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Abstract—High spatio-angular resolution diffusion MRI
(dMRI) has been shown to provide accurate identification
of complex fiber configurations. However, its application in
clinics remains limited due to the long acquisition time that
it requires. Recently, we have developed a method relying on
a kq-space under-sampling scheme to recover the intra-voxel
fiber configurations through accelerated acquisitions. In the
current work, we generalize our method to consider a more
realistic setting. In particular, the phase contamination induced
by magnetic field inhomogeneities and motion during the signal
acquisition has been included in the kq-space measurement
model. Through experiments on realistic synthetic data, we show
that the phase contamination does not penalize the recovery of
the fiber configuration, when the phase factor is assumed to be
perfectly known.

Index Terms—Diffusion MRI, FOD, kq-space, motion, phase
contamination

I. INTRODUCTION

Diffusion Magnetic Resonance Imaging (dMRI) is a pow-
erful tool for studying the tissues micro-structure in-vivo and
in a non invasive way. It is extensively used in Neuroscience
for the study of the neuronal connectivity [1], [2] and in
clinics, for the diagnosis of neurodegenerative diseases such
as Schizophrenia and Alzheimer’s disease [3], [4]. Multiple
methods have been proposed to extract information about the
fiber orientation from the diffusion volumes. Among them, we
can cite, e.g., the Diffusion Tensor Imaging [5], the Diffusion
Spectrum Imaging [6] and the q-ball imaging [7].

The signal acquired in dMRI consists on a set of DW-
volumes. Each volume is sensitive to diffusion along a specific
direction and at a specific intensity, identified by a 3D point q.
The associated 3D space is called q-space, and it is defined by
the diffusion gradients. DTI is currently the most widely used
approach in clinics, since it requires the acquisition of only 6
diffusion volumes. However, DTI is unable to distinguish the
presence of multiple fibers in the same voxel. Recently, high
angular resolution diffusion imaging (HARDI) methods have
been shown to overcome this limitation. These approaches
rely on signals acquired by a large number of diffusion
gradients. Although more complex fiber configurations can
be resolved by using HARDI approaches, their application in
clinics is still limited because of the long acquisition time that
they require.

In the last decades, Spherical Deconvolution (SD) [8], [9]
has started to gain particular attention for the estimation of
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Fig. 1. kq-Space under-sampling approach for dMRI. The dMRI signal is
probed by a sequence of diffusion gradients, which identifies a point in the
q-space. Each of these points is associated with a specific DW-image and its
representation in the k-space. The kq-space method aims at estimating the
brain inner structures from the signal generated by a subset of samples in
k-space and few samples in q-space.

complex fiber orientations. This approach models the HARDI
signal as a spherical convolution between the Fiber Orien-
tation Distribution (FOD) representing the few active fiber
orientations, and a kernel representing the response signal of
a single fiber [8]–[11]. SD based approaches enable to recover
the FOD, by solving a linear inverse problem [12]. Lately,
the Compressed Sensing theory has promoted the use of SD
methods for the FOD recovery from a reduced number of
diffusion gradients (called q-space under-sampling) [9], [12],
[13]. Independently, to short the acquisition process in MRI,
methods considering a reduced number of Fourier samples
have extensively been used during the last decades. These
methods are named k-space under-sampling approaches.

In this work, we present a method relying on a kq-space
under-sampling scheme. This method has been proposed in
[14]. As represented in Fig. 1, the dMRI signal is probed by
M diffusion gradients, each of which defines a point in the q-
space (i.e. q-point). Each q-point is associated with an image,
called diffusion weighted (DW) image, and its representation
in k-space. The proposed method takes advantage of the
under-sampling in both k- and q-space to further reduce
the total amount of samples to acquire, thus reducing the
acquisition time, while preserving the quality of the estimated
FOD.



In general, FOD reconstruction methods acting only in
the q-space get rid of the phase, produced by the motion
and the magnetic field inhomogeneities, by simply consid-
ering the magnitude of the signal. This approach cannot
be adopted in the kq-space acquisition context, and FOD
reconstruction methods need to explicitly account for the
phase contamination in their model. In the present study we
show that the phase contamination does not penalize the FOD
reconstruction, in the kq-space under-sampling framework.

The remainder of the paper is organized as follows. The
proposed method is described in Section II. In Section III
we provide the description of the experimental setup and
we present the obtained results. Finally, we conclude in
Section IV.

II. PROPOSED KQ-SPACE UNDER-SAMPLING APPROACH

A. kq-Space measurement model

In [14], we have proposed to model the FOD reconstruction
problem in the kq-space. Let N be the number of imaged
voxels. The objective is to find an estimate of the unknown
FOD field of interest, X ∈ R(n+2)×N , from the observation
matrix, Ŷ ∈ CM×K . Each column of X contains the n + 2
FOD coefficients of the corresponding voxel. Each row of
Ŷ , denoted by Ŷq ∈ C1×K , corresponds to the under-
sampled k-space of the DW-image acquired with gradient
q ∈ {1, . . . ,M}, and is given by

Ŷq = Aq(X) + ηq, (1)

where ηq ∈ C1×K is a realization of an i.i.d. Gaussian noise
and Aq is the linear measurement operator, given by

Aq(X) = ΦqXS0H
(q)FM (q). (2)

More precisely, Φq ∈ R1×(n+2) is the qth row of the
dictionary Φ ∈ RM×(n+2) that spans the response of a single
fiber oriented along n different directions, to which 2 isotropic
compartments, representing the gray matter and the cere-
brospinal fluid (CSF), are added. The matrix S0 ∈ RN×N is a
diagonal matrix whose elements correspond to the intensities
of the image acquired in the absence of diffusion, named s0
image. Note that S0 needs to be taken into account in the
model for normalization purposes [14]. The diagonal matrix
H(q) ∈ CN×N is used to account for the phase distortions
generated by motion and magnetic field inhomogeneities.
Finally, F ∈ CN×N represents the 2D Fourier matrix, and
M (q) ∈ RN×K(q)

is a realization of a random binary mask
that under-samples each slice of the acquired volume in a
different way.

We refer the reader to [14] for a more general acquisi-
tion model, where the multi-coils acquisitions is taken into
account.

B. Phase contamination

In MRI, the observed object is inserted in a magnetic field
that is made spatially dependent through the application of
magnetic field gradients. Additionally, in dMRI the applica-
tion of the diffusion gradients makes the signal generated by
the observed object sensitive to water molecule displacements.

Motion of objects placed into magnetic field gradients results
in an incorrect phase accumulation. In particular, when the
spins of the observed object move along the gradient direction,
the acquired signal is characterized by an additional phase.
In dMRI, where gradients are large, such motion-induced
phase is also large. In the event the observed object undergoes
rigid translations, the spins are all subject to the same phase
(constant phase accumulation). When the object rotates, the
velocities of the spins depend linearly on the position (linear
phase accumulation). When the object undergoes non-rigid
motion, the motion-induced phase has more complex repre-
sentation. In general, the motion-induced phase that occurs
when imaging the brain results from the combination of rigid
and non-rigid motions. Similarly to motion, the presence of
magnetic field inhomogeneities contribute to the incorrect
accumulation of the phase.

Usually, methods dealing with signals directly in q-space
overcome this difficulty by simply taking the magnitude of
the complex diffusion signal, in order to obtain real DW-
images. However, in k-space, and consequently kq-space, this
approach cannot be employed, and the phase factors needs to
be modeled in the measurements model. The matrix H(q) in
the linear operator expressed in (1) accounts for these factors.
Note that, in [14], we have considered synthetic data with
linear phase, but without magnetic field inhomogeneities.

In the second column of Fig. 2 we provide the maps of
the phase arising from the acquisition of the dMRI signal
in the absence of phase contamination (first row), in the
presence of phase contamination due only to magnetic field
inhomogeneities (second row), and in the presence of phase
contamination due to magnetic field inhomogeneities and
motion (third row). In the ideal case when the observed
object is motionless and inserted in a perfectly homogeneous
magnetic field, we can observe that the image recovered from
the acquisition system is characterized only by its magnitude
(no phase is detected). In this ideal condition, the image is
derived from the inverse Fourier transform of a completely
symmetric k-space, as it is possible to observe in Fig. 2C and
D. In the event the observed object is subject to a magnetic
field that is not perfectly homogeneous, we can observe that
the obtained DW-image is characterized by complex values
with a magnitude (in Fig. 2E) and a phase (in Fig. 2F). In
this condition, the symmetry of the k-space is broken by the
inhomogeneities as it is shown in Fig. 2G and H. The inverse
Fourier transforming of this k-space induces the phase of
interest in the image domain. We can observe in Fig. 2L
the phase produced when the observed object makes small
rotations while it is inserted into an inhomogeneous magnetic
field. Finally, by comparing the k-space magnitude and its
profile in Fig. 2C,G, and M, it can be observed the effects
introduced by motion and magnetic field inhomogeneities in
the k-space. The k-space is slightly spread when magnetic
field inhomogeneities are considered, while a shift of the k-
space occurs when considering rotating objects.

C. Minimization problem and Algorithm

In our approach, we propose to explicitly take advantage
of the prior knowledge of tissue distributions over the space



Fig. 2. Visualization of the effects produced in the k-space and in the q-
space, by magnetic field inhomogeneities and motion during the diffusion
encoding gradients. Magnitude (first column) and phase (second column) of
one image of the phantom proposed in the ISMRM 2015 CHALLENGE in
three different settings. In the first row the observed objects is motionless
and inserted into a perfectly homogeneous magnetic field. In the second row
magnetic field inhomogeneities are taken into account while the object is
assumed to be motionless. In the third row both the inhomogeneities of the
magnetic field and the motion of the object are considered. The magnitude
of the k-space (logarithmic scale) and the profile of the diagonal line of each
k-space is provided in the third and fourth column, respectively.

in order to further regularize the ill-posed FOD estimation
problem in (2) [14]. To this aim, we propose to estimate only
the subparts of X where the white matter, the gray matter and
the CSF are expected. More precisely, let S1 ∈ R+

n×N1 be
the variable containing the N1 ≤ N effective FODs associated
with the white matter fiber; let S2 ∈ R+

1×N2 be the variable
modeling the isotropic behavior characterizing the gray matter
tissue, with N2 ≤ N active voxels; and let S3 ∈ R+

1×N3 be
the variable modeling the isotropic behavior of the CSF, with
N3 ≤ N active voxels.

The object X is fully characterized by S = (S1, S2, S3)
through the linear mapping X = Z(S), where the operator
Z concatenates the matrices resulting from the expansions
of S1, S2 and S3 with zero-valued columns in the places of
the voxels that are known to not contain the corresponding
tissue. Using the proposed notation, we have, for every
q ∈ {1, . . . ,M}, Aq

(
X
)

= Aq
(
Z(S)

)
. In this context, we

propose to define the estimate of X = Z(S) as a solution to

min
S=(S1,S2,S3)

∥∥∥A(Z(S)
)
− Ŷ

∥∥∥2
2

s.t.


S1 ∈ B+1,W (κ),

S2 ∈ R1×N2
+ ,

S3 ∈ R1×N3
+ ,

(3)

Algorithm 1 FISTA to solve (3)

1: Let S(0) = (S
(0)
1 , S

(0)
2 , S

(0)
3 ) ∈ R+

n×N1 × R+
1×N2 ×

S
(0)
3 ∈ R+

1×N3 .
2: Let W (t) ∈ Rn×N1

+ , ζ(0) = 1, κ > 0 and γ ∈]0, 1/‖A[.
3: Iterations:
4: For j = 0, 1, ...

5: S̃(j) = S(j) − γZ†
(
A†
(
A
(
Z(S(j))

)
− Ŷ

))
6: Š(j) = PB+

1,W (t)
(κ)×R1×N2

+ ×R1×N3
+

(
S̃(j)

)
7: ζ(j+1) =

1+
√

1+4(ζ(j))2

2

8: S(j+1) = Š(j) + ζ(j)−1
ζ(j+1)

(
Š(j) − S(j+1)

)
9: end for

where A
(
Z(S)

)
=
(
Aq
(
Z(S)

))
1≤q≤M

∈ CM×k, W =

(Wd,v)d,v ∈ Rn×N+ , and B+1,W (κ) denotes the intersection of
the real positive orthant Rn×N+ with the weighted `1 ball of
radius κ > 0, centered in 0. The positive weighted `1 ball is
defined as B+1,W (κ) =

{
S1 ∈ Rn×N+

∣∣ ‖S1‖1,W 6 κ
}
, ‖·‖1,W

being the weighted `1 norm.
In order to mimic the `0 pseudo-norm [15], problem (3) is

solved T ≥ 1 times using FISTA [16], [17], using different
weighted matrices W . The iterations of FISTA are described
in Algorithm 1. Basically, this algorithm is alternating be-
tween a gradient step (step 5) and a projection step (step 6).
The projection of S̃ into the closed convex non-empty set
C is defined as PC(S̃) = argminS∈C‖S − S̃‖2. For each
cycle t ∈ {1, . . . , T}, the weighting matrix W (t) is chosen
following the method developed in [18]. Weights designed in
[18] promotes simultaneously voxelwise sparsity by forcing
to zero spurious peaks though large weights. In addition, these
weights enforce the spatial smoothness of fiber orientation by
averaging the FOD coefficients over neighbor voxels.

Once the solution is found, a post-processing procedure is
performed along the columns of S1 in order to extract the
directions of the fibers within each voxel.

III. EXPERIMENTAL SETUP AND RESULTS

We analyze the fiber configurations recovered using the
proposed kq-space under-sampling approach in the presence
of magnetic field inhomogeneities and motion during the
diffusion encoding gradients in the case of synthetic data.
We consider the realistic numerical phantom proposed in the
ISMRM 2015 Challenge [19] for the signal in q-space. The
phantom consists of a volume of N = 90x90x60 voxels,
acquired by using M = 30 diffusion gradients distributed over
a single shell with b-value=1000mm/s2. In our experiments
we evaluate the FOD reconstruction for three different set-
tings: in the absence of phase contamination, in the presence
of phase contamination only due to magnetic field inhomo-
geneities, and in the presence of phase contamination due to
magnetic field inhomogeneities and motion. The field maps
made available in the contest provide the phase contamination
induced only by the magnetic field inhomogeneities. When
considering only this phase, the same phase map is applied
to all the DW-images, regardless of head motion. In each



Fig. 3. Quantitative FOD reconstruction evaluation. Bar graph representing
the mean success rate (left) and boxplot graph representing the mean angular
error (right) at different k-space under-sampling factors (along the x-axis)
for three different settings. The FOD reconstruction are performed in the
absence of phase contamination (green), in the presence of phase induced by
only magnetic field inhomogeneities (purple), and in the presence of phase
induced by both magnetic field inhomogeneities and motion (orange).

Fig. 4. Qualitative FOD reconstruction evaluation. The FOD reconstructions
have been performed on the ISMRM 2015 CHALLENGE phantom by
considering 30 diffusion gradients, at a k-space under-sampling factor of
9, in the absence (B) and in the presence (C) of motion and magnetic field
inhomogeneities. The fiber configuration recovered using 30 gradients, with
full k-space, in the absence of phase contamination is provided in A.

voxel v ∈ {1, . . . , N}, the intensity of the signal in q-space
is multiplied by eiθv , θv being the value associated with v in
the map. When considering motion, a linear phase is added
to the phase induced by the magnetic field inhomogeneities.
Different linear phase maps are generated for each slice of the
phantom and DW-image. The linear phase maps have been
modeled in such a way that the corresponding k-space shift
does not exceed 20 voxels.

The signal in q-space is then converted to k-space through
the Fourier transform and selection masks are applied to the k-
space of the DW-images in order to assess the FOD recovery
in the kq-space under-sampling setting. The selection masks
are built following a variable density sampling approach [20],
[21] where the center is fully acquired and the samples in the
periphery follow a Gaussian distribution with σ = 0.5. FODs
are recovered solving the problem in (3) where H(q) is known
and κ = 4N1.

The FOD reconstruction performances are evaluated by
taking into account the mean success rate (SR) and the
mean angular error indices. The mean SR expresses the
portion of voxels in which the number of fibers is correctly
estimated. When fibers are individuated, the mean angular
error quantifies the angular accuracy with which the fibers
orientations are recovered. The fiber configuration recovered
from all the available diffusion gradients (i.e. 30 diffusion
gradients) with complete k-space is considered as ground
truth.

Fig. 3 provides the FOD reconstruction performances ob-
tained with the proposed method when considering different

k-space under-sampling factors (along the x-axis) in the
case of 3 different settings. In green, purple and orange
are respectively reported the performances obtained in the
absence of phase contamination, in the presence of phase
contamination due to magnetic field inhomogeneities only,
and in the presence of phase contamination due to both
inhomogeneities and motion. We can observe that fiber recon-
structions obtained by considering the phase contamination
outperform the ones obtained in its absence. The presence
of magnetic field inhomogeneities positively affects the FOD
recovery only slightly. The SR increases no more than 3% and
the mean angular error drops of 2◦ when taking into account
only the magnetic field inhomogeneities. When considering
the phase contaminations induced by inhomogeneities of the
magnetic field and the motion of the patient, more significant
effects can be appreciated, especially at high k-space under-
sampling factors. For instance, in the presence of a k-space
under-sampling factors of 9, the SR increases of 8%, when
considering both motion and magnetic field inhomogeneities.
This quality improvement is only observed for high k-space
under-sampling factors. These observations can be interpreted
as follows. On the one hand, introducing a linear phase in the
observation model corresponds to a Fourier space shifting.
On the other hand, for high k-space under-sampling factors,
the masks M (q) are mainly selecting frequencies at the center.
Consequently, the linear phase allows to measure not only the
low frequencies for severe k-space under-sampling, but also
part of the higher frequencies, which would not be probed in
the absence of phase contamination. This can be interpreted
in the CS framework as minimizing the coherence of the
measurement operator A.

In Fig. 4 we give a qualitative comparison of the fiber
configurations recovered by using 30 diffusion gradients at
a k-space under-sampling factor of 9. The reconstructions
obtained in the absence and in the presence of phase contam-
ination (due to magnetic field inhomogeneities and motion)
is reported in Fig. 4B and C, respectively. In Fig. 4, we can
observe that the fiber configuration recovered in the presence
of the phase contamination (Fig. 4C) appears smoother and
more similar to the ground truth configuration.

IV. CONCLUSION

In the context of the kq-space under-sampling approach
for dMRI proposed in [14], we have shown that the presence
of the phase contamination arising from motion during the
signal acquisition, does not penalize the recovery of the fiber
configurations. In addition, we have observed that, for high k-
space under-sampling factors, when this phase is completely
known, more accurate fiber orientation configurations are
achieved. In conclusion, we have shown that physiological
motion and manufacturing scanner imperfections do not rep-
resent a limitation for the kq-space under-sampling method,
but they are factors which the method can benefit from.
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