

≤ cE

[ ∫ T

0

(∫
Tn

∇gk(vN )(∂γ vN , ∂γ vN ) dx

)2

dt

] 1
2

≤ cE

[(∫ T

0

(∫
Tn

|∂γ vN |2 dx
)2

dt

] 1
2

≤ δ E

[
sup

0<t<T

∫
Tn

|∂γ vN |2 dx
]

+ c(δ)E

[ ∫
Q

|∂γ vN |2 dx dt
]
.

Ad (II)4. After we shall have passed to the supremum in the overall inequality, by
Young’s inequality we obtain for a finite constant Cδ > 0

(II)4 ≤ Cδ sup
0<t<T

∫
Tn

|∂γ vN |2 d x + Cδ

∫ t

0

∫
Tn

|∇f |2 dx dσ.

We then may choose δ > 0 so small such that δ‖∂γ vN‖2
L2(Q)

can be absorbed into

(5.3).
Ad (III). We have by (2.4)

(III) = 1

2

∫
Tn

∫ t

0
d
〈〈 ∫ ·

0
∂γ

(
�(vN ) dWN )〉〉

σ
dx

≤ 1

2

∑
k

∫
Tn

∫ t

0
d
〈〈 ∫ ·

0
∂γ

(
�(vN )ek

)
dβk

〉〉
σ
dx

≤ 1

2

∑
k

∫ t

0

∫
Tn

∣∣∣∇ξ gk(·, vN ) · ∂γ vN
∣∣∣2 dx dσ

≤ c
∫ t

0

∫
Tn

|∂γ vN |2 dx dσ + c
∫ t

0

∫
Tn

|vN |2 dx dσ.

��

5.2 The case n = 2

Ad (II)5. The crucial impact of our assumption n = 2 is that (II)5 = 0 which can be
established by elementary calculations. Gathering estimates, we have shown

E

[
sup

0<t<T

∫
Tn

|∇vN (t)|2 dx +
∫
Q

|∇ξFp(·, ε(vN ))|2 dx dt
]

≤ cE

(
1 +

∫
Tn

(|v0|2 + |∇v0|2
)
dx + E

∫
Q

(|f |2 + |∇f |2) dx dt
)
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+ cE

(∫
Q

|ε(vN )|p(·) dx dt +
∫
Q

|vN |2 dx dt +
∫
Q

|∇vN |2 dx dt
)

+ cE
∫
Q

(
|ε(vN )|p(·)

) q
2
dx dt,

where q := 4
4−μ

.

The terms in the first line of the right hand side are bounded by assumption. The
terms in the second line are bounded by the a priori estimates fromTheorem 3.2 except
of the last one. It can, however, be handled by Gronwall’s lemma leading to

E

[
sup

0<t<T

∫
Tn

|∇vN |2 dx +
[ ∫

Q
|∇ξFp(·, ε(vN ))|2 dx dt

]

≤ cE

(
1 +

∫
Q

|Fp(·, ε(vN ))|q dx dt
)

.

By Lipschitz continuity of p we obtain

|∇Fp(·, ε(vN ))| ≤ |∇ξFp(·, ε(vN ))| + |∂γFp(·, ε(vN ))|
≤ |∇ξFp(·, ε(vN ))| + c ln(1 + |ε(vN )|)(1 + |ε(vN )|) p(·)

2

≤ |∇ξFp(·, ε(vN ))| + c
(|Fp(·, ε(vN ))| q2 + 1

)

such that

E

[
sup

0<t<T

∫
Tn

|∇vN |2 dx +
[ ∫

Q
|∇Fp(·, ε(vN ))|2 dx dt

]

≤ cE

(
1 +

∫
Q

|Fp(·, ε(vN ))|q dx dt
)

.

(5.9)

Note that q can be chosen arbitrarily close to 2. The objective of the following is to
find a suitable bound for the remaining integral on the right hand side.

By Korn’s inequality,
∫
Tn |∇vN |2 and

∫
Tn |ε(vN )|2 are equivalent. Using the ele-

mentary inequality |Fp(·, ξ)|τ ≤ c(|ξ |2 +1) for τ = 4/p+ and Sobolev’s embedding
W 1,2(Tn) ↪→ L2σ (Tn)) (with σ = n

n−2 if n ≥ 3 and σ arbitrary for n = 2) we deduce
from (5.9) that

E

[
sup

0<t<T

∫
Tn

|Fp(·, ε(vN ))|τ dx +
[ ∫ T

0

(∫
Tn

|Fp(·, ε(vN ))|2σ dx

) 1
σ

dt

]

≤ cE

(
1 +

∫
Q

|Fp(·, ε(vN ))|q dx dt
)

.

(5.10)

In order to proceed, we use the interpolation (recall that τ > 1 as p+ < 4)

(
L∞(0, T ; Lτ (Tn)); L2(0, T ; L2σ (Tn))

)
�

= Lr (0, T ; Lr (Tn)),
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r = 2 + τ − τ

σ
, � = 1 − 2

r
,

and obtain for χ = 2τ
2�+τ(1−�)

‖v‖χ
r ≤ ‖v‖χ�

L∞
t Lτ

x
‖v‖χ(1−�)

L2
t L2σ

x
≤ ‖v‖τ

L∞
t Lτ

x
+ ‖v‖2

L2
t L2σ

x
. (5.11)

Combining (5.10) and (5.11) yields

E‖Fp(·, ε(vN ))‖χ

Lrt,x
≤ c

(
1 + E‖Fp(·, ε(vN ))‖q

Lq
t,x

)
.

We continue with the interpolation

(
Lr (Q); L2(Q)

)
β

= Lq(Q), β = r

q

q − 2

r − 2
,

and obtain

E‖Fp(·, ε(vN ))‖q
Lq
t,x

≤ E

(
‖Fp(·, ε(vN ))‖βq

Lrt,x
‖Fp(·, ε(vN ))‖(1−β)q

L2
t,x

)

≤
(
E‖Fp(·, ε(vN ))‖βqγ

Lrt,x

) 1
γ
(
E‖Fp(·, ε(vN ))‖(1−β)qγ ′

L2
t,x

) 1
γ ′

using alsoHölder’s inequality for γ ∈ (1,∞) arbitrary. By Theorem 3.2, the definition
of Fp and the assumptions on the initial law we find that the second term is uniformly
bounded for any choice of γ . So, we obtain

E‖Fp(·, ε(vN ))‖χ

Lrt,x
≤ c (1 + E‖Fp(·, ε(vN ))‖q

Lq
t,x

)

≤ c
(
1 + E‖Fp(·, ε(vN ))‖βqγ

Lrt,x

) 1
γ
.

(5.12)

If βq < χ (note that β can be made arbitrarily small if we choose q close enough to
2 and γ can be chosen arbitrarily close to 1), we finally obtain

E‖Fp(·, ε(vN ))‖χ

Lrt,x
≤ c

uniformly in N . By (5.12) this implies

E‖Fp(·, ε(vN ))‖q
Lq
t,x

≤ c (5.13)

uniformly. Inserting this into (5.9) yields the claim.
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5.3 The case n = 3

If n = 3, the convective term does not vanish. We have to estimate it which is only
possible under a restrictive assumption on p−. We have

(II)5 ≤
∫ t

0

∫
Tn

|∇vN |3 dx dσ

such that we end up with

E

[
sup

0<t<T

∫
Tn

|∇vN |2 dx +
[ ∫

Q
|∇Fp(·, ε(vN ))|2 dx dt

]

≤ cE

(
1 +

∫
Q

|ε(vN )|q dx dt
)

,

(5.14)

where q = max{p+ + �, 3} (� > 0 is arbitrary) as a counterpart to (5.9). Using again
Sobolev’s embedding shows

E

[
sup

0<t<T

∫
Tn

|ε(vN )|2 dx +
[ ∫ T

0

(∫
Tn

|Fp(·, ε(vN ))|6 dx
) 1

3

dt

]

≤ cE

(
1 +

∫
Q

|ε(vN )|q dx dt
)

.

We obtain finally

E

[
sup

0<t<T

∫
Tn

|ε(vN )|2 dx +
[ ∫ T

0

(∫
Tn

|ε(vN )|3p−
dx

) 1
3

dt

]

≤ cE

(
1 +

∫
Q

|ε(vN )|q dx dt
)

.

(5.15)

Now we use an interpolation which is quite similar to the two-dimensional case.
However, the quantity of interest is now ε(vN ) instead of Fp(·, ε(vN )). Using the
interpolation

(
L∞(0, T ; L2(Tn)); L p−

(0, T ; L3p−
(Tn))

)
�

= Lr (0, T ; Lr (Tn)),

r = 4

3
+ p−, � = 1 − p−

r
,

we obtain for χ = 3
5r

‖v‖χ
r ≤ ‖v‖χ�

L∞
t L2

x
‖v‖χ(1−�)

L p−
t L3p−

x

≤ ‖v‖2L∞
t L2

x
+ ‖v‖p−

L p−
t L3p−

x

(5.16)
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such that

E‖ε(vN )‖χ

Lrt,x
≤ c

(
1 + E‖ε(vN )‖q

Lq
t,x

)
.

On account of the interpolation

(
Lr (Q); L p−

(Q)
)

β
= Lq(Q), β = r

q

q − p−

r − p− ,

we gain similarly to the two-dimensional case

E‖ε(vN )‖q
Lq
t,x

≤ E

(
‖ε(vN )‖βq

Lrt,x
‖ε(vN )‖(1−β)q

L p−
t,x

)

≤
(
E‖ε(vN )‖βqγ

Lrt,x

) 1
γ
(
E‖ε(vN )‖(1−β)qγ ′

L p−
t,x

) 1
γ ′

.

By Theorem 3.2 the second term is uniformly bounded and hence

E‖ε(vN )‖χ

Lrt,x
≤ c

(
1 + E‖ε(vN )‖q

Lq
t,x

) ≤ c
(
1 + E‖ε(vN )‖βqγ

Lrt,x

) 1
γ
. (5.17)

Now we have to check that βq < χ . This is equivalent to q < p− + 4
5 which follows

from our assumption 11
5 < p− ≤ p+ ≤ p− + 4

5 . So, the proof can be finished as
before if we chose γ close enough to 1. ��

5.4 Compactness

As in (4.24) we have again

sup
N∈N

E

[
‖vN‖

Cμ([0,T ];W−�,p0
div (Tn)n)

]
< ∞ (5.18)

for certain μ > 0, � ∈ N and p0 > 1. In view of compactness, let us now define the
path space

X : = Xv ⊗ XF ⊗ Xp ⊗ Xf ⊗ XW , (5.19)

where3

Xv: = C([0, T ];W−�,p0
div (Tn)) ∩ L2(0, T ;W 1,2

div (Tn)),

XF: = (
L2(0, T ;W 1,2(Tn)), w

)
,

Xp: = C0([0, T ] × T
n),

3 (X , w) denotes a Banach space equipped with the weak topology.
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Xf : = L2(0, T ;W 1,2(Tn)),

XW : = C([0, T ];U0).

We obtain the following.

Proposition 5.3 The set {L[vN ,Fp(·, ε(vN )), p, f,W ]; N ∈ N} is tight on X .

Proof We recall an interpolation result of Aubin–Lions-type due to Amann [1] to
conclude that

L∞(0, T ;W1,2
div (T

n)) ∩ Cμ([0, T ];W−�,p0
div (Tn)) ∩ Lp−

(0, T ;W1,p−
div (Tn))

↪→↪→ L2(0, T ;W1,2
div (T

n)).
(5.20)

On the other hand, Ascoli–Arzelá’s theorem yields

Cμ([0, T ];W−�,p0
div (Tn)) ↪→↪→ C([0, T ];W−�,p0

div (Tn)).

So, we obtain tightness of vN on Xv from (5.18), Theorems 3.2 and 5.1 and
Tschebyscheff’s inequality. Tightness of Fp(·, ε(vN )) on XF follows immediately
from Theorem 3.2 and 5.1. Finally the laws of p, f and W are tight as before in
Sect. 4.2. ��

Accordingly, we apply Jakubowski’s extension of Skorokhod’s theorem (see [18]).
We infer the following result.

Proposition 5.4 There exists a complete probability space (�̃, F̃ , P̃) with X -
valued Borel measurable random variables (ṽN , F̃N , p̃N , f̃N , W̃ N ), N ∈ N, and
(ṽ, F̃, p̃, f̃, W̃ ) such that (up to a subsequence)

(a) the law of (ṽN , F̃N , p̃N , f̃N , W̃ N ) onX is given byL[vN ,Fp(·, ε(vN )), p, f,W ],
N ∈ N,

(b) the law of (ṽ, F̃, p̃, f, W̃ ) on X is a Radon measure,
(c) (ṽN , F̃N , p̃N , f̃N , W̃ N ) converges P̃-almost surely to (ṽ, F̃, p̃, f̃, W̃ ) in the topol-

ogy of X , i.e.

ṽN → ṽ in C([0, T ];W−�,p0
div (Tn)) P̃-a.s.,

ṽN → ṽ in L2(0, T ;W 1,2
div (Tn)) P̃-a.s.,

F̃N⇀F̃ in L2(0, T ;W 1,2(Tn)) P̃-a.s.,

p̃N → p̃ in C0([0, T ] × T
n) P̃-a.s.,

f̃N → f̃ in L2(0, T ;W 1,2(Tn)) P̃-a.s.,

W̃ N → W̃ in C([0, T ];U0) P̃-a.s. (5.21)

The equality of laws from Proposition 4.4 implies immediately that F̃N =
F p̃N (·, ε(vN )). Using the convergences from (5.21) we obtain

F̃ = F p̃(·, ε(ṽ)). (5.22)

123



Stoch PDE: Anal Comp

Also, the uniform estimates from Theorems 3.2 and 5.1 continue to holds on the
new probability space. The proof of Theorem 2.7 can now be completed as in Sect. 4.

5.5 Strong stochastically strong solutions

The existence of a strong pathwise solution follows now along the lines of the proof
of Theorem 2.7 with some minor modifications. The most important change is that the
classical Gyöngy-Krylov argument does not apply as the path space X is not Polish
anymore due to the weak topology on XF. A generalization which applies to the very
general class of sub-Polish spaces (including Banach spaces with weak topologies)
can be found in [5, Chap. 2, Theorem 2.10.3]. We consider the collection of joint laws
of (Xn,Xm, p, f,W ), where

Xn = (vNn ,Fp(·, ε(vNn ))), Xm = (vNm ,Fp(·, ε(vNm ))),

on the extended path space

X J = (Xv × XF)2 ⊗ Xp ⊗ Xf × XW .

As in Proposition 4.6 we obtain tightness of the set

{L[Xn,Xm, p, f,W ]; n,m ∈ N}

on X J . Let (Xnk ,Xmk , p, f,W )be an arbitrary subsequence. By the Jakubowski–
Skorokhod theorem [18] we infer (for a further subsequence but without loss of
generality we keep the same notation) the existence of a probability space (�̄, F̄ , P̄)

with a sequence of random variables (X̂nk , X̌mk , p̄k, f̄k, W̄k) with

X̂nk = (v̂nk ,, F̂nk ), k ∈ N,

X̂mk = (v̌mk ,, F̌mk ), k ∈ N,

converging almost surely in X J to a random variable (X̂, X̌, p̄, f̄, W̄ ). with

X̂ = (v̂, F̂), X̌ = (v̂, F̂).

As before in (5.22) it follows that

F̂ = F p̄(·, ε(v̂)), F̌ = F p̄(·, ε(v̌)). (5.23)

As in (4.28) we can show that (v̂, p̄, f̄, W̄ ) and (v̌, p̄, f̄, W̄ ) are weak martingale
solutions to (1.5)–(1.6) defined on the same stochastic basis (�̄, F̄ , (F̄t ), P̄). We
apply the pathwise uniqueness result from Proposition 4.5 to conclude

L[X̂, X̌, W̄ ]
(
(X1,X2, p, f,W ) ∈ X J : X1 = X2

)
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= P̄

(
(v̂, F̂) = (v̌, F̌)

)
= P̄(v̂ = v̌) = 1.

Now, [5, Chap. 2, Theorem 2.10.3] implies that the original sequence vN defined
on the initial probability space converges in probability in the topology of Xv to the
random variable v. Therefore, we finally deduce that v is a strong stochastically strong
solution to (1.5)–(1.6). Note that the pressure terms can be recovered as in (2.11) (see
the explanations below (2.11) for the regularity of the pressure terms). The proof of
Corollary 2.13 is hereby complete. ��
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26. Růžička,M.: Electro-Rheological Fluids:Modeling andMathematical Theory,Volume 1748 of Lecture
Notes in Mathematics. Springer, Berlin (2000)

27. Schmalfuss, B.: Qualitative properties for the stochastic Navier–Stokes equation. Nonlinear Anal.
28(9), 1545–1563 (1997)

28. Smith, S.: Random perturbations of viscous compressible fluids: global existence of weak solutions.
SIAM J. Math. Anal. 49(6), 4521–4578 (2017)

29. Smagorinsky, J.S.: General circulation experiments with the primitive equations. I. The basic experi-
ment. Mon. Weather Rev. 91(3), 99–164 (1963)

30. Terasawa, Y., Yoshida, N.: Stochastic power-law fluids: existence and uniqueness of weak solutions.
Ann. Appl. Prob. 21(5), 1827–1859 (2011)

31. Vallet, G., Wittbold, P., Zimmermann, A.: On a stochastic evolution equation with random growth
conditions. Stoch. Partial Differ. Equ. Anal. Comput. 4(2), 246–273 (2016)

32. Winslow, A.M.: Induced fibration of suspensions. J. Appl. Phys. 20, 1137–1140 (1949)
33. Yoshida, N.: Stochastic shear thickenning fluids: strong convergence of the Galerkin approximation

and the energy inequality. Ann. Appl. Prob. 22(3), 1215–1242 (2012)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	Electro-rheological fluids under random influences: martingale and strong solutions
	Abstract
	1 Introduction
	2 Framework and main results
	2.1 Function space setup
	2.2 Probability setup
	2.3 Martingale solutions
	2.4 Stochastically strong solutions

	3 Galerkin approximation
	4 Analytically weak solutions
	4.1 Fractional differentiability
	4.2 Compactness
	4.3 Conclusion
	4.4 Stochastically strong solutions

	5 Analytically strong solutions
	5.1 A-priori bounds
	5.2 The case n=2
	5.3 The case n=3
	5.4 Compactness
	5.5 Strong stochastically strong solutions

	Acknowledgements
	References




