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Partially Asynchronous Distributed Unmixing
of Hyperspectral Images

Pierre-Antoine Thouvenin , Member, IEEE, Nicolas Dobigeon , Senior Member, IEEE,
and Jean-Yves Tourneret , Senior Member, IEEE

Abstract� So far, the problem of unmixing large or multitem-
poral hyperspectral data sets has been speci�cally addressed in
the remote sensing literature only by a few dedicated strategies.
Among them, some attempts have been made within a distributed
estimation framework, in particular, relying on the alternating
direction method of multipliers. In this paper, we propose to study
the interest of a partially asynchronous distributed unmixing
procedure based on a recently proposed asynchronous algorithm.
Under standard assumptions, the proposed algorithm inherits its
convergence properties from recent contributions in nonconvex
optimization, while allowing the problem of interest to be ef�-
ciently addressed. Comparisons with a distributed synchronous
counterpart of the proposed unmixing procedure allow its interest
to be assessed on synthetic and real data. Besides, thanks to
its genericity and �exibility, the procedure investigated in this
paper can be implemented to address various matrix factorization
problems.

Index Terms� Hyperspectral (HS) unmixing, nonconvex
optimization, partially asynchronous distributed estimation.

I. INTRODUCTION

ACQUIRED in hundreds of contiguous spectral bands,
hyperspectral (HS) images present a high-spectral res-

olution, which is mitigated by a lower spatial resolution in
speciÞc applications such as airborne remote sensing. The
observed spectra are thus represented as mixtures of signatures
corresponding to distinct materials. Spectral unmixing then
consists in estimating the reference signatures associated with
each material, referred to as endmembers, and their relative
fractions in each pixel of the image, referred to as abundances,
according to a predeÞned mixture model. In practice, a lin-
ear mixing model (LMM) is traditionally adopted when the
declivity of the scene and microscopic interactions between
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Fig. 1. Illustration of a synchronous distributed mechanism (idle time in
white, transmission delay in light gray, and computation delay in gray). The
master is triggered once it has received information from all the workers.

the observed materials are negligible [1]. Per se, HS unmixing
can be cast as a blind source separation problem and, under
the above-mentioned assumptions, can be formulated as a
particular instance of matrix factorization.

For this particular application, distributed procedures can
be particularly appealing to estimate the abundances since the
number of pixels composing the HS images can be orders
of magnitude larger than the number of spectral bands in
which the images are acquired. In this context, distributed
unmixing methods previously proposed in the remote sensing
literature essentially rely on synchronous algorithms [2]—[5]
with limited convergence guarantees. A different approach
consists in resorting to a proximal alternating linearized
minimization (PALM) [6], [7] to estimate the mixture para-
meters (see [8]—[10] in this context), which leads to an
easily distributable optimization problem when considering the
update of the abundances, and beneÞts from well-established
convergence results.

While a synchronous distributed variant of the PALM
algorithm is particularly appealing to address HS unmixing,
this algorithm does not fully exploit the difference in the
performance of the involved computing units, which is pre-
cisely the objective pursued by the numerous asynchronous
optimization techniques proposed in the optimization litera-
ture (e.g., [11]—[19]). For distributed synchronous algorithms,
a master node waits for the information brought by all the
available computation nodes (referred to as workers) before
proceeding to the next iteration (e.g., updating a variable
shared between the different nodes, see Fig. 1). On the
contrary, asynchronous algorithms offer more ßexibility in the
sense that they allow more frequent updates to be performed
by the computational nodes, thus reducing their idleness time.
In particular, asynchronous algorithms can lead to a signiÞcant
speed up in the algorithm computation time by allowing the
available computational units (i.e., cores and machines) to
work in parallel, with as few synchronizations (i.e., memory
locks) as possible [20]—[22]. For some practical problems,
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Fig. 2. Illustration of an asynchronous distributed mechanism (idle time
in white, transmission delay in light gray, and computation delay in gray).
The master node is triggered whenever it has received information from K
workers (K = 1 in the illustration).

there is no master node, and the workers can become active at
any time and independently of the other nodes [21]—[23]. For
other applications, a master node Þrst assigns different tasks to
all the available workers, then aggregates information from a
given node as soon as it receives its information and launches
a new task on this speciÞc node (see Fig. 2). In this partially
asynchronous setting, the workers may make use of out-of-date
information to perform their local updates [19]. Given the pos-
sible advantages brought by the asynchronicity, we propose an
asynchronous unmixing procedure based on recent nonconvex
optimization algorithms. To this end, we consider a centralized
architecture as in [24], composed of a master node in charge of
a variable shared between the different workers, and � workers
which have access to a local variable (i.e., only accessible from
a given worker) and a (possibly out of date) local copy of the
shared variable.

Asynchronous methods adapted to the aforementioned con-
text include many recent papers, e.g., [20]—[22], [24], [25].
For HS image unmixing, Gauss—Seidel optimization schemes
have proved convenient to decompose the original optimiza-
tion task into simpler subproblems, which can be solved
or distributed efÞciently [26]. We may mention the recently
proposed partially asynchronous distributed alternating direc-
tion method of multipliers (ADMM) [24], used to solve
a distributed optimization task reformulated as a consen-
sus problem. However, HS unmixing does not allow tradi-
tional block coordinate descent (BCD) methods (such as the
ADMM [27], [28]) to be efÞciently applied due to the pres-
ence of subproblems which require iterative solvers. In such
cases, the PALM algorithm [6] and its extensions [7], [29],
which are sequential algorithms, combine desirable conver-
gence guarantees for nonconvex problems with an easily dis-
tributable structure in a synchronous setting. Recently, PALM
has been extended to accommodate asynchronous updates [21]
and analyzed in a stochastic and a deterministic framework.
More speciÞcally, [21] considers the general case where all
the variables to be estimated are shared by the different work-
ers. However, the explicit presence of a maximum allowable
delay in the update steps is problematic, since this parameter
is not explicitly controlled by the algorithm. In addition,
the residual terms resulting from the allowed asynchronicity
have a signiÞcant impact on the step size prescribed to ensure
the convergence of the algorithm. In practice, the use of this
step size does not lead to a reduction of the computation
time needed to reach convergence, as it will be illustrated in
Section IV. From this practical point of view, the algorithm
proposed in [24], where the maximum delay is explicitly
controlled, appears to be more convenient. However, the use
of this ADMM-based algorithm does not ensure that the

constraints imposed on the shared variables are satisÞed at
each iteration, and the subproblems derived in the context of
HS unmixing require the use of iterative procedures. Finally,
the strategy developed in [22] allows more ßexibility in the
allowed asynchronicity, while requiring slightly more stringent
assumptions on the penalty functions when compared to [21].

Consequently, this paper proposes to adopt the framework
introduced in [22], which encompasses the system structure
described in [24], to HS unmixing. Indeed, given the preceding
remarks, the framework introduced in [22] appears as one
of the most ßexible to address HS unmixing in practice.
This choice is partly justiÞed by the possible connections
between the PALM algorithm and [22]. Indeed, the PALM
algorithm enables a synchronous distributed algorithm to
be easily derived for matrix factorization problems, which
then offers an appropriate reference to precisely evaluate the
relevance of the asynchronicity tolerated by the approach
described in [22]. Another contribution of this paper consists
in assessing the interest of asynchronicity for HS unmixing,
in comparison with recently proposed synchronous distributed
unmixing procedures.

This paper is organized as follows. The problem addressed
in this paper is introduced in Section II. The proposed
unmixing procedure is detailed in Section III, along with the
assumptions required from the problem structure to recover
appropriate convergence guarantees. Simulation results illus-
trating the performance of the proposed approach on synthetic
and real data are presented in Sections IV and V. Finally,
Section VI concludes this paper and outlines possible research
perspectives.

II. PROBLEM FORMULATION

The LMM consists in representing each acquisition by a
linear combination of the endmembers mr , which are present
in unknown proportions. Assuming that the data are composed
of R endmembers, where R is a priori known, and considering
that the image is divided into � subsets of pixels (see
Remark 1 for details) to distribute the data between several
workers, the LMM can be deÞned as

Y� = MA� + B�, � � {1, . . . , �} (1)

where Y� = [y1,�, . . . , yN,�] is an L × N matrix whose
columns are the spectral signatures acquired for each pixel
of the �th pixel subset. Note that each group can be assigned
a different number of pixels if needed. The columns mr of
the matrix M � RL×R are the different endmembers, and the
columns an,� of the abundance matrix A� � RR×N gather the
proportion of the endmembers within yn,�. Finally, the matrix
B� � RL×N represents an additive noise resulting from
the data acquisition and the modeling errors. The following
constraints, aimed at ensuring a physical interpretability of
the results, are usually considered

A� � 0R,N , AT
�1R = 1N , M � 0L ,R (2)

where � denotes a termwise inequality. Assuming that the data
are corrupted by a white Gaussian noise leads to the following



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

THOUVENIN et al.: PARTIALLY ASYNCHRONOUS DISTRIBUTED UNMIXING OF HS IMAGES 3

Fig. 3. Illustration of the master—slave architecture considered for the
unmixing problem (7) with � = 3 workers (the function and variables
available at each node are given in light gray rectangles).

data Þtting term:

f�(A�, M) =
1
2

��Y� � MA�
��2

F. (3)

In addition, the constraints summarized in (2) are taken into
account by deÞning

g�(A�) = �AN (A�) (4)
AN = {X � RR×N | XT 1R = 1N , X � 0R,N } (5)

r(M) = �{•�0}(M) (6)

where �S denotes the indicator function of a set S (�S(x) =
0 if x � S, +� otherwise). This leads to the following
optimization problem:

(A�, M�) � arg min
A,M

�(A, M) (7)

with

�(A, M) = F(A, M) + G(A) + r(M) (8)

F(A, M) =
��

�=1
f�(A�, M), G(A) =

��

�=1
g�(A�). (9)

With these notations, A� denotes a local variable
(i.e., which will be accessed by a single worker), and M is
a global variable (i.e., shared between the different workers,
see Fig. 3). More generally, f� plays the role of a data Þtting
term, whereas g� and r can be regarded as regularizers or con-
straints. The structure of the proposed unmixing algorithm,
inspired by [22], is detailed in Section III.

Remark 1: In the initial formulation of the mixing
model (1), the indexes � and � refer to subsets of pixels.
A direct interpretation of this statement can be obtained by
dividing a unique (and possibly large) HS image into �
nonoverlapping tiles of smaller (and possibly different) sizes.
In this case, each tile is individually unmixed by a given
worker. Another available interpretation allows multitemporal
analysis to be conducted. Indeed, in practice, distributed
unmixing procedures are of particular interest when consid-
ering the unmixing of a sequence of several HS images,
acquired by possibly different sensors at different dates, but
sharing the same materials [30]—[32]. In this case, � and �
could refer to time instants. Each worker � is then dedicated
to the unmixing of a unique HS image acquired at a given
time instant. The particular applicative challenge of distributed
unmixing of multitemporal (MT) HS images partly motivates

the numerical experiments on synthetic (yet realistic) and real
data presented hereafter.

Remark 2: Even if the work reported in this paper has been
partly motivated by the particular application of HS unmixing,
the problem formulated in this section is sufÞciently generic
to encompass a wider class of matrix factorization tasks,
like those encountered in audio processing [33] and machine
learning [34], [35].

III. PARTIALLY ASYNCHRONOUS
UNMIXING ALGORITHM

A. Algorithm Description
Reminiscent of [24], the proposed algorithm relies on a

star topology conÞguration in which a master node supervises
an optimization task distributed between several workers.
The master node also updates and transmits the endmember
matrix M shared by the different workers. In fact, the computa-
tion time of synchronous algorithms is essentially conditioned
by the speed of the slowest worker (see Figs. 1 and 2). Conse-
quently, relaxing the synchronization requirements (by allow-
ing bounded delays between the information brought by each
worker) allows a signiÞcant decrease in the computation time
to reach convergence, which can scale almost linearly with the
number of workers [21], [24]. Note that even though asyn-
chronous optimization schemes may require more iterations
than their synchronous counterparts to reach a given precision,
allowing more frequent updates generally compensates this
drawback in terms of computation time [24].

In the partially asynchronous setting considered, the master
node updates the variable shared by the workers once it has
received information from at least K � � workers. The new
state of the shared variable M is then transmitted to the K
available workers, which can individually proceed to the next
step. As in [22], a relaxation step with decreasing stepsizes
ensures the convergence of the algorithm (see Algorithm 1).
In order to clarify to which extent the convergence analysis
introduced in [22] is applicable to the present setting, we con-
sider K = 1 in the rest of this paper. However, other values of
K could be considered without loss of generality. Details on
the operations performed by the master node and each worker
are detailed in Algorithms 1 and 2, respectively.

Remark 3: The following remarks can be made on the
structure of Algorithm 1.

1) The parameter �k is essentially instrumental to ensure
the global convergence of the partially asynchronous
unmixing algorithm described in this paper, following
the general framework introduced in [22]. For simplicity,
we have directly adopted the expression proposed in [16]
and [22, Assumption D, p. 18], which has been reported
to yield satisfactory results in practice [16]. Evaluating
the practical interest of different expressions for the
relaxation parameters in terms of the convergence speed
of the algorithm is an interesting prospect, which is,
however, beyond the scope of this paper.

2) Note that a synchronous distributed counterpart of
Algorithm 1 can be easily derived for (7), which partly
justiÞes the form chosen for Algorithm 1. This version
consists in setting �k = 1 and waiting for the updates
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Algorithm 1 Master node update
Data: A(0), M(0), �0 � (0, 1], µ � (0, 1), Niter, K .
Broadcast M(0) to the � workers ;
k � 0 ;
Tk � � ;
while k < Niter do

Step 1 Wait for �Ak
�k from any worker ;

Tk = Tk 	 {�k} ;

dk+1
� =

�
0 if � � Tk
dk
� + 1 otherwise ;

Ak+1
� =

�
Ak

� + �k( �A� � Ak
�) if � � Tk

Ak
� otherwise

;

if (�Tk < K ) then
Go to step Step 1 ; // wait until �Tk 
 K

else
�Mk � proxr/ck

M

�
Mk +

1
ck

M
�M F(Ak+1, Mk)

�
;

Mk+1 = �Mk + �k( �Mk � Mk);
�k+1 = �k(1 � µ�k);
Tk+1 � � ;
k � k + 1;

Result: ANiter , MNiter .

Algorithm 2 �th worker update (since the shared
variable M may have been updated by the master node
in the meantime, �M corresponds to a possibly delayed
version of the current Mk). From the master point of view,
�M = Mk�dk

�

Data: �M, �A�.
begin

Wait for ( �M, �A�) from the master node;
�A� � proxg�/cA�

�
�A� �

1
cA�

�A� f�
� �A�, �M

��
;

Transmit �A� to the master node;

Result: �A�.

performed by all the workers (i.e., K = �, see Step 1 of
Algorithm 1) before updating the shared variable M. This
implementation will be taken as a reference to evaluate
the computational efÞciency of the proposed algorithm in
Sections IV and V.

B. Parameter Estimation
A direct application of the algorithm described in

Algorithm 2 under the constraints (2) leads to the following
update rule for the abundance matrix A�k :

	Ak
�k = prox�AN




Ak
� �

1
ck

A�k

�A� f�
�
Ak

�k , Mk�dk
�k

�
�

(10)

where prox�AN
denotes the proximal operator of the indicator

function �AN (see [36]) and

�A� f�(A�, M) = MT(MA� � Y�). (11)

The step size ck
A�k

is chosen as in the standard PALM
algorithm, that is,

ck
A�k

= Lk
A�k

=
���

Mk�dk
�k

�TMk�dk
�k

��
2 (12)

where Lk
A�k

denotes the Lipschitz constant of

�A� f�(•, Mk�dk
�k ) (see [6, Remark 4(iv)]). Note that the

projection prox�AN
(•) can be exactly computed (see [37], [38]

for instance). Similarly, the update rule for the endmember
matrix M is

	Mk = prox�{•�0}




Mk �
1

ck
M

�M F(Ak+1, Mk)

�

(13)

with

�M F(A, M) =
�

�
(MA� � Y�)AT

� (14)

ck
M = Lk

M =

�����
�

�
Ak+1

�
�
Ak+1

�
�T

�����
2

(15)

and Lk
M is the Lipschitz constant of �M F

�
Ak, •

�
.

C. Convergence Guarantees
In general, the proposed algorithm requires the follow-

ing assumptions, based on the convergence results given
in [6, Th. 1] and [22, Th. 1].

Assumption 1 (Algorithmic Assumption): Let (�k, dk
�k ) �

{1, . . . , �} × {1, . . . , � } denote the couple composed of the
index of the worker transmitting information to the mas-
ter at iteration k, and the delay between the (local) copy
�Mk of the endmember matrix M and the current state Mk

(i.e., �Mk � Mk�dk
�k ). The allowable delays dk

�k are assumed
to be bounded by a constant � � N�. In addition, each couple
(�k, dk

�k ) represents a realization of a random vector within
the probabilistic model introduced in [22, Assumption C].

Assumption 2: The following set of assumptions is inher-
ited from the convergence conditions of the PALM algo-
rithm [6].

1) For any � � {1, . . . , �}, g� : RR×N � (��,+�]
and r : RL×R � (��,+�] are proper, convex lower
semicontinuous (l.s.c.) functions.

2) For � � {1, . . . , �}, f� : RR×N × RL×R � R is a C1

function and is convex with respect to each of its variables
when the other is Þxed.

3) � , f�, g�, and r are lower bounded,
i.e., infRR×N ×RL×R � > ��, infRR×N ×RL×R f� > ��,
infRR×N g� > ��, and infRL×R r > ��.

4) � is a coercive semialgebraic function (see [6]).
5) For all � � {1, . . . , �}, M � RL×R , A� � f�(A�, M)

is a C1 function, and the partial gradient �A� f�(•, M)
is Lipschitz continuous with Lipschitz constant LA�(M).
Similarly, M � f�(A�, M) is a C1 function, and the
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partial gradient �M f�(A�, •) is Lipschitz continuous,
with Lipschitz constant LM,�(A�).

6) The Lipschitz constants used in the algorithm,
i.e., LAk

�k
( �Mk) and LM,�k ( �Ak

�k ) (denoted by Lk
Ak

�k

and Lk
M,�k

in the following) are bounded, i.e., there
exists appropriate constants such that for all iteration
index k.

0 < L�
A � Lk

A�k
� L+

A, 0 < L�
M � Lk

M,�k � L+
M.

7) �F is Lipschitz continuous on bounded subsets.
Assumption 3: The following additional assumptions are

required to ensure the convergence of Algorithm 1.
1) For all � � {1, . . . , �}, A� � RR×N , �A� f�(A�, •) is

Lipschitz continuous with Lipschitz constant LA�,M(A�).
2) The Lipschitz constants LA�k ,M( �Ak

�k ) (denoted by
Lk

A�k ,M in the following) is bounded, i.e., there exists
appropriate positive constants such that for all k � N

0 < L�
A,M � Lk

A�k ,M � L+
A,M.

Assumption 1 summarizes standard algorithmic assump-
tions to ensure the convergence of Algorithm 1. Besides,
Assumption 2 gathers requirements of the traditional PALM
algorithm [6], under which the synchronous version of the
proposed algorithm can be ensured to converge.

Note that the nonconvex problem (7) obviously satisÞes
Assumptions 2 and 3 for the functions deÞned in Section II
(see [6] for examples of semialgebraic functions). In particu-
lar, the bounds on the Lipschitz constants involved in Assump-
tions 2-6 and 3-2) are satisÞed in practice, considering the
fact that HS unmixing is generally conducted on reßectance
data (implying Y� � [0, 1]L×N ) and given the constraints
imposed on A� and M, respectively.

Under Assumptions 1—3, the analysis led in [22] allows the
following convergence result to be satisÞed.

Proposition 1: Suppose that (7) satisÞes the requirements
speciÞed in Assumptions 1—3. DeÞne the sequence {vk}k�N
of the iterates generated by Algorithms 1 and 2, with vk �
(Ak, Mk) and the parameters in Algorithm 2 chosen as

ck
A�k

= Lk
A�k

, ck
M = Lk

M.

Then, the following convergence results are obtained.
1) The sequence {�(vk)}k�N converges almost surely.
2) Every limit point of the sequence {vk}k�N is a critical

point of � almost surely.
Proof: See sketch of the proof in the Appendix. �

The convergence analysis is conducted using an auxiliary
function (introduced in Lemma 2 in the Appendix) to han-
dle asynchronicity [21]. The resulting convergence guarantees
then allow convergence results associated with the original
problem (7) to be recovered.

Besides, the following result ensures a stronger convergence
guarantee for the synchronous counterpart of Algorithm 1.

Proposition 2 (Finite length property, following from [6]):
Suppose that (7) satisÞes the requirements speciÞed in
Assumptions 2 and 3. DeÞne the sequence {vk}k�N of the

iterates generated by the synchronous version of Algorithm 1,
with vk � (Ak, Mk) and

ck
A�k

= Lk
A�k

, ck
M = Lk

M, �k = 1, K = �.

Then, the following properties can be proved.
1) The sequence {vk}k�N has Þnite length

+��

k=1

�vk+1 � vk� < +�

where

�vk+1 � vk� =
�

�Ak+1 � Ak�2
F + �Mk+1 � Mk�2

F .

2) The sequence {vk}k�N converges to a critical point of � .
Proof: These statements result from a direct application

of [6, Ths. 1 and 3] and [6, Remark 4(iv)]. �
Note that an additional volume regularization can be con-

sidered, as long as it satisÞes the conditions given in Assump-
tion 2, and more speciÞcally the convexity Assumption 2-1).
For instance, the mutual distance between the endmembers
introduced in [39] can be easily accounted for.

IV. EXPERIMENTS WITH SYNTHETIC DATA

To illustrate the interest of the allowed asynchronicity,
we compare the estimation performance of Algorithm 1 to
the performance of its synchronous counterpart (described in
Section III) and evaluate the resulting unmixing performance
in comparison with three unmixing methods proposed in the
literature. We propose to consider the context of MTHS
unmixing, which is of particular interest for recent remote
sensing applications [30]—[32]. For this application, a natural
way of distributing the data consists in assigning a single HS
image to each worker. To this end, we generated synthetic
data composed of � = 3 HS images resulting from linear
mixtures of R � {3, 6, 9} endmembers acquired in L =
413 bands. The generated abundance maps vary smoothly over
time (i.e., from one image to another) to reproduce a realistic
evolution of the scene of interest. As in [40, Section V],
the abundance maps were obtained by multiplying reference
abundance coefÞcients with trigonometric functions to ensure
a sufÞciently smooth temporal evolution. For the data set
with R = 3, the reference abundance map was obtained by
unmixing the Moffett scene (same area as in [41]). For the
data sets composed of R � {6, 9} endmembers, we directly
used the synthetic abundance maps introduced in [42] as a
reference.1 Each image, composed of 10 000 pixels, was then
corrupted by an additive white Gaussian noise whose variance
ensures a signal-to-noise ratio (SNR) of 30 dB.

Note that the distributed methods were run on a single
computer for illustration purposes using the built-in low
level distributed computing instructions available in Julia [43]
[which provide an interface reminiscent of the Message Pass-
ing Interface (MPI)]. In this case, the workers are independent
processes.

As is common with many blind unmixing algorithms,
the performance of the proposed approach is expected to be

1Abundance maps available at http://www.umbc.edu/rssipl/people/aplaza/
fractals.zip.
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limited in cases where the initial endmember matrix does not
properly represent the observed materials. This observation
essentially results from the nonconvex nature of the prob-
lem presently addressed and is not speciÞc to the proposed
approach. To the best of the authorsÕ knowledge, no blind
unmixing algorithm can systematically ensure the convergence
of the generated iterates to a ÒsatisfactoryÓ critical point of the
objective function in cases where the initialization is relatively
poor.

A. Compared Methods
The estimation performance of the proposed algorithm has

been compared to those of several unmixing methods from
the literature. Note that only the computation times associated
with Algorithm 1 and its synchronous version, implemented
in Julia [43], can lead to a consistent comparison in this
experiment. Indeed, some of the other unmixing methods have
been implemented in MATLAB by their respective authors.
In the following lines, implementation details speciÞc to each
of these methods are given.

1) VCA/FCLS: The endmembers are Þrst extracted on each
image using the vertex component analysis (VCA) [44],
which requires pure pixels to be present. The abundances
are then estimated for each pixel by solving a fully con-
strained least squares problem (FCLS) using the ADMM
algorithm described in [45].

2) SISAL/FCLS: The endmembers are extracted on each
image by the simplex identiÞcation via split augmented
Lagrangian (SISAL) [46], and the abundances are esti-
mated for each pixel by FCLS. The tolerance for the
stopping rule is set to 10�4.

3) Proposed Method (referred to as ASYNC): The endmem-
bers are initialized with the signatures obtained by VCA
on the Þrst image of the sequence, and the abundances are
initialized by FCLS. The synchronous and asynchronous
algorithms are stopped when the relative decrease of the
objective function between two consecutive iterations is
lower than 10�5, with a maximum of 100 and 500 itera-
tions, respectively. Its synchronous counterpart is referred
to as SYNC. The relaxation parameter �k (k � N�) is
updated as in [22] with �0 = 1 and µ = 10�6 (see
Algorithm 1). In the absence of any temporal or spa-
tial regularization, the lexicographically ordered pixels
composing the data sets are evenly distributed between
� = 3 workers.

4) DAVIS [21]: This asynchronous algorithm only differs
from the previous algorithm, in that no relaxation step is
considered, and in the expression of the descent stepsize
used to ensure the algorithm convergence. To ensure a
fair comparison, it has been run in the same setting as
the proposed asynchronous method.

5) DSPLR [5]: The DSPLR algorithm is considered with the
stopping criterion proposed in [5] (set to 	 = 10�5), with
a maximum of 100 iterations. The same initialization as
the two previous distributed algorithms is used.

The estimation performance reported in Table I are
evaluated in terms of the following.

TABLE I
SIMULATION RESULTS ON SYNTHETIC DATA

[GMSE(A)×10�3, RE ×10�4 ]

1) Endmember estimation and spectral reconstruction
through the average spectral angle mapper (aSAM)

aSAM(M) =
1
R

R�

r=1
arccos


mT

r 	mr

�mr �2�	mr�2

�
(16)

aSAM(Y) =
1
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n,�
arccos



yT

n,�
� 	M �an,�

�

�yn,��2� 	M �an,��2
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(17)

2) Abundance estimation through the global mean square
error (GMSE)

GMSE(A) =
1

�RN

��

�=1

�A� � 	A��2
F. (18)

3) Quadratic reconstruction error (RE)

RE = 1
�L N

��
�=1�Y� � 	M	A��2

F. (19)

B. Results
The results reported in Table I correspond to a single trial of

the different algorithms. More precisely, the results reported
for VCA/FCLS are representative of the results obtained
over multiple runs, which have not been observed to vary
signiÞcantly from one run to another. A similar observation has
been made for multiple runs of the asynchronous algorithms
(ASYNC and DAVIS) whose performance does not change
signiÞcantly over different runs for the simulation setting
adopted in this paper, both in terms of estimation accuracy
and computation time.

1) Endmember Estimation: The proposed asynchronous
algorithm leads to competitive endmember estimation
for the three synthetic data sets (in terms of aSAM
and RE), notably in comparison with its synchronous
counterpart. We can note that the DSPLR algorithm yields
interesting estimation results for R = 3, which, however,
signiÞcantly degrade as R increases. This partly results
from the matrix inversions involved in the update steps
of [5], which remain relatively sensitive to the condition-
ing of the involved matrices, and consequently to the
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Fig. 4. Evolution of the objective function for the synthetic data sets, obtained for Algorithm 1 and its synchronous version until convergence. (a) R = 3.
(b) R = 6. (c) R = 9.

Fig. 5. Mud lake data set used in the MTHS experiment with the corresponding acquisition dates. The area delineated in red in (e) highlights a region known to
contain outliers (this observation results from a previous analysis led on this data set in [31]). (a) April 10, 2014. (b) February 6, 2014. (c) September 19, 2014.
(d) November 17, 2014. (e) April 29, 2015. (f) October 13, 2015.

TABLE II
ENDMEMBER NUMBER R ESTIMATED BY NWEGA [51]

ON EACH IMAGE OF THE MUD LAKE DATA SET

choice of the regularization parameter of the augmented
Lagrangian.

2) Abundance Estimation: The synchronous PALM algo-
rithm leads to the best abundance estimation results, even
in the absence of any additional regularization on the spa-
tial distribution of the abundances. In this respect, we can
note that the performance of PALM and its asynchronous
version is relatively similar, and consistently outperforms
the other unmixing methods.

3) Overall Performance: The performance measures
reported in Table I show that the proposed distributed
algorithm yields competitive estimation results, especially
in terms of the required computational time when
compared to its synchronous counterpart. To be
more explicit, the evolution of the objective function
versus the computation time shows the interest of the
allowed asynchronicity to speed up the unmixing task,
as illustrated in Fig. 4 (the computation time required
by Algorithm 1 is almost four times lower than the one
of its synchronous counterpart).

Note that even though the SYNC and ASYNC algorithms
start from the same initial point, there is no guarantee that both
methods converge to the same critical point, which essentially
accounts for the differences in the results reported for both

TABLE III

SIMULATION RESULTS ON REAL DATA (RE ×10�4 )

methods in Table I. For the asynchronous algorithms, another
potential source of variability comes from the variations in the
order the updates are performed from one run to another. For
the simulation setting adopted in this paper, such variations
have not been observed to lead to signiÞcant differences in
the estimation results.

V. EXPERIMENTS WITH REAL DATA

In practice, as emphasized earlier, distributed unmixing
procedures are of particular interest when considering the
unmixing of large HS images, or of a sequence of HS
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Fig. 6. Abundance maps recovered by the different methods (in each row) for the Cuprite data set.

Fig. 7. Abundance maps recovered by the different methods (in each row)
for the Houston data set.

images acquired by possibly different sensors at different time
instants [30]—[32], referred to as MTHS images. The unmixing
of two large real HS images is Þrst proposed, whereas the
application to MTHS images essentially motivates the last
example addressed in this section. The experiments have been
conducted in the same setting as in Section IV (the pixels
composing the data sets are evenly distributed between � = 3
workers).

A. Description of the Data Sets
1) Cuprite Data Set (single HS image): The Þrst data

set considered in this paper consists of a 190 × 250 subset
extracted from the popular Cuprite data set. In this case,

Fig. 8. Soil abundance map recovered by the different methods (in each
row) at each time instant (given in column) for the experiment on the Mud
lake data set (the different rows correspond to VCA/FCLS, SISAL/FCLS,
DSPLR [5], DAVIS [21], SYNC, and ASYNC methods).

reference abundance maps are available from the literature (see
for instance [44], [47]). After removing water absorption and
low SNR bands, 189 out of the 224 spectral bands initially
available were exploited in the subsequent unmixing proce-
dure. The data have been unmixed with R = 10 endmembers
based on prior studies conducted on this data set [44], [47].

2) Houston Data Set (single HS image): The second data
set considered hereafter was acquired over the campus of the
University of Houston, Houston, TX, USA, in 2012 [48]. The
152×108 scene of interest is composed of 144 bands acquired
in the wavelength range 380—1050 nm. The data have been
unmixed with R = 4 endmembers based on prior studies
conducted on this data set [49].












