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Greedy Approximate Projection for Magnetic
Resonance Fingerprinting with Partial Volumes

Roberto Duarte, Audrey Repetti, Pedro A. Gómez, Mike Davies and Yves Wiaux

Abstract—In the context of quantitative Magnetic Resonance
Imaging (qMRI), traditional methods suffer from the so-called
Partial Volume Effect (PVE) due to spatial resolution limitations.
As a consequence of PVE, the parameters of the voxels containing
more than one tissue are not correctly estimated. Magnetic Res-
onance Fingerprinting (MRF) is not an exception. The existing
methods addressing PVE are neither scalable nor accurate. We
propose to formulate the recovery of multiple tissues per voxel as
a non-convex constrained least-squares minimisation problem. To
solve this problem, we develop a greedy approximate projection
algorithm called GAP-MRF. Our method adaptively finds the
regions of interest on the manifold of fingerprints defined by the
MRF sequence, and is memory efficient. In addition, we gener-
alise our method, using an alternating minimisation approach,
to compensate for phase errors appearing in the model. We
show, through simulations on synthetic data with PVE, that our
algorithm outperforms state-of-the-art methods. Our approach is
also validated on in vivo data using two different MRF protocols.

Index Terms—MRI, qMRI, MRF, PVE, non-convex, manifold,
greedy, iterative projection.

I. INTRODUCTION

Magnetic Resonance Imaging (MRI) is a powerful tool for
diagnosis in medicine. Its main advantage over other medical
imaging modalities is that MRI acquisitions are non-ionising
and non-invasive. Nevertheless, the main drawback of MRI
is that produces qualitative images whose intensity values
are a nonlinear response to underpinning physical parameters.
Quantitative MRI (qMRI) is a particular modality that aims to
produce spatial quantitative maps of parameters related to the
tissues under investigation such as T1 and T2 relaxation times
[1]. Due to prohibitively long acquisition times, this modality
is not a standard tool in diagnosis, despite the advantages
of quantitative imaging. Motivated by Compressive Sensing
(CS) theory, Magnetic Resonance Fingerprinting (MRF) was
introduced to accelerate qMRI acquisitions [2]. MRF uses
a combination of random excitation pulse sequences and k-
space undersampling to simultaneously acquire all relevant
quantitative information at once. These random excitation
sequences are used to produce unique temporal patterns called
fingerprints. These patterns are compared to the ones predicted
by the model to extract the parameters of interest.
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In general, qMRI techniques, particularly MRF based re-
constructions, assume that a voxel contains at most one type
of tissue. This assumption is not feasible in practice, and in
consequence, voxels containing multiple tissue types may be
assigned with completely different parameters. This problem
is known as the Partial Volume Effect (PVE) and is present
in all the modalities of medical imaging with limited spatial
resolution [3]. In Fig. 1, an example of PVE can be seen. The
left image shows a spatial distribution of T1 in a simulated
brain. The right image shows the reconstruction using voxels
four times bigger. We can observe in this example that the
partial volume voxels are not correctly reconstructed.

Fig. 1: Partial volume effect in a T1 parameter map. The image of
the left represents the true T1 parameter map and image on the right
is a lower resolution reconstruction.

The PVE has been analysed in the supplementary material
of [2]. In this work, the authors propose to decompose the
signal using a least-squares method as a weighted sum of at
most three distinct signals each representing a different tissue.
While the method was shown to be robust to noise for long
sequences, it is not well adapted to handle real data. Indeed,
in practice we neither have information about the spatial dis-
tribution of the partial volume voxels nor the true components
of the original signal. Additionally, for short sequences, the
noise in the measurements and the sampling of the manifold of
fingerprints that describes the signal can significantly affect the
estimations. More recently, a Bayesian method was proposed
in [4], to tackle the PVE in MRF. The method proposed there
is shown to be able to estimate the parameters of the partial
volume voxels. However, this estimation comes at the cost of
an increased acquisition time with respect to traditional MRF
based reconstructions. Indeed, results are presented for three
times longer sequences than traditional MRF. This is due to
the high aliasing effect encountered with undersampled noisy
data. Furthermore, to obtain accurate results, this method relies
on a high sampling of the fingerprint manifold, resulting in a
high computational cost (in terms of reconstruction time and



2

memory requirements).
In this paper, we propose to tackle the PVE in the context

of the MRF by reformulating the problem as a non-convex
constrained least-squares minimisation problem. In particular,
we assume that the number of independent tissues in the
imaged volume is upper bounded, and that each tissue has
a minimum number of pure voxels. In addition, since the
parameters of each tissue should be sufficiently different, we
add a constraint to distinguish them using information on
the neighborhood of each element of the dictionary. To solve
the resulting constrained minimisation problem, we develop
a greedy approximate projection algorithm called GAP-MRF
to solve the non-convex problem. This method works as a
projected gradient descent algorithm (also known as iterative
projection, or forward-backward algorithm [5, 6]), where the
projection is computed inexactly leveraging a greedy approach.
In particular, the proposed method for the inexact projection
is adaptive, memory efficient, and is a core contribution to
our work. Finally, we generalise our method to compensate
for phase errors in the model due to timing or coil sensitivity
errors, using an alternating minimisation approach [7–11]. We
show that our approach outperforms state-of-the-art methods
using a simulated partial volume phantom. In addition, we
validate our results on in vivo MRF data.

The remainder of the paper is organised as follows: Section
II introduces the MRF inverse problem considering only pure
voxels and the state-of-the-art method. Section III formulates
the target partial volume problem. Section IV proposes the
algorithm to solve the partial volume problem. Section V in-
vestigates the behaviour of the proposed method on simulated
and in vivo data. We conclude in Section VII.

II. MRF PROBLEM DESCRIPTION

A. Inverse problem for single tissue recovery

In the context of MRF, the objective is to estimate the
parameters of each voxel in the imaged volume from degraded
undersampled measurements. Let Y ∈ CQ×L×C be the mea-
surement matrix, where L is the excitation sequence length, C
is the number of coils and Q is the number of measurements
at each excitation and each coil. Let M ∈ CN×L be the
response of the imaged volume of interest with N voxels.
For every (l, c) ∈ {1, . . . , L}×{1, . . . , C}, the corresponding
observation Y:,l,c ∈ CQ is given by

Y:,l,c = Ω:,:,lFS:,:,cM:,l + η:,l,c, (1)

where Ω ∈ {1, 0}Q×N×L is the concatenation of L selection
matrices, F ∈ CN×N is the 2-dimensional discrete Fourier
transform, and S ∈ CN×N×C is the concatenation of C
spatial sensitivity coil diagonal matrices, and η ∈ CQ×L×C
is a realisation of a random i.i.d. Gaussian noise. Let h :
CN×L → CQ×L×C be the linear mapping defining the
complete acquisition process such that:

Y = h (M) + η. (2)

For each voxel n ∈ {1, . . . , N}, the magnetisation response
Mn,: is modelled through the smooth non-linear mapping B :

Θ → C1×L (commonly Bloch equations or Extended Phase
Graphs) scaled by the unknown proton density ρn ∈ R+:

Mn,: = ρnB(θ̂n,:,Γ), (3)

where Γ ∈ RA×1 represents the concatenation of A known
acquisition parameters (eg., flip angles α, repetition times TR)
that are chosen in such a way that Mn,: is only sensitive to the
P parameters θ̂n,: ∈ Θ under investigation, where Θ ⊂ R1×P

denotes the subset of feasible parameters. In the remainder
of this paper, we focus on the case when P = 2 and Θ
corresponds to T1 and T2 relaxation times.

B. BLoch response recovery via Iterative Projection (BLIP)

Recently, a full Compressive Sensing (CS) strategy was
formulated in [12]. In this work, the authors proposed to solve:

minimise
M∈B+

1

2
‖Y − h (M) ‖22, (4)

where

B+ =
{
M ∈ CN×L | (∀n ∈ {1, . . . , N}) Mn,: = ρm,

with ρ ∈ R+ and m ∈ B (Θ,Γ)
}
. (5)

In [12], an iterative projection algorithm called BLIP has
been developed to solve (4). This method imposes that M
belongs to B+ by computing at iteration i:

M(i+1) = PB+

(
M(i) − µh†

(
h
(
M(i)

)
−Y

))
, (6)

where µ > 0 is a step size chosen using a backtracking
method and h† is the adjoint operator of h, and PB+ represents
the projection onto the set B+. The authors also derived a
technical condition on both L and the undersampling ratio
N/Q, for the Restricted Isometry Property (RIP) to be satisfied
by the operator h which guarantees robust recovery. In this
work, the authors interpreted the dictionary Φ ∈ CD×L of
fingerprints, introduced in [2], as a discrete sampling of the
low dimensional manifold B, and the matched filter as the
projection PB+ . Φ is constructed from D samples of Θ, stored
in a matrix θ ∈ RD×P . The matched filter is computed for
each voxel n, by finding the closest sample in the dictionary
Φd̂n,::

d̂n = argmax
d

real
(
Mn,: [Φd,:]

†
)

‖Φd,:‖2
, (7)

and scaling it using the proton density calculated by:

ρ̂n = max

 real

(
Mn,:

[
Φd̂n,:

]†)
‖Φd̂n,:‖

2
2

, 0

 . (8)

As mentioned in [12], the proton density ρ is non-negative
and real valued. However, it is a common practice to allow
the proton density to absorb phase terms to correct for timing
or coil sensitivity errors. If ρn is allowed to be complex, then
the projection can be reformulated as:
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d̂n = argmax
d

∣∣∣Mn,: [Φd,:]
†
∣∣∣

‖Φd,:‖2
, (9)

and

ρ̂n =
Mn,:

[
Φd̂n,:

]†
‖Φd̂n,:‖

2
2

. (10)

In order to obtain the parameters of interest θ̂ ∈ RN×P ,
the matrix θ is used as Look-Up Table (LUT). Inaccuracies
related to the manifold discretisation can significantly affect
the quality of the reconstructions. Since the exact parameter
values for the tissues are unknown, a common approach
to achieve good quality reconstruction is to densely sample
the manifold. However, this strategy introduces memory and
computational issues due to the dictionary size.

In reality, volumetric images have a finite resolution intro-
ducing voxels that contain more than one element [3]. This
leads to a signal consisting in a linear combination of the
signals produced by each tissue in the voxel. This is called the
PVE and is present in all the modalities of medical imaging.
By not taking PVE into account in the model results in
parameter mismatch.

III. PROPOSED PARTIAL VOLUME MODEL

The model described in the previous section considers that
each voxel contains at most one element. Partial volume
voxels are introduced due to the spatial discretisation in the
acquisition process. When partial volume voxels are involved,
the magnetisation sequence can be described as:

M = XΦ, (11)

where X ∈ RN×D+ is a mixing matrix containing the pro-
ton densities of the elements constituting each voxel, and
Φ ∈ CD×L is the over-complete dictionary described in
Section II-B. Since only few elements per voxel are expected,
the mixing matrix X is sparse.

As a consequence of the smoothness of B, Φ is highly
coherent. In this context, the estimation of X from highly
undersampled noisy data is expected to fail without additional
priors. Leveraging CS theory [13–16], we can find the sparsest
matrix X that is sufficiently close to the measurements by
solving:

minimise
X∈RN×D

+

‖X‖0 subject to ‖Y − h(XΦ)‖2 ≤ ε, (12)

where ε > 0 is a bound chosen according to the acquisition
noise level. In (12), ‖.‖0 denotes the `0 pseudo-norm [13],
counting the non-zero entries of its argument, and is defined
as:

‖X‖0 =
∑
i

∑
j

(Xi,j)
0
, (13)

with the convention 00 = 0. Since this function is non-convex
and non-differentiable, problem (12) is difficult to solve in
practice, in particular in the context of high dimensional
problems (usually, D is of the order of 106 and L of the

order of 103). Thus, the non-convexity of the `0 pseudo-norm
is often relaxed by the use of the `1-norm [17]. Nevertheless,
Φ being highly coherent, this convex relaxation cannot be used
to correctly estimate the coefficients of X [18]. To overcome
these difficulties, similarly to the BLIP approach, we propose
to reformulate problem (12) as:

minimise
M∈BS+ (Φ)

1

2
‖Y − h(M)‖22 (14)

where

BS+ (Φ) =
{
M ∈ CN×L |M = XΦ with X ∈ S+

}
, (15)

S+ =
4
∩
s=1
Ss, (16)

and, for every s ∈ {1, . . . , 4}, Ss is a closed non-empty subset
of RN×D, used to impose feasibility constraints on X. These
sets are defined in the following subsections.

A. Positivity Constraint

Since the proton densities of the imaged volume must be
non-negative, we can restrict our solution to be in the positive
orthant:

S1 = RN×D+ . (17)

B. Constraint on the number of tissues

Commonly MRF aims to obtain quantitative values of a
small set of tissues. In practice, only T � D elements of
the dictionary Φ are necessary to characterise M. While T is
unknown, we have a reasonable estimate for it. We propose
to introduce a loose upper bound K, such that T ≤ K ≤ D,
to limit the number of active dictionary elements (although K
appears to be a free parameter, in practice we choose it to be
at least four times greater than T for our method to work for
low noise scenarios and at least eight times greater than T for
high noise scenarios). Let us define a set DX that is formed
by the column indices of X with non-zero coefficients. To
avoid noisy voxels, only rows with proton density greater than
ξ > 0 (chosen according to the noise level) will be considered.
Formally, this set is defined as:

DX = {d ∈ {1, . . . , D} | (∃n ∈ GX) Xn,d 6= 0}, (18)

where

GX = {n ∈ {1, . . . , N} | ‖Xn,:‖1 > ξ} (19)

and ‖.‖1 denotes the `1-norm. The set DX indicates the
columns of X contributing to the magnetisation sequence. We
can limit the number of used elements of the dictionary by
constricting the cardinality of this set, denoted by Card(DX)
to be upper bounded by K:

S2 =
{
X ∈ RN×D |Card(DX) ≤ K

}
. (20)
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C. Constraint on voxel’s neighbourhoods
The tissues of interest are unique and need to be sufficiently

different to be distinguished. In order to incorporate this
prior information in the reconstruction process, we define the
neighbour set associated to each element d ∈ {1, . . . , D} of
the dictionary as:

Nv(d) = {d′ ∈ {1, . . . , D}\{d}|
(∀p = {1, . . . , P}) |θd′,p − θd,p| < υθd,p}, (21)

where υ > 0. We can define a set of all possible X such
that, the parameters of each element in DX are sufficiently
far from each other. This can be achieved by constricting all
the neighbour columns of each element in DX to be the null
element of RN denoted by 0:

S3 =

{
X ∈ RN×D |

(
∀d′ ∈ ∪

d∈DX

Nv(d)

)
X:,d′ = 0

}
(22)

D. Constraint on the pure voxels
Due to the additive noise in model (2), some elements

of X corresponding to non-used dictionary elements take
non-zero values. In order to avoid these noisy elements in
the reconstructions, we impose that at least κ > 0 rows
(i.e. voxels) of X contain only one non-zero value for each
active column of X (our method uses these voxels to explore
the manifold of fingerprints, and we heuristically choose it
depending on the noise level). These rows identify the pure
voxels. This constraint can be formulated as follows:

S4 =

{
X ∈ RN×D | (∀d ∈ DX) ‖ (Xn,d)n∈VX ‖0 ≥ κ

}
(23)

where

VX = {n ∈ {1, . . . , N} | ‖Xn,:‖0 = 1} . (24)

IV. GREEDY APPROXIMATE PROJECTION FOR MRF
A. Proposed iterative projection algorithm

In order to solve problem (14), as for BLIP algorithm, we
rely on an iterative projection method [19]. At each iteration
i ∈ N, this method consists in updating M(i+1) by computing
a gradient step followed by a projection step:

M(i+1) = PBS+
(Φ)

(
M(i) − µh†

(
h
(
M(i)

)
−Y

))
, (25)

where µ > 0. In [12], it is shown that choosing µ ≈ N/Q
is theoretically justifiable. However, in order to ensure the
stability of the iterative projection algorithm and accelerate
convergence, in [12, 20] the authors proposed to choose µ
using a backtracking method. In order to handle efficiently
the constraint BS+ (Φ), we propose to compute inexactly
the projection onto this set in (25). The resulting method,
named Greedy Approximate Projection for MRF (GAP-MRF),
is described in Algorithm 1. We can notice that the GAP-
MRF method and BLIP are solving similar problems, using
the same algorithmic structure. In this context, as in [12], a
condition on both L and the undersampling ratio N/Q might
be derived for recovery guarantee. However, the investigation
of such condition is beyond the scope of this article.

Algorithm 1 GAP-MRF global iterations

1: Input: Y ∈ CQ×L×C , ζ < 1, M(0) ∈ CN×L
2: Iterations:
3: for i = 0, 1, . . . do
4: µ = 2N/Q, ν = 0
5: while µ > ν do
6: µ = µ/2
7: Gradient Step:
8: M

(i)
= M(i) − µh†

(
h
(
M(i)

)
−Y

)
9: Projection Step:

10: M(i+1) ≈ PBS+
(Φ)

(
M

(i)
)

11: Backtracking step

12: ν = ζ
‖M(i+1) −M(i)‖22
‖h
(
M(i+1) −M(i)

)
‖22

13: end while
14: end for

B. Approximate projection

To compute the projection onto PBS+ (Φ), one can notice
that, for every M ∈ CN×L:

PBS+ (Φ)

(
M
)

= argmin
M∈BS+ (Φ)

1

2
‖M−M‖22

= argmin
M=XΦ,X∈S+

1

2
‖XΦ−M‖22

=

(
argmin
X∈S+

1

2
‖XΦ−M‖22

)
Φ (26)

Note that S2,S3 and S4, can be handled through the
definition of Φ. Let M = XΦ ∈ BS+ (Φ). For T ≤ K (K
being the upper bound defined in (20)), let U ∈ RN×T be a
matrix constructed with the columns of X containing at least
a value different from 0, and ∆ ∈ CT×L be the corresponding
dictionary elements such that XΦ = U∆. Then (26) can be
rewritten as follows:

PBS+ (Φ)

(
M
)

=

 argmin
U∈RN×T

+

1

2
‖U∆−M‖22

∆. (27)

In (27), the dictionary ∆ is defined as

∆ = argmin
∆∈C

(
min

U∈RN×T
+

1

2
‖U ∆−M‖22

)
, (28)

where C is the set given by

C =
{

∆ ∈ CT×L | (∃X ∈ S+) X = Z
(
U
)

with U = argmin
U∈RN×T

+

1

2
‖U∆−M‖22

}
, (29)

with Z : RT×L+ → RD×L+ the linear operator defined such that
Z
(
U
)
Φ = U∆.

As mentioned earlier, Φ is an over-complete dictionary,
which makes the exact projection practically impossible to
compute. To overcome this difficulty, we propose a greedy
algorithm to approximate the projection by finding a dictionary
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∆̃ and a mixing matrix Ũ such that U∆ ≈ Ũ∆̃. Then the
projection in line 10 of Algorithm 1 can be approximated as
follows:

PBS+ (Φ)

(
M
)
≈

 argmin
Ũ∈RN×T

+

1

2
‖Ũ∆̃−M‖22

 ∆̃. (30)

As discussed in the previous section, in practice phase er-
rors are appearing in the model, we propose to incorporate
an orthogonal diagonal matrix Λ ∈ CN×N to compensate
for these errors. The approximate projection with the phase
compensation is then given by:

PB̃S+ (Φ)

(
M
)
≈ ΛŨ∆̃, (31)

where Λ and Ũ are obtained by solving:

argmin
Λ∈CN×N ,Ũ∈RN×T

+

1

2
‖ΛŨ∆̃−M‖22

subject to |Λn,n′ | =

{
1, if n = n′,

0, otherwise.
(32)

It is worth mentioning that in (30) and (32), all the rows of
Ũ can be computed independently in parallel.

On the one hand, forward-backward based algorithms [6, 21,
22] can be used to solve problem (30) (in particular, in our sim-
ulations, we use the built-in Matlab function of non-negative
least-squares, that is an implementation of [23]). On the other
hand, to solve problem (32), to jointly estimate Λ and U,
block coordinate approaches must be considered (e.g. Gauss-
Seidel approaches [7], alternating forward-backward methods
[8–11]). Note that in comparison with the traditional MRF
methods which densely sample the manifold, our approach
reduces the memory requirements, by using the dictionary
∆̃ containing at most K elements, without the inaccuracies
related to the manifold discretisation.

The greedy algorithm to estimate ∆̃ is described in the next
section.

C. Greedy Dictionary Estimation

The GAP-MRF algorithm takes advantage of the dictionary
coherence and the constraints imposed on X (described in
Section III) to approximate the projection onto BS+ (Φ) in
line 10 of Algorithm 1. As described in Section IV-B, this
projection can be approximated at each iteration i ∈ N, by
solving (30), which necessitates to estimate the dictionary
∆̃(i). We propose to estimate it using a greedy approach,
leveraging both the knowledge of M

(i)
and the properties of

the sets S2≤s≤4 (note that the constraint S1 is handled directly
in (30)). The proposed approach is described in details in this
section.

The process to obtain ∆̃(i) consists in three main steps
leveraging the set of pure voxels. The first step consists
in approximating the parameters of the pure voxels (S4

constraint) using the projection onto B+ (the definition of
B+ is given in 5). The objective of the second step is to
find K regions of interest (S2 constraint) of the manifold
by exploiting its smoothness. Finally, in the third step, the

M
(i)
,Φ(i), θ(i),V(i)

X , σ
(i)
θ

Projection onto B+

ClusteringK

Non-Maximum
Suppression

υ κ

Approximate
Projection
onto BS+

M(i+1)

Parameter
Re-Samplingns, β

Φ(i+1), θ(i+1), σ
(i+1)
θ

Pure Voxel
Set Update

γ

V(i+1)
X

Dictionary Estimation

θ̂, ρ̂

θS1∩S2

Ũ(i)

∆̃(i) θ̃(i)

Σ(i)M
(i)

M
(i)
,Φ(i), θ(i),V(i)

X

Fig. 2: Greedy approximate projection diagram. The blue boxes
represent the main steps in the approximate projection, the gray boxes
represent the intermediate steps for the dictionary estimation and the
arrows show the input and output variables.

parameters that are too close to each other are discarded
(S3 constraint) by using a Non-Maximum Suppression based
method [24]. This method acts on the number of voxels that
corresponds to each parameter and keeps only the elements
which have enough pure voxels to satisfy the S4 constraint.
This process is summarised in the dictionary estimation step
on Fig. 2. The remaining blue blocks in the diagram are used
to update the variables in the greedy approximate projection.
More precisely, we compute the mixing matrix Ũ(i) and the
magnetisation sequence M(i+1) using equation (30) with the
resulting dictionary ∆̃(i). Then, we update the pure voxel set
VX using the mixing matrix Ũ(i). Finally, the dictionary Φ is
refined by randomly sampling around the parameters θ̃(i). The
complete method is described in Algorithm 2 and explained
in the following paragraphs.

1) Projection onto B+: At iteration i ∈ N, we have:

PBS+ (Φ)

(
MV(i)

X ,:

)
= PB+(Φ)

(
MV(i)

X ,:

)
, (33)
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Algorithm 2 Greedy Approximate Projection

1: Input: M
(i)
,Φ(i), θ(i),V(i)

X ,Σ(i),K,Γ, κ, υ, γ, β, ξ, ns
2: Dictionary Estimation:

3: Projection onto B+

4: for n = 1, 2, ..., N do
5: d̂n = argmax

d
real

(
M

(i)

n,:Φ
†(i)
d,:

)
/‖Φ(i)

d,:‖2

6: ρ̂n = max
(

real
(
M

(i)

n,:Φ
†(i)
d̂n,:

)
/‖Φ(i)

d̂n,:
‖22, 0

)
7: θ̂n,: = θ

(i)

d̂n,:
8: end for
9: Clustering

10: I = {n ∈ V(i)
X | ρ̂n > ξ}

11:
[
θS1∩S2 , c

]
= k-means

(
θ̂I,:,K

)
12: Non-Maximum Suppression

13: θ̃(i) = NonMaximumSuppression
(
θS1∩S2 , c, υ, κ

)
14: ∆̃(i) = B(θ̃(i),Γ)

15: Approximate Projection onto BS+
16: Ũ(i) = argmin

U∈RN×T
+

1

2
‖U∆̃(i) −M

(i)‖22

17: M(i+1) = Ũ(i)∆̃(i)

18: Pure Voxel Set Update

19: G(i)
X =

{
n ∈ {1, . . . , N} | ‖Ũ(i)

n,:‖1 > ξ
}

20: V(i+1)
X =

{
n ∈ G(i)

X | max
(
Ũ

(i)
n,:

)
≥ γ‖Ũ(i)

n,:‖1
}

21: Parameter Re-sampling

22: θ(i+1) = ParameterReSampling
(
θ̃(i),Σ(i), ns

)
23: Φ(i+1) = B(θ(i+1),Γ)

24: σ
(i+1)
θ = σ

(i)
θ β

25: Output: θ(i+1),Φ(i+1), σ
(i+1)
θ ,V(i+1)

X and M(i+1)

where B+ is the set defined in equation (5), and MV(i)
X ,:

=(
Mn,:

)
n∈V(i)

X

, V(i)
X corresponding to an estimate of the pure

voxel positions in X(i) at iteration i (the true set VX corre-
sponding to the pure voxels of the original X being unknown).
At the first iteration, we choose V(0)

X = {1, . . . , N}, and the
set is updated during the greedy process (see Algorithm 2,
step 20).

From (33), we can estimate the parameters θ̂ and the proton
density ρ̂ of the voxels in V(i)

X using equations (7)-(8) with a
dictionary Φ(i) (we construct Φ(0) by coarsely sampling Θ).
Φ(i) is an adaptive dictionary that is refined at each iteration
to reduce the computational cost, the simulations suggest that
the accuracy of the reconstructions is preserved. Since there
are at least κ pure voxels for each active element in Φ and
the value of the proton density is at least ξ, we expect that the
voxel parameters in V(i)

X with ρ̂ > ξ will form clusters around
the true values of the dictionary elements, an example can be
seen in Fig. 3.

2) Clustering: In order to find K centers approximating
the parameters of interest, we propose to use the k-means

0 2000 4000 6000

0

200

400

600

Fig. 3: Clustering example. The green crosses represent the parame-
ters of the voxels in V(i)

X which its corresponding proton density is
greater than ξ. The black circles represent the centers obtained by the
k-means algorithm. The red stars are the true phantom parameters.

algorithm [25]. It is important to emphasize that the parameter
K should be large enough to avoid partial volume voxels to
significantly affect the estimation. The objective of k-means is
to find K centers that minimise the squared distance from all
points to its closest center. Our simulations suggest to choose
K at least four times larger than the expected number of tissues
to avoid partial volume voxels to shift the centers. The centers
obtained by solving the k-means problem θS1∩S2 ∈ RK×P
can be used to compute a dictionary ∆S1∩S2 ∈ CK×L.
By solving equation (30) with ∆S1∩S2 , we would obtain a
US1∩S2 ∈ RN×K such that Z

(
US1∩S2

)
∈ S1 ∩ S2.

3) Non-Maximum Suppression: The k-means algorithm
also provides a label to each voxel corresponding to the
matched center. We define c ∈ RK×1 to be the vector
containing the number of voxels associated with each center.
Inspired by the Non-Maximum Suppression method in [24],
we use the number of pure voxels assigned to each center to
remove the neighbours defined in equation (21). We first take
the parameters of the highest value of c, and we add all the
c values of the neighbours to the maximum value of c if it is
greater than κ we keep the parameters, if not we discard them
and set the corresponding values of c to 0 (see Fig. 4). We
repeat the process until all values of c are 0. Finally, we use the
resulting parameters θ̃(i) ∈ RT×P to construct ∆̃(i) ∈ CT×L.

4) Inexact Projection onto BS+ : Once the dictionary ∆̃(i)

is approximated, computing the three steps described above,
the magnetisation sequence M(i+1) can be updated. To this
aim, we use equation (30), where the minimisation problem is
solved using Matlab built-in function for non-negative least-
squares problems [23].

5) Pure Voxel Set Update: In order to avoid noisy voxels,
we use the set defined in (19) for Ũ(i). Note that Z

(
Ũ(i)

)
is

a matrix of the size of X filling the missing values of Ũ(i)

with zeros, and thus we can re-define the set G(i)
X in terms of

Ũ(i) as:

G(i)
X =

{
n ∈ {1, . . . , N} | ‖Ũ(i)

n,:‖1 > ξ
}
. (34)
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Fig. 4: Non-maximum suppression example. The green crosses repre-
sent the centers obtained by the k-means and the green numbers repre-
sent the corresponding number of voxels assigned to that center. The
black circles represent the parameters obtained by the Non-Maximum
Suppression. The red stars are the true phantom parameters.

Then, we update the pure voxel set as:

V(i+1)
X =

{
n ∈ G(i)

X | max
(
Ũ(i)
n,:

)
≥ γ‖Ũ(i)

n,:‖1
}
, (35)

where 0 < γ < 1 is a relaxation factor used to compensate
both for the noise and for the fact that the true dictionary
elements are not guaranteed to be present. In our simulations,
this parameter is fixed to be γ = 0.85.

6) Parameter Re-sampling: We update Φ(i) to refine the
manifold elements of interest. For this process, we produce ns
random samples around the elements in θ̃(i) using a Gaussian
distribution with a diagonal covariance matrix Σ(i) (see Fig.
5). The values of the covariance matrix Σ(i) are reduced by a
factor 0 < β < 1 at each iteration. When the values of Σ(i) are
sufficiently small, the dictionary ∆̃ will not change anymore
and after a fixed number of iterations the sequences generated
by Algorithm 1 will stabilise. Since the samples are randomly
Gaussian distributed, the parameter values are not limited to
a given resolution.

0 2000 4000 6000
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Fig. 5: Parameter re-sampling example. The green crosses repre-
sent the parameters of the dictionary Φ(i+1) obtained by randomly
sampling around the parameters obtained by the Non-Maximum
Suppression. The red stars represent the true phantom parameters.

7) Initialisation: Since the set S+ is non-convex, the choice
of the initialisation is important in practice. If the initial
magnetisation sequence or the dictionary are not close to the
desired values, the greedy approximate projection can fail. To
tackle this problem, we propose to run the algorithm with
κ = 0 and υ = 0 and fixing V(i)

X = {1, . . . , N} for few
iterations (we choose 30 iterations in our simulations). Note
that the values of Σ should be large enough to explore Θ (for
our simulations, we choose Σ

(0)
1,1 = 200, Σ

(0)
2,2 = 50). Then we

use the resulting dictionary Φ, the corresponding parameters
θ and the magnetisation sequence M as initialisation for the
GAP-MRF algorithm.

V. SIMULATIONS AND RESULTS

In this section, we present the procedure used to evaluate
the reconstruction in the context of simulated data with a
partial volume phantom. To keep the experiments simple,
we use the simplified model (1) with only one coil (i.e.
C = 1) and the corresponding sensitivity map to be the
identity matrix. An Echo-planar Imaging (EPI) undersampling
scheme is used. The Bloch Equations are used for the non-
linear mapping, with the random flip angles α and fixed
repetition times TR as described in [12]. We compare the
BLIP algorithm to our proposed algorithm GAP-MRF in two
experiments. In the first experiment, we investigate the effect
of the magnetisation sequence length L (this parameter affects
directly the acquisition time) by varying from L = 200 to
L = 600 acquisition instances. For the second experiment,
we investigate the effect of measurement noise by varying the
input SNR defined as:

input SNR = 20 log

(
‖Y‖F√
MLσY

)
, (36)

where σY is the standard deviation of the noise. We vary the
input SNR from 10dB to 50dB. We choose the undersampling
ratio N/Q = 16 to simulate the EPI in vivo data in section VI.
The BLIP algorithm is stopped when either a fixed maximum
iteration number is reached or the following stopping criterion
is satisfied:

|E(i+1) − E(i)|
E(i+1)

< 10−4, (37)

where E(i) = ‖h
(
M(i)

)
− Y‖2F , (M(i))i∈N being a se-

quence generated by the BLIP algorithm. Additionally for
Algorithm 1, we choose:

∀p ∈ {1, . . . , P}, Σ(i)
p,p < σp, (38)

where σ ∈ RP is the tolerance for each parameter.

A. Partial Volume Phantom

We create a simulated phantom based on the work in [26].
Precisely, to introduce the PVE, we use blocks of 2×2 voxels
to form a lower resolution phantom containing partial volume
voxels. The resulting volume is resized to 256 × 256 voxels.
In Fig. 6(a)-6(e) the five tissues are presented as they appear
in the resulting volume. The phantom’s voxel distribution is
shown in Fig. 6(f). Using this representation we can see the
structure of the tissues of interest. A range of parameter values
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(a) (b) (c)

(d) (e) (f)

Fig. 6: Proton Density Maps. (a) Adipose (T1 = 530ms and T2 =
77ms). (b) White Matter (T1 = 811ms and T2 = 77ms). (c) Muscle
(T1 = 1425ms and T2 = 41ms). (d) Gray Matter (T1 = 1545ms and
T2 = 83ms). (e) CSF (T1 = 5012ms and T2 = 512ms). (f) Voxel
distribution, the empty voxels are in blue, the pure voxels are in green
and the partial volume voxels are in red.

of T1 and T2 are used to construct the proton density maps in
order to evaluate the reconstructions.

B. Evaluation

In order to evaluate the algorithms, we use the Signal-to-
Noise Ratio (SNR) defined as:

SNR(U:,t, Ũ:,t) = 10 log

 ∑N
n=1 (Un,t)

2∑N
n=1

(
Un,t − Ũn,t

)2

 ,

(39)
where t ∈ {1, . . . , T} is the index of the evaluated tissue, U
is the mixing matrix ground truth and Ũ is the estimation.
Similarly for the magnetisation sequence SNR, we sum for all
values in the matrix. To construct the matrix Ũ, a tolerance of
15% from the ground truth parameter values is used (i.e. for
T1 = 530ms and T2 = 77ms all the dictionary elements that
fall for T1 in the range of [450.5 − 609.5]ms and simultane-
ously for T2 in the range of [65.45−88.55]ms are considered).
In order to evaluate if the tissues are correctly identified, we
define the success rate (SR) index as the proportion of voxels
where the number of elements are correctly identified and
its corresponding parameters fall within the 15% of the true
parameters. Due to noise, there could be small values in Ũ that
could significantly affect the success rate. In consequence, we
choose not to consider values that are smaller than 30, given
that the range of the proton densities is from 80 to 400.

C. Experiment 1 - Impact of the magnetisation sequence
length

In this subsection, we compare the proposed GAP-MRF
algorithm with the BLIP algorithm, for different number of
acquisition instances L. The input SNR is set to 50dB. The
dictionary for BLIP is defined as in [12] with D = 16170.

For GAP-MRF, the initial dictionary is defined by all the
combinations of 20 equally spaced values for T1 and T2 with
D = 400. The number of clusters is set to K = 40 and the
number of random samples per cluster is chosen to be ns = 10.
In addition, we choose the parameters in Algorithms 1 and 2
as follows: υ = 0.15, β = 0.9, γ = 0.85, ξ = 200, Σ

(0)
1,1 = 12,

Σ
(0)
2,2 = 3, κ = 50, σ1 = 1 and σ2 = 1. We run the experiment

10 times for each value of L and we show the average of the
results with its corresponding standard deviation.
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Fig. 7: Experiment 1 - Tissue proton density maps evaluation.
The red and black lines correspond to the average results (and
the corresponding standard deviation) for the BLIP and GAP-MRF
algorithms, respectively.

Fig. 7 shows the evaluation of the proton density maps for
each tissue and the magnetisation sequence. Note that GAP-
MRF results are taken directly from the matrix Ũ without
using any post-processing. We can observe that GAP-MRF
outperforms BLIP in reconstructing U. One of the advantages
of GAP-MRF over BLIP is the dictionary estimation since
BLIP is restricted to the input dictionary. As a consequence of
the accurate proton density maps, the magnetisation sequence
is also accurate. In Fig. 8, the success rate for pure and
partial volume voxels can be seen. Since BLIP can only
reconstruct one element per voxel, its success rate for partial
volume is always equal to 0. In a low noise scenario, GAP-
MRF can identify the correct voxel elements even for short
sequences. An important remark is that due to partial volume,
the dictionary sampling and the number of acquisitions, the
BLIP algorithm can mis-reconstruct pure voxels even in a low
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Fig. 8: Experiment 1 - Success rate evaluation. The red and black lines
correspond to the average results (and the corresponding standard
deviation) for the BLIP and GAP-MRF algorithms, respectively.

noise scenario.

TABLE I: Parameter values of example in Fig. 9 corresponding to
Experiment 1 with L = 400. The relaxation times are in milliseconds.

Ground Truth BLIP GAP-MRF
T1 T2 T1 T2 T1 T2

Adipose 530 77 [460-590] [74-88] 530.2 77.0
White
Matter 811 77 [690-930] [66-88] 811.1 77.0

Muscle 1425 41 [1220-1630] [36-46] 1425.1 41.0
Gray

Matter 1545 83 [1320-1620] [72-94] 1545.0 83.0

CSF 5012 512 [4400-5000] 500 5011.4 512.0

We show an example of the proton density maps for
L = 400 in Fig. 9. By visual inspection, we can observe
that the GAP-MRF method outperforms the BLIP method
for partial reconstructions even for short sequences in a low
noise scenario. The proton density SNR and the SR for the
example in Fig. 9 are given in Table II. The GAP-MRF has
the additional advantage that it simultaneously estimates the
manifold regions of interest, resulting in better reconstructions.

TABLE II: Proton density map SNR and SR of the example in Fig.
9 corresponding to Experiment 1 with L = 400. The SNR values are
in decibels.

BLIP GAP-MRF
Adipose SNR 9.09 58.64
White Matter SNR 9.16 34.40
Muscle SNR 14.97 58.14
Gray Matter SNR 8.24 49.61
CSF SNR 5.75 71.31
Pure Voxel SR 0.9804 1
Partial Volume SR 0 1

D. Experiment 2 - Impact of the input SNR

In this experiment, we investigate the behaviour of both
the BLIP and the GAP-MRF algorithms while changing the
input noise. We fixed the magnetisation sequence length L =
1000. The dictionary for BLIP is defined as in [12] with D =
16170. For GAP-MRF, the initial dictionary is defined by all
the combinations of 20 equally spaced values for T1 and T2

with D = 400. We choose the number of clusters to be K =
40 and the number of random samples per cluster ns = 10.
In addition, we choose the parameters of Algorithms 1 and 2
as follows: υ = 0.15, β = 0.9, γ = 0.85, ξ = 200, Σ
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Fig. 9: Example of the proton density maps with L = 400 and an
input SNR of 50dB corresponding to Experiment 1. The first column
images are the Ground Truth, the second column images are the
BLIP reconstructions and the third column images are the GAP-
MRF reconstructions. From first to fifth row, the tissues Adipose,
White Matter, Muscle, Gray Matter and CSF are shown. The last
row corresponds to the sum of proton density of all other matched
elements that are not in the 15% range of the Ground Truth elements.
The corresponding T1 and T2 values can be seen in Table I and the
SNR and SR values can be seen in Table II.

12, Σ
(0)
2,2 = 3, κ = 50, σ1 = 1 and σ2 = 1. We run the

experiment 10 times for each choice of input SNR and we
show the average of the results with its corresponding standard
deviation.

Fig. 10 shows the results for the proton density maps for
each tissue. GAP-MRF significantly outperform BLIP when
the input SNR is greater than 30dB. It should be noted that
GAP-MRF estimates correctly the number of true atoms when
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Fig. 10: Experiment 2 - Tissue proton density maps evaluation.
The red and black lines correspond to the average results (and
the corresponding standard deviation) for the BLIP and GAP-MRF
algorithms, respectively.

the input SNR is 30dB or greater. The reconstruction of
Adipose is affected more by the noise since there are sig-
nificantly less pure voxels of this tissue. GAP-MRF magneti-
sation sequence reconstruction is significantly more accurate
than BLIP reconstruction, because BLIP does not consider
the partial volume effect and also because of the dictionary
inaccuracy. GAP-MRF magnetisation sequence SNR has a
linear behaviour with respect to the input SNR. In Fig. 11,
the success rate with respect to the input SNR can be seen.
We can observe that the success rate is significantly affected
by the input SNR.

TABLE III: Parameter values of example in Fig. 12 corresponding to
Experiment 2 with an input SNR of 30dB. The relaxation times are
in milliseconds.

Ground Truth BLIP GAP-MRF
T1 T2 T1 T2 T1 T2

Adipose 530 77 [460-590] [74-84] 531.6 77.0
White
Matter 811 77 [690-930] [66-80] 810.9 77.1

Muscle 1425 41 [1220-1630] [36-46] 1423.6 41.1
Gray

Matter 1545 83 [1320-1610] [74-86] 1543.4 83.0

CSF 5012 512 [4400-5000] 500 5011.8 512.0

We show an example of the proton density maps for each
tissue in Fig. 12 when the input SNR is 30dB. By visual
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Fig. 11: Experiment 2 - Success rate evaluation. The red and black
lines correspond to the average results (and the corresponding stan-
dard deviation) for the BLIP and GAP-MRF algorithms, respectively.

TABLE IV: Proton density map SNR and SR of the example in Fig.
12 corresponding to Experiment 1 with an input SNR of 30dB. The
SNR values are in decibels.

BLIP GAP-MRF
Adipose SNR 9.70 12.15
White Matter SNR 9.14 19.62
Muscle SNR 17.15 39.61
Gray Matter SNR 8.30 32.10
CSF SNR 5.71 52.55
Pure Voxel SR 0.9984 0.9766
Partial Volume SR 0 0.9459

inspection, we can observe that the GAP-MRF method out-
performs the BLIP method for partial volume reconstructions
for moderate noise scenarios. The proton density SNR and
the SR for the example in Fig. 12 are given in Table IV. The
GAP-MRF correctly estimates the manifold regions of interest.
BLIP due the PVE and the input noise, has a residual map
formed by all the elements that are not sufficiently close to
the true elements. In the GAP-MRF reconstructions, the White
Matter and Adipose tissue are slightly mixed due to the noise
since their parameters are close to each other. By choosing
a better Γ we can make the atoms of the dictionary more
distant in the `2 sense, this would provide noise robustness to
the reconstructions.

VI. RESULTS ON REAL DATA

In this section, we show the reconstructions obtained con-
sidering two in vivo datasets. The first dataset was acquired
using EPI sampling scheme [27] and the second dataset was
acquired using spiral sampling scheme. The parameters are
tuned using the following heuristic. During the initialisation,
we choose K = 20, and increase this value by 10 until the
residual stabilises, the idea is to have enough centers such
that the partial volume voxels does not shift the values of
true parameters. The value of ξ is chosen to only consider the
voxels containing the tissues. We fixed ns = 10 and β = 0.9 to
avoid long reconstruction time. We initialise the algorithm as
described in the Section IV-C with the obtained K. We solve
the problem increasing parameter υ from 0.15 (with steps of
0.05) until we can see the structures in the parameter maps
setting κ = 20 and γ = 0.85. Finally, we increase κ until we
remove all the noisy proton density maps. We normalise the
proton density maps to reflect the proportion of the tissue by
computing, for each voxel n ∈ {1, . . . , N}, Ũn,:/‖Ũn,:‖2.
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Fig. 12: Example of the proton density maps with L = 1000 and an
input SNR of 30dB corresponding to Experiment 2. The first column
images are the Ground Truth, the second column images are the BLIP
results and the third column images are GAP-MRF results. From first
to fifth row, the tissues Adipose, White Matter, Muscle, Gray Matter
and CSF are shown. The last row corresponds to the sum of proton
density of all other matched elements that are not in the 15% range
of the Ground Truth elements. The corresponding T1 and T2 values
can be seen in Table III. The corresponding T1 and T2 values can be
seen in Table III and the SNR and SR values can be seen in Table IV.

A. EPI sampling dataset

The scanning for this dataset has been performed on a 3T
GE MR750w scanner with a 12 channel receive only head RF
coil (GE Medical Systems, Milwaukee, WI). The study was
approved by the local ethics committee. The used acquisition
scheme was 16-shot EPI-MRF on a healthy volunteer using a
variable flip angle α ramp (see Fig. 13), ranging from 1◦ to
70◦. The excitation sequence length is L = 500. The repetition

time TR was set to 16ms. The acquisition bandwidth (BW)
= 5kHz and the Field of View (FOV) = 22.5 × 22.5cm2.
The spatial resolution is 128 × 128 voxels, with a 5mm
slice thickness. The undersampling ratio is N/Q = 16. The
EPG model is used for the reconstructions with an Inversion
Time (TI) of 18ms and an Echo Time (TE) of 3.5ms. The
acquisition time for the slice was 9s. We choose the GAP-
MRF parameters to be κ = 35, ξ = 108, K = 40, υ = 0.4,
ns = 10, Σ

(0)
1,1 = 1, Σ

(0)
2,2 = 1, γ = 0.85, σ1 = 0.01 and

σ2 = 0.01. In this experiment we have chosen smaller values
of Σ than the synthetic data, because the noise was shifting
the parameters when the noisy elements were removed. In
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Fig. 13: The image of the left represents the flip angles of the
acquisition and the image of the right represents the repetition times
of the dataset acquisition.
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Fig. 14: Normalised proton density maps of the tissues corresponding
to the EPI sampling dataset. The values are in arbitrary units (a.u.).
The corresponding T1 and T2 can be seen in Table V. The figures
correspond to (a) White Matter. (b) Gray Matter. (c) CSF.

TABLE V: Comparison between the parameters obtain with GAP-
MRF and the reported values in [28] (MRF FISP sequence) for the
EPI sampling dataset. The relaxation times are in milliseconds.

Values reported in [28] GAP-MRF
T1 T2 T1 T2

White Matter 781±61 65±6 762.6 67.2
Gray Matter 1193±65 109±11 1116.6 107.1
CSF 2391.1 856.2

Fig. 14, we can observe the resulting proton density maps
provided by the GAP-MRF algorithm and the Table V shows a
comparison between the parameters reported in [28] for MRF
FISP sequences and the parameters obtained by GAP-MRF.
CSF values are not reported for the MRF FISP sequence. The
White Matter parameters are similar to the ones reported in
[28] and the Gray Matter T1 is slightly lower than the reported
one.
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B. Spiral sampling dataset

The scanning for this dataset was performed on a GE HDx
MRI system with an 8 channel receive only head RF coil (GE
Medical Systems, Milwaukee, WI). The acquisition scheme
uses a variable density spiral with 89 interleaves using FISP
based α and TR as in [29] (see Fig. 15). The excitation
sequence length is L = 1000. The repetition time TR was set
to 16ms. In this experiment, we have FOV = 22.5× 22.5cm2

and the spatial resolution is 256 × 256 voxels, with a 5mm
slice thickness. The undersampling ratio is N/Q = 89.53. The
EPG model is used for the reconstructions with a TI of 18ms
and a TE of 2ms. The GAP-MRF parameters are κ = 60,
ξ = 1.1 × 107, K = 30, υ = 0.4, ns = 10, Σ

(0)
1,1 = 20,

Σ
(0)
2,2 = 5, γ = 0.85, σ1 = 0.01 and σ2 = 0.01.
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Fig. 15: The image of the left represents the flip angles of the
acquisition and the image of the right represents the repetition times
of the dataset acquisition.

TABLE VI: Comparison between the parameters obtain with GAP-
MRF and the reported values in [28] (MRF FISP sequence) for the
spiral sampling dataset. The relaxation times are in milliseconds.

Values reported in [28] GAP-MRF
T1 T2 T1 T2

White Matter 781±61 65±6 742.0 41.6
Gray Matter 1193±65 109±11 1246.3 85.3
CSF 1841.5 1480.9
Muscle 1100±59 44±9 2326.5 35.8
Fat 253±42 68±4 503.6 41.5

In Fig. 16, we can observe the resulting proton density
maps provided by the GAP-MRF algorithm and the Table
VI shows a comparison between the parameters reported in
[28] and the parameters obtained by GAP-MRF. The White
and Gray Matter parameters obtained by GAP-MRF differ
slightly to the ones reported in [28]. But the other tissues
are far from the expected tissues in the brain. This could
be due to the small number of pure voxels that are not
sufficient to accurately estimate the parameters. We believe
that choosing better acquisition parameters Γ to make the
elements of the dictionary more distant in the `2 sense can
significantly improve the accuracy of the parameters. Also,
inaccuracies in the model such as calibration or motion in the
acquisition can produce artifacts in the reconstruction.

VII. CONCLUSIONS AND FUTURE WORK

We have presented an extension of the model in [12] to
partial volume reconstructions in the context of MRF. The
simulations presented in Section V show that the proposed
technique GAP-MRF can achieve accurate reconstructions

with very short pulse sequences in the low input noise sce-
nario. It also performs well when the input SNR is greater than
30dB. Our algorithm provides a way to explore the manifold of
magnetic resonance fingerprints without densely sampling Θ.
In comparison to BLIP algorithm, the memory requirements
are significantly reduced since only few dictionary elements
are stored.

We also present in Section VI the results obtained with real
data. Some parameters differ slightly to the reported in the
literature, but the structure seen in the proton densities maps
suggests that this approach can provide additional information
that can be useful for diagnosis. The next step is to evaluate
the partial volume reconstructions with a real partial volume
phantom in the scanner and a full brain reconstruction to
provide enough pure voxels to accurately estimate the true
parameters.

For future work, incorporating spatial regularisation in
the objective function should improve the robustness of the
method. A joint calibration and imaging problem should also
be considered in order to provide both phase estimation and
compensation.
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[27] A. Benjamin, P. Gómez, M. Golbabaee, Z. Mahbub,
T. Sprenger, M. Menzel, M. Davies, and I. Marshall,
“Balanced multi-shot EPI for accelerated Cartesian MR
Fingerprinting: An alternative to spiral MR Fingerprint-
ing,” Feb. 2018.

[28] J. Z. Bojorquez, S. Bricq, C. Acquitter, F. Brunotte,
P. M. Walker, and A. Lalande, “What are normal
relaxation times of tissues at 3T?” Magnetic Resonance
Imaging, vol. 35, pp. 69 – 80, 2017.

[29] Y. Jiang, D. Ma, N. Seiberlich, V. Gulani, and M. A.
Griswold, “MR fingerprinting using fast imaging with
steady state precession (FISP) with spiral readout,”
Magnetic Resonance in Medicine, vol. 74, no. 6, pp.
1621–1631.


