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Abstract This paper provides an overview of results, concerning longest or heaviest paths, in
the area of random directed graphs on the integers alongwith some extensions.We study first-
order asymptotics of heaviest paths allowingweights both on edges and vertices and assuming
that weights on edges are signed. We aim at an exposition that summarizes, simplifies, and
extends proof ideas. We also study sparse graph asymptotics, showing convergence of the
weighted random graphs to a certain weighted graph that can be constructed in terms of
Poisson processes. We are motivated by numerous applications, ranging from ecology to
parallel computing models. It is the latter set of applications that necessitates the introduction
of vertex weights. Finally, we discuss some open problems and research directions.

Keywords Random graphs · Stochastic networks · Limit theorems

1 Introduction and Background

The well-known Erdős–Rényi random graph model [7] has an ordered version introduced
in [5] by Barak and Erdős. Declare a pair (i, j) of integers, 1 ≤ i < j ≤ n, an edge with
probability p, independently from pair to pair. The random directed graph thus constructed,
being so natural, has emerged in many areas of applied science. In mathematical biology
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(ecology), such graphs are used to model community food webs [8,9]. The interest in this
area is the longest path in the graph as this is an abstraction of the longest food chain upon
which survivability of a biological population depends. Asymptotics for this were obtained
by Newman [21] in the regime when p → 0 at a certain rate.

Independently, the graph emerged as a model in the area of performance evaluation of
parallel computing systems [14,15] where vertices represent various tasks whereas edges
represent precedence constraints. The longest path then represents the total execution time
when tasks have identical processing times. These papers actually also discuss the more
realistic case when random weights, representing task execution times, are given to the
vertices. Weights on the edges play a secondary role in this set of applications and this is
what motivated us to make this extension that actually turns out to be easy to handle.

An infinite version of the model is the graph analyzed in [11]: Let Z be the set of vertices
and let (i, j), i < j , be an edge with probability p, independently from edge to edge.
We used the term “stochastic ordered graph” for this model in [11] and we shall use the
abbreviation SOG(Z, p) for it in the current paper. Our motivation in [11] was a queueing
system with precedence constraints and identical service times, arriving randomly over time.
The stochastic stability of this system (i.e., convergence in distribution of the state, such as
number of customers in the queue at time t as t → ∞) depends on the asymptotic growth of
the length Ln of the longest path in this graph between two vertices at distance n.

An application in algebra was considered by Alon et al. [2] where the graph is seen as
defining a partial order on {1, . . . , n} and the question of interest is the number of linear
extensions of the random partial order.

Yet another application of a continuous-vertex extension of SOG(Z, p) appears in the
physics literature: Itoh and Krapivsky [16] introduce a version, called “continuum cascade
model” of the stochastic ordered graph with set of vertices in R+ and study asymptotics for
the length of longest paths between 0 and t > 0, deriving recursive integral equations for its
distribution.

In [11] we actually studied a more general version of SOG(Z, p) and allowed dependence
between the Bernoulli random variables defining connectivities between edges. Putting the
graph in a stationary and ergodic framework, we showed that the longest length Ln(p)

satisfies

Ln(p)

n
→ C0(p), as n → ∞ a.s. and in L1,

for someconstantC0(p). Estimating the constantC0(p) is essential in all areas of applications
mentioned above. In a general stationary-ergodic framework, such estimates are not available.
However, for the SOG(Z, p)model, we were able to reduce the question of estimatingC0(p)

to a question of analyzing the behavior of an interacting particle system that we referred to as
the “infinite bin model”. Using extended renovation theory and Markov chain analysis, we
were able to obtain sharp computable bounds forC0(p) for all p. In particular,we showed that

C0(1 − q) = 1 − q + q2 − 3q3 + 7q4 + O(q5) as q → 0,

that is, in the dense graph regime. More recently, Mallein and Ramassamy [19,20], using
coupling between Barak–Erdős graphs and infinite bin models, managed to provide a full
analytic expansion forC0(p)when p > 0, thus completing the last display. They also showed
that C0(p) has first but not second derivative at p = 0.

In [10], a further extension of SOG(Z, p) was given, one where the edge probabilities
depend on the physical distance between the endpoints. Doing so, we managed to simplify
the arguments of [11] that led to a law of large numbers (LLN) and a central limit theorem
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(CLT) for Ln(p). In a more recent paper [12], the SOG(Z, p)model was extended by adding
i.i.d. random weights to the edges. A rather tedious extension of the arguments of [10] was
devised in [12] in order that both LLN and CLT be derived. The possibility that weights be
heavy-tailed, leading to a different behavior of the graph, was also studied.

Studying longest paths is also the subject in last passage percolation problems in proba-
bility theory. In this area, one is given a random directed graph (think of Z+ ×Z+ with edges
(x, y) where x = (x1, x2) is below y = (y1, y2) component-wise) and random weights on
the vertices. The weight of a path is the sum of the weights of its vertices. One is interested
in studying the weight of heaviest path contained in a finite chunk of the graph of “size” n, as
n → ∞. In a seminal paper, Johansson [17] considered the last passage percolation problem
on Z+ ×Z+ with i.i.d. geometrically distributed weights on the vertices and obtained that its
scaled fluctuations from its mean converge in distribution to the Tracy–Widom distribution
appearing in random matrix theory.

Motivated by the last paper, we studied, in [10], the question of longest paths in a stochastic
ordered “slabgraph” of width N and showed that the asymptotic fluctuations converge in
distribution to the distribution of the largest eigenvalue of a random N × N matrix in the
GUE (Gaussian Unitary Ensemble) [3,4], The question of what happens when N → ∞ was
considered in [18] and, again, convergence to the Tracy–Widom distribution [22,23] was
shown.

In this paper we study an extension of SOG(Z, p) with weights both on the vertices and
the edges. We allow weights on the edges to take negative values. In doing so, we review
the techniques established in the literature, simplify some of the arguments and unify several
results. Note that introducing weights on both vertices and edges introduces dependencies
between paths that share common vertices. Let u and v denote random variables representing
typical edge and vertex weights, respectively. In fact, we let ui, j , vi , i, j ∈ Z, i < j , be
independent random variables where the ui, j all have the distribution of u and the vi the
distribution of v. The weighted graph is obtained by letting, as before, (i, j) be an edge
with probability p but, in addition, we assign weight ui, j to (i, j). We also assign weight
vi to each i ∈ Z. We denote by SOG(Z, p, u, v) the corresponding graph; see Sect. 2. The
graph described in the previous paragraphs was the graph SOG(Z, p, 1, 0), that is, each
edge, existing with probability p, is counted as having weight 1, whereas vertices have no
weights [2,5,8–11,19,20]. The graph SOG(Z, p, u, 0)was first considered in [12]. Note that
the special case SOG(Z, 1, 1, 0) also makes sense and is also considered in [12] The graph
SOG(Z, p, 1, v) is the one that was essentially introduced in the work of [14]. It should be
noted that the area of performance evaluation of parallel processing system is vast and it is
not our intention to overview the it.

What we do next is this: We prove the strong law of large numbers (SLLN) assuming that
the vertex weight v is a.s. positive with finite expectation, the edge weight u has positive and
finite expectation and that its positive part has finite variance (the negative part may have
infinite variance). We then prove a functional central limit theorem (CLT) assuming positive
edge and vertex weights with finite second and third moment, respectively. We then study the
sparse graph limit of the whole random graph, showing that it becomes a random weighted
tree, a weighted version of the so-called Poisson Weighted Infinite Tree (PWIT) introduced
by Aldous and Steele [1] for the study of combinatorial optimization problems. We provide
simple arguments of why the limit should be so and also discuss equations satisfied by
functional of the limiting random tree. Finally, we devote the last section to discussing a
number of open and exciting new problems that we believe are of interest in several areas of
applications of engineering, biology, computer science, stochastic networks, and statistical
physics.

123



S. Foss, T. Konstantopoulos

2 The Model with Weights on Both Edges and Vertices

We use the notation SOG(Z, p) for the directed random graph (stochastic ordered graph) on
the set of integers Z obtained by letting (i, j), i < j , be a directed edge with probability p.
(We may replace Z by any totally ordered countable set and we shall later have occasion to
do so.) This is done independently from edge to edge. We point out that the restriction of
SOG(Z, p) on a finite interval is an ordered-version of the Erdős–Rényi graph [5].

It is convenient to denote the presence of an edge (i, j), i < j , by

αi, j := 1(i, j) is an edge in SOG(Z,p).

Then (αi, j )i< j is a collection of i.i.d. Bernoulli random variables. The case p = 0 is trivial
and shall not be considered. The case p = 1 corresponds to the full ordered graph SOG(Z, 1)
with edges all the pairs (i, j) with i < j (there is nothing random in this graph).

In addition, we consider a pair (u, v) of independent random variables that serve as
edge and vertex weights, respectively. In other words, consider an array (ui, j )i< j of i.i.d.
copies of u and a sequence (vi )i of i.i.d. copies of v. We assume that the three sets, (αi, j ),
(ui, j ), (vi ) are independent and let SOG(Z, p, u, v) denote the SOG(Z, p)with weights ui, j

added on each edge (i, j) and vi on each vertex i . The formal relation between the two is
SOG(Z, p) = SOG(Z, p, 1, 0). We shall also consider the auxiliary graph SOG(Z, p, u, 0)
with zero weights on the vertices.

A path π in SOG(Z, p, u, v) (or, equivalently, in SOG(Z, p)) is a finite sequence of ver-
tices i0 < i1 < · · · < i� such that (ir−1, ir ) are edges, r = 1, . . . , �. The path (i0, i1, . . . , i�)
is a path from i to j if i0 = i and i� = j . Let �i, j (p) be the set of paths from i to j . This set
is random and may very well be empty. If �i, j (p) �= ∅ we say that i and j are connected
(and by this we always mean that the connection is via a path from i to j).

We define the weight of a path π in �i, j (p) by

w(π) =
�∑

r=1

(vir−1 + uir−1,ir ), π = (i0, i1, . . . , i�) ∈ �i, j (p). (1)

In Section we will assume that u can take negative values. Therefore, w(π) can be negative.
We then consider the maximization problem

wi, j := sup{w(π) : π ∈ �i, j (p)} (2)

and set
Wi, j := w+

i, j . (3)

For the special case of SOG(Z, p, u, 0)we let ŵi, j , Ŵi, j denote the quantities correspond-
ing to (2) and (3), respectively.

For the even more special case of SOG(Z, p, 1, 0) we let w0
i, j , W 0

i, j denote the quantities
corresponding to (2) and (3), respectively.

We are interested in asymptotic properties of Wi, j as | j − i | → ∞, that is, a LLN and a
CLT. Despite the fact that there are O(2n) paths in �i, j (1) when | j − i | = n, the random
weights are so highly correlated that we have a linear asymptotic growth rate as n → ∞,
provided that max(0, u) has a second moment and min(u, 0) and v a first.

A quick explanation of this fact is via an extended version of the subadditive ergodic
theorem. Let W̃i, j be a related quantity, obtained by replacing the maximization over all
paths between two vertices in the segment [i, j]. In other words,
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W̃i, j = max
x,y∈[i, j] Wx,y . (4)

It turns out that the value of W̃i, j is Wi, j plus something of order o(n) as n = | j − i | → ∞.
This is partly due to the fact (proved below, but also found in [10,12]) that i and j are
eventually connected with probability 1. It is clear that (W̃i, j )i< j is stationary, that is,

(W̃i, j )i< j
(d)= (W̃i+1, j+1)i< j .

In addition,

W̃i,k ≤ W̃i, j + W̃ j,k + max
i≤x≤ j≤y≤k

(vx + ux,y)
+.

An estimate for the first moment of the latter maximum shows that it is finite iff the first
moment of v and the second moment of u are finite. An extended version of the subadditive
ergodic theorem shows that limn→∞ W0,n/n exists a.s., and, owing to ergodicity, that it is
a.s. equal to a constant (that can be seen to be positive). Although this can provide a proof
for the law of large numbers, and, in fact, in a context much more general than the one
considered here, it gives no information about second-order properties. So we bypass this
avenue and consider instead discovering regenerative properties, as done in previous work.
The difference here is that edge-disjoint paths have correlated weights (if they share common
vertices) but we will see that this does not complicate things much.

3 Asymptotic Growth

We make the following assumptions concerning (u, v):

P(v ≥ 0) = 1, Ev < ∞, Eu > 0, Emax(0, u)2 < ∞. (A)

This section is devoted to the proof of the following theorem.

Theorem 1 Consider the weighted random graph SOG(Z, p, u, v) with 0 < p ≤ 1, and
assume that conditions (A) hold. Let Wi, j , W̃i, j be the values of the two optimization problems
(2) and (4), respectively. Then there is a constant C > 0 such that

lim
Wi, j

j − i
= lim

W̃i, j

j − i
= C a.s.,

as j → ∞ or as i → −∞.

The method followed is that of exhibiting a regenerative structure of a doubly-indexed
process. First, to fix ideas and notation, we define what we mean by this term.

Definition 1 Let χ = (χi, j )i, j∈Z,i< j be an array of random elements defined on a common
probability space (�,F , P), and let (Ai )i∈Z be a sequence of events. Consider the random
integers

N := {i : 1Ai = 1}
(the points i such that Ai occurs) and enumerate them in some ω-independent way. (For
example, let ι1 be the first i > 0 such that 1Ai = 1 and ι0 be the greatest i ≤ 0 such that
1Ai = 1 and enumerate the remaining points following their natural order.) We then say that
χ regenerates over (Ai ) (or over N ) if (χi, j : ιr−1 ≤ i < j ≤ ιr ), r ∈ Z, are independent
(with the proper modification if the set N is finite).
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Once we have this definition in mind, the constructions below will be clear. In fact we
shall consider two sequences of events, the skeleton points (denoted by S) and the c-renewal
points (denoted byRc). A third sequence will be considered in the next section. In Definition
1 notice that if, in addition, N and χ are jointly stationary then N itself forms a stationary
renewal process.

Define first the skeleton points.1 These depend only on connectivity and not on weights.
We say that i is a skeleton point if it connects to every point to the left and to the right:

S = {i ∈ Z : there is a path between i and any j > i and between any k < i and i}.
As shown in [10],

Lemma 1

γ := P(i is a skeleton point) =
∞∏

k=1

(1 − (1 − p)k)2 > 0. (5)

Proof For each j ∈ Z, let g j be the distance from j of the first i < j such that αi, j = 1. We
refer to g j as the first-left connection variable. Then g j is a geometric random variable with
parameter p,

P(g j > k) = (1 − p)k,

and the g j are independent when j runs over Z. We now notice the logical equivalence

0 connects to every i in {1, . . . , n} ⇐⇒ g1 ≤ 1, g2 ≤ 2, . . . , gn ≤ n. (6)

Hence

P(0 connects to every i > 0) =
∞∏

k=1

P(gk ≤ k) =
∞∏

k=1

(1 − (1 − p)k).

But for 0 to be a skeleton point we need that it connects to every point to its right and
to its left. Hence γ is the square of the last quantity. Finally, recall that for ak ∈ (0, 1),∏∞

k=1(1 − ak) > 0 iff
∑∞

k=1 ak < ∞, and this proves that γ > 0. 
�
In particular, we deduce that S is an a.s. infinite random subset of Z. It is clear that it

forms a stationary and ergodic point process. What is not immediately clear is that

Lemma 2 S forms a stationary renewal process and χ = (αi, j , ui, j , vi )i< j regenerates
over S in the sense of Definition 1.

Sketch of proof Let Bi be the event that there is a path from i to any j > i and from any k < i
to i . Recall that S = {i : 1Bi = 1}. The first thing to prove is that, conditional on Bi , the
future of χ after i is independent of the past before i . The second thing to prove is that on Bi

the S-points to the right of i are completely determined by the future of χ after i . Similarly
from the past. The crucial observation in proving these assertions is that the event that i is
connected to every point j ∈ [i + 1, n] is determined by first-left connection variables; see
(6) Recall that the first left-connection variable gi is the smallest k such that (i − k, i) is an
edge. Then the event that i is connected to every point j ∈ [i + 1, i + n] is the event

gi+1 ≤ 1, gi+2 ≤ 2, . . . , gi+n ≤ n.

1 The terminology is from [10]. In [12] the same points are called “strongly connected points”.
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If we let B+
i be the event that i is connected to every point to its right then

B+
i = {gi+1 ≤ 1, gi+2 ≤ 2, . . .}

Therefore, if B0 occurs then the event that the first S-point to the left of 0 is located at k < 0
is the event {gk+1 ≤ 1, . . . , g0 ≤ |k|} which is completely determined by the past before 0.


�
Corollary 1 (Wi, j )i< j regenerates over S.

To gain some intuition about the general case, we look at the special case of the graph
SOG(Z, p) = SOG(Z, p, 1, 0) and show that the asymptotic growth of the maximal path
length follows from Lemma 2 and Corollary 1.

Proposition 1 (Special case ofTheorem1)Let W 0
i, j be the value of the maximization problem

(2) for SOG(Z, p, 1, 0), i.e., when u = 1, v = 0, a.s. Then, as j → ∞ or i → −∞,

W 0
i, j/( j − i) → C0(p) a.s.,

for some C0(p) > 0.

Sketch of proof If σ ∈ S and i ≤ σ ≤ j , then, necessarily,

W 0
i, j = W 0

i,σ + W 0
σ, j . (7)

Therefore, by Corollary 1, W 0
i, j is the sum of a number M + 1 of random variables where M

is the number of skeleton points between i and j . Since S has positive density γ , we have
that M/( j − i) → γ as | j − i | → ∞. We then obtain that C0(p) = γ EW 0

σ1,σ2
, where σ1, σ2

are two successive S points to the right of 0. This constant is positive since W 0
σ1,σ2

≥ 1. 
�
There is no closed form formula for C0(p). However, in [11], we obtained computable

bounds for it by completely different methods. More exact formulas have recently been
obtained by Mallein and Ramassamy [19,20].

To complete a revision properties of the graph SOG(Z, p), we formulate the following
result:

Lemma 3 Let σ1 < σ2 < · · · be the positive points of S. Then σk+1 − σk , k = 1, 2, . . ., are
i.i.d. and, for some θ > 0, E exp θ(σ2 − σ1) < ∞. In particular, all moments of σ2 − σ1 are
finite.

We leave the proof for the reader. In what follows, we need only finiteness of the second
moment, and this was proved in [10] in a more general setting (the connectivity probability
p was allowed to depend on the distance between the endpoints of an edge).

In order to analyze the case of interest in this paper, namely, the graph SOG(Z, p, u, v),
we define a new set of points, the c-renewal points2, where c is a positive constant. For
that, we consider the auxiliary directed graph SOG(Z, p, u, 0) and let ŵi, j , Ŵi, j denote the
quantities in (2) and (3), respectively, when all the vi are set equal to zero in (1). Then the
c-renewal points are defined as the points i ∈ Z at which that the events

A+
i := {Ŵi,i+n > cn for all n ≥ 1}

A−
i := {Ŵi−n,i > cn for all n ≥ 1}

A−+
i := {αi−m,i+nui−m,i+n < c(m + n) for all m, n ≥ 1}

2 The term “renewal points” was introduced in [12].
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occur simultaneously:

Rc := {i ∈ Z : 1A+
i
1A−

i
1A−+

i
= 1}.

The three events A+
i , A−

i , A−+
i are independent. Indeed, they are functions of independent

sets of random variables.
Points in Rc achieve several things at the same time:

First, any point i for which A+
i ∩ A−

i holds is also an S-point. So

Rc ⊂ S a.s.

Second, any point i for which A+
i ∩ A−

i ∩ A+−
i holds “splits” the weighted graph

SOG(Z, p, u, 0) in the same way that the S points split the graph SOG(Z, p) [see (7)],
that is,

i ∈ Rc, x < i < y ⇒ ŵx,y = ŵx,i + ŵi,y .

Indeed, if π is a path from x to y with weight ŵx,y such that i /∈ π then π contains an
edge (a, b) with x ≤ a < i < b ≤ y. Since A−+

i holds, we have αa,bua,b < c(b − a) =
c(i − a)+ c(b − i) and since A−

i and A+
i hold we have c(i − a) ≤ ŵa,i and c(b − i) ≤ ŵi,b.

Hence the weight of the edge (a, b) can be strictly increased and this means that ŵx,y can be
strictly increased, contradicting its optimality.

Since the v’s are non-negative, similar arguments work for the wi, j , and we have

i ∈ Rc, x < i < y ⇒ wx,y = wx,i + wi,y . (8)

Third, for c small enough, Rc has positive density. The reason for this is the law of large
numbers related to the regenerative structure over S (that already has positive density). This
is proved in Lemma 4 below.
Fourth, the graph SOG(Z, p, u, v) regenerates over Rc in the sense of Definition 1. See
Lemma 5 below.

We let

λ = λ(c) := P(A+
0 ∩ A−

0 ∩ A−+
0 ).

This quantity is the density ofRc. Our goal is to show that it is positive for all small positive
c.

Lemma 4 Assume that conditions (A) hold. For all sufficiently small positive constants c
the random set Rc has positive density.

Proof Since the three events in the definition ofRc are independent and since their intersec-
tions form a stationary ergodic sequence, the density ofRc is the product of probabilities of
these events. So it is enough to show that each of these probabilities is strictly positive. To
show that P(A+

0 ) > 0 we use Corollary 1. We have

ŵ0,n = ŵ0,σ1 + ŵσ1,σ2 + · · · + ŵσMn−1,σMn
+ ŵσMn ,n,

where Mn is the cardinality of S ∩ [1, n] and thus σ1 < · · · < σMn ≤ n. Note that Mn → ∞
a.s. Further, due to the regenerative structure, the random pairs (σk+1 − σk, ŵσk ,σk+1), k =
1, 2, . . . are i.i.d. with

E(σk+1 − σk, ŵσk ,σk+1) = (
γ −1, Eŵσ1,σ2

)
.
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By the SLLN and the integrated renewal theorem,

lim
n→∞

1

n

Mn∑

k=1

ŵσk−1,σk = lim
n→∞

Mn

n

1

Mn

Mn∑

k=2

ŵσk−1,σk = γ Eŵσ1,σ2 a.s.

Clearly, since ŵ0,σ1 is a proper random variable,

lim ŵ0,σ1/n → 0 a.s.

We next observe that

Eŵσi ,σi+1 ≥ (EW 0
σi ,σi+1

) Eu > 0.

The reason for the first inequality is that W 0
σi ,σi+1

is the length of the longest path from σi to
σi+1 and the edge weights (ui, j )i< j are independent of (αi, j )i< j . Consider the nonnegative
random variables

Yi :=
∑

σi ≤ j1< j2≤σi+1

u−
j1, j2

,

where x− = (−x)+ = −min(0, x). Note that

EYi ≤ 1
2 E(σ2 − σi )

2
Eu− < ∞,

where the finiteness comes from Lemma 3 and assumption (A), and that

ŵσi ,σi+1 ≥ −Yi .

We thus have

lim
n→∞

ŵσMn ,n

n
≥ lim

n→∞
Mn

n

−YMn

n
= 0 · γ = 0, a.s.

Let now c be such that

0 < c < (EW 0
σ1,σ2+1

) Eu.

It is then a simple consequence of the ergodic theorem that there exists n0 such that

P(Ŵ0,n > nc for all n ≥ n0) > 0.

We conclude that

P(A+
0 ) ≥ P

({
( j1, j2) is an edge, u j1, j2 > c, for all 0 ≤ j1 < j2 ≤ n0

}

∩ {
Ŵ0,n > nc for all n ≥ n0

})
> 0

because the two events in the intersection are positively correlated.
By symmetry, P(A−

0 ) > 0 as well.
It remains to show that P(A−+

0 ) > 0. To this end, we let

Uk
(d)= αkuk

where the αk are i.i.d. Bernoulli(p) random variables, the uk are i.i.d. copies of u and (αk) and
(uk) are independent. Taking into account the independence between the variables involved
in the definition of A−+

0 , we have

P(A−+
0 ) =

∞∏

m=1

∞∏

n=1

P(Um+n < c(m + n)) =
∞∏

r=2

P(U1 < ck)k−1.
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Note that, for any x > 0, we have

P(U1 < x) = 1 − p + pP(u1 < x) = 1 − pP(u1 ≥ x).

Therefore,

P(A−+
0 ) > 0

since E max(0, u)2 < ∞ and, then,

∞∏

k=2

(1 − pP(u1 ≥ kc))k−1 ≥ K exp

(
−

∑

k

kP(u1 ≥ kc)

)
> 0,

for a certain constant K > 0.
Therefore the density λ of Rc, for all sufficiently small positive c, satisfies

λ = P(A+
0 ∩ A−

0 ∩ A−+
0 ) = P(A+

0 )P(A−
0 )P(A−+

0 ) > 0. (9)


�
Lemma 5 χ = (αi, j , ui, j , vi )i< j regenerates over Rc.

Proof It suffices to show that, conditional on Ai , the future of χ after i is independent of
the past, and that, on Ai , the future (respectively, past) Rc-points depend only on the future
(respectively, past) of χ . Without loss of generality, let i = 0. Let F+ be the σ -algebra
generated by χi, j , 0 ≤ i < j . Similarly, we define F− as the σ -algebra generated by χi, j ,
i < j ≤ 0. The two σ -algebras are independent. Now let G+ ⊂ F+, G− ⊂ F− be two
sub-σ -algebras and let G be a σ -algebra independent of F+ and F−. It is easy to see that
F+ and F− are independent conditionally on G− ∨ G+ ∨ G . Apply this observation to
G+ = σ(A+

0 ), G− = σ(A−
0 ) and G = σ(A−+

0 ). We next establish that, on A0, theRc points
to the right of 0 depend only on variables χi, j , 0 ≤ i < j (and, similarly, for the past). This
is equivalent to showing that, on A0, for each k > 0, the event Ak depends only on variables
χi, j , 0 ≤ i < j . Recall that

A0 =
⋂

m≥1,n≥1

{Ŵ−m,0 ≥ cm, Ŵ0,n ≥ cn, U−m,n < c(m + n)},

where
Ui, j := αi, j ui, j , (10)

and that

Ak =
⋂

m≥1,n≥1

{Ŵk−m,k ≥ cm, Ŵk,k+n ≥ cn, Uk−m,k+n < c(m + n)}.

Consider the truncated event

Ãk =
⋂

1≤m≤k,n≥1

{Ŵk−m,k ≥ cm, Ŵk,k+n ≥ cn, Uk−m,k+n < c(m + n)}

for which we have Ãk ∈ F+. Our claim will follow from the identity

A0 ∩ Ak = A0 ∩ Ãk .

Since Ak ⊂ Ãk we only have to show that A0 ∩ Ãk ⊂ A0 ∩ Ak . Suppose that A0 and Ãk

occur. We need to show that Ŵk−m,k ≥ m for all m > k and that Uk−m,k+n < c(m + n)
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for all m > k and n ≥ 1. Let m > k. Then k − m < 0 < k. Since A0 holds, we have
Ŵk−m,k ≥ Ŵk−m,0 + Ŵ0,k . But Ŵk−m,0 ≥ c(m − k) (because A0 holds) and Ŵ0,k ≥ ck
(because Ãk holds). Hence Ŵk−m,k ≥ c(m − k) + ck = cm, as required. Let again m > k
and let n ≥ 1. Then k − m < 0 < k + n and Uk−m,k+n < c(m + n) because A0 holds. 
�
Corollary 2 Under the assumptions of Lemma 4, Rc is a stationary renewal process with
rate λ > 0 as in (9) and both (Ŵi, j )i< j and (Wi, j )i< j regenerate over Rc.

Proof of Theorem 1 Let c be chosen as in Lemma 4. ByLemma4,Rc has positive density. By
Lemma 5, we have regeneration overRc. By (8), themaximal path from some i to some j > i
can be written as a sum of independent finite-mean random variables. Let τ1 < τ2 < · · · be
the points of Rc ∩ (0,∞). The LLN limn→∞ W0,n/n = C a.s., with C = λ−1

E[Wτ1,τ2 ],
then follows from a standard renewal theory argument. 
�

4 Central Limit Theorem

For simplicity we now assume that both u and v are nonnegative; but it is essential that they
satisfy more stringent moment conditions. Our assumptions for this section are then

P(u ≥ 0, v ≥ 0) = 1, Ev2 < ∞, Eu > 0, Eu3 < ∞. (B)

Theorem 2 Consider the weighted random ordered graph SOG(Z, p, u, v) with 0 < p ≤ 1,
assume that conditions (B) hold. Let Wi, j be the values of optimization problem (2). Let C
be the constant appearing in Theorem 1. Then there is a constant b > 0 such that

W0,[nt] − Cnt

b
√

n
, t ≥ 0,

converges weakly, as n → ∞, to a standard Brownian motion.

Note that by weak convergence we mean convergence of the law of the process above,
considered as a random element of the space D[0,∞) equipped with the topology of uniform
convergence on compact sets.

Sketch of proof of Theorem 2 The essential part is in proving the ordinary CLT, that is,
(W0,n − Cnt)/

√
n converges in distribution to a normal random variable with positive vari-

ance b2. The passage from the CLT to the functional version stated in the theorem is standard.
The difficulty in proving the ordinary CLT is in establishing that the variance between suc-
cessive positive Rc–points is finite. Once this is established, standard renewal theory shoes
that finiteness of variance between successive positive Rc–points is equivalent to finiteness
of expectation of the first positive Rc–point. We shall show this by constructing an upper
bound. We follow ideas in [12].

Let Uc be the random set containing i such that A−
i occurs. Just as is Lemma 5, we have

that our random structure χ regenerates over Uc. We have Rc ⊂ Uc and, for c small enough
(Lemma 4) Uc has positive density. In particular, Uc is a stationary renewal process.

Moreover, the variance between two successive points points of Uc is finite. To show this,
it suffices to show (since Uc is a stationary renewal process) that the first positive point of Uc

has finite expectation provided that

c < γ E min
σ1≤i< j≤σ2

(ui, j ).
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In fact, more is true: under this assumption, the first positive point of Uc has an exponential
moment. We skip the proof as it is analogous to the proof of Proposition 3.12 in [12].

Define events analogous to A+
i , etc.

A+
i,d := {Ŵi,i+n > cn, 1 ≤ n ≤ d}

A−
i,d := {Ŵi−n,i > cn, 1 ≤ n ≤ d}

A−+
i,d := {Ui−m,i+n < c(m + n), 1 ≤ m ≤ d, n ≥ 1},

where the Ui, j are as in (10). Notice that, as d → ∞, the event A+
i,d decreases to A+

i , and
similarly for the other two events.

Consider now the random variable

μ := inf{d > 0 : 1A+
0,d∩A−+

0,d
= 0}.

Note that

P(μ = ∞) = P(A+
0 ∩ A−+

0 ) > 0,

for c sufficiently small. By an estimate similar to the one performed in the proof of Lemma
4, we see that if conditions (B) are satisfied then

E(μ|μ < ∞) < ∞.

For n > 0 (perhaps random), let θnμ be obtained in the same manner as μ after shifting the
origin at n, namely, let

θnμ := inf{d > 0 : 1A+
n,d∩A−+

n,d
= 0}.

We now consider the following algorithm:

(1) Initialize by letting ψ0 be the first positive point of Uc.
(2) Suppose that ψ0, . . . , ψk have been defined. If θψk μ < ∞ let ψk+1 be the smallest point

of Uc to the right of ψk + θψk μ. Otherwise, if θψk μ = ∞, let ψk+1 = +∞, set � := ψk

and stop.

Clearly, � is an upper bound to the first positive Rc point. Taking into account the
regenerative structure, we easily see that E� < ∞ if the first positive point of Rc has finite
expectation and if E(μ|μ < ∞) < ∞. Since the first holds for sufficiently small c while
the second holds because Eu3 < ∞, Ev2, by assumption, we have established that the first
positive point of Rc has finite expectation and thus, by renewal theory, that the distance
between successive positive points of Rc has finite variance.

Using the established fact thatRc has finite variance it can be shown, just as in Proposition
3.14 of [12], that

b2 := var(W�1,�2 − C(�2 − �1)) < ∞,

where �1, �2 are the first two positive Rc-points. The CLT now follows, from the standard
regenerative CLT. 
�

5 Convergence to the Continuum Cascade Model

Consider the random graph SOG(Z, p, u, v) when p is small. Notice that many events of
interest, such as “the longest path from 0 to a vertex i > 0”, depend only on the component of
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the graph that contains vertex 0 (that is, on the subgraph consisting of all vertices reachable
from 0); let SOG0(Z, p, u, v) denote this component. Computing the probability of such
events is hard. However, a reasonable approximation, when p → 0, can be obtained by
showing that the component SOG(Z, p, u, v), as a random element of a suitable Polish space,
convergesweakly to a randomobject that is aweighted tree and, therefore, recursive equations
can be written for the probabilities/quantities of interest. We shall denote the limiting random
object by CCM0(u, v). In the sequel, we first give the appropriate definitions of the random
objects involved, we describe the metric space in which they take values, we point out that
this space is a complete separable metric space under suitable metrics, and we finally sketch
the proof of the convergence in distribution.

1. Scaling and the proposed limit Wewish to consider a certain limit of the weighted random
graph with weights on the edges and vertices when p → 0. Let us consider a sequence of
graphs indexed by positive integers n such that pn → 0 in a way that npn converges to a
positive constant, say, 1. Take as set of vertices the set 1

n Z and declare (i/n, j/n), i < j ,
as an edge with probability pn . Let the edge and vertex weights be equal in distribution to
un and vn respectively. We thus consider a weighted random graph that, following earlier
notations, we denote as Gn = SOG( 1n Z, pn, un, vn).

The continuum cascademodel (CCM) [16] is defined as follows: Let N denote a stationary
Poisson(1) process on the real line. Let, for each t ∈ R, Nt be equal in distribution to N and
assume that the collection (Nt , t ∈ R) is independent. The CCM is a random graph with
vertices R. For s, t ∈ R, s < t , we declare that (s, t) is an edge if t is a point of the Poisson
process Ns . Let u, v be positive random variables. We attach i.i.d. weights to the edges of the
CCM that are all equal to u in distribution. Similarly, we attach i.i.d. weights to the vertices
of the CCM that are all equal to v in distribution. Denote the weighted CCM by CCM(u, v).
(We shall leave to the reader to show that all functions of the CCM(u, v) that we use in the
sequel of the paper are measurable functions of it.) A path in the CCM is a finite or infinite
sequence t0 < t1 < · · · of vertices such that tk is a point of Ntk−1 , k = 1, 2, . . . The weight
of a finite path (t0, . . . , tm) is the sum of the weights of its first m − 1 vertices and its m − 1
edges.

Let CCM0(u, v) be the restriction of the CCM(u, v) on the vertices that are reachable
from 0 via paths. Clearly, the CCM0(u, v) has countably many vertices and countably many
edges (but it has finitely many vertices on every bounded interval). The set of vertices is a
countable random subset of R+. In fact, CCM0(u, v) is a tree and it shall be considered as
rooted at 0.

Going back to SOG( 1n Z, pn, un, vn) and forgetting the directions of the edges, we see
that it is a strongly connected graph and certainly not a tree: the very existence of skeleton
points creates cycles. However, the rate of skeleton points, see equation (5), can be shown to
satisfy

log γn � −c1n

for some positive constant c1. The intuition gained from this is that cycles vanish in the limit
and that the graph becomes a forest (a collection of trees).

Let G0
n be the restriction of Gn on those vertices to the right of the origin that are reachable

from the origin. The only discrepancy between G0
n and Gn is between 0 and the first skeleton

point to the right of 0. (But the first skeleton point tends to ∞ as n → ∞.) Our goal is to
show that

G0
n

(d)−→ CCM0(u, v) as n → ∞,
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where
(d)−→ denotes convergence in distribution in a certain sense defined below. Oncewe have

this convergence rigorously defined and proved, we also have convergence in distribution of
interesting functionals of the graph to the corresponding functional of the limiting object.

2. Metrics A weighted geometric graph (wgg) G = (V, E, �, u, v) is a graph (V, E) in the
ordinary sense and three weight functions: � : E → R+, u : E → R+ are weights on edges
and v : V → R+ are weights on vertices. The difference between � and u is that � is used to
define distances between vertices:

�(x, y) = inf
π∈�x,y

�(π),

where �x,y is the set of paths from x to y and where the length �(π) of a path π =
(x0, x1, . . . , xm) is taken to be �(x0, x1) + · · · + �(xk−1, xk). This defines an extension of
the original � to all pairs of vertices. The extension is a metric on V . Denote by

Br (x) := {y ∈ V : �(x, y) ≤ r}
the ball of radius r centered at x . We call G locally finite if Br (x) is a finite set for all x and
r . The weight of a path π = (x0, x1, . . . , xm) is defined as

∑m
i=1[v(xi−1) + u(xi−1, xi )]. If

G, G ′ are finite wgg’s we define

d(G, G ′) = min
ϕ

max
e∈E,x∈V

{|�(e) − �′(ϕ(e))| + |u(e) − u′(ϕ(e))| + |v(x) − v′(ϕ(x)|},

where ϕ runs over all bijections from V to V ′ that preserve the edge structure: e ∈ E ⇐⇒
ϕ(e) ∈ E ′. If G, G ′ are locally finite infinite wgg’s then we define a distance between them
from the point of view of specific vertices, 0, 0′, say, that we call roots. Let G(r) be the
restriction of G on the set of vertices Br (0) in the obvious sense. Defining d as in the last
display but also further restricting ϕ to be such that ϕ(0) = 0′, we let

D(G, G ′) :=
∫ ∞

0

(
1 ∧ d(G(r), G ′(r))

)
e−r dr.

It is easy to see that D is a metric on the set G∗ of locally finite wgg’s.3 This metric is
just an extension of the one proposed by Aldous and Steele [1]. Adopting the proof of [13,
Prop. 2], one easily has that G∗ is a Polish (complete separable metric) space. Intuitively,
D(G, G ′) is small if the wgg’s look similar (identical, up to isomorphism, as logical graphs
and with comparable lengths and weights) on every finite-radius ball around the root. We
therefore have the full machinery of convergence of probabilitymeasures [6] on Polish spaces

available. In particular, if Gn, G are random elements of G∗, the convergence Gn
(d)−→ G is

equivalent to E f (Gn) → E f (G) for any bounded continuous function f : G∗ → R.
Consider now the weighted random directed graph G0

n as defined earlier. Think of it as a
random wgg with root 0 and edge length equal to their physical distance, i.e., take the length
of (i/n, j/n), i < j , to be ( j − i)/n. Similarly, consider CCM0(u, v) as a random wgg with
root 0 and, if (s, t) is an edge, let its length be t − s.

Theorem 3 For n ∈ N, let un, vn be positive random variables, 0 < pn < 1 and let G0
n be

the weighted random directed graph SOG( 1n Z, pn, un, vn) restricted on the set of vertices

reachable from 0. Assume that, as n → ∞, npn → 1, un
(d)−→ u, vn

(d)−→ v. Let CCM(u, v)

3 More specifically, G∗ should be taken to be a set of rooted locally finite wgg’s whose sets of vertices vary
on the set of subsets of a universal set

123



Limiting Properties of Random Graph...

be the weighted continuum cascade model on [0,∞) with i.i.d. edge weights distributed
according to u and i.i.d. vertex weights distributed according to v, and let CCM0(u, v) be
its restriction on the set of vertices reachable from 0. Then

G0
n

(d)−→ CCM0(u, v) as n → ∞.

3. The Weighted PWIT and the Scaling Limit Theorem Notice that G0
n is a wgg with deter-

ministic vertices, while CCM0(u, v) is a wgg with random vertices. We get an easier handle
of both objects if we construct them as (deterministic) functions of the same logical tree.
This is the Harris-Ulam tree recalled below.

Let N
∗ := ⋃∞

n=0 N
n be the set of all finite sequences of integers (integer words), where

N
0 := {∅} is the singleton containing the empty sequence, and equip it with concatenation:

if x, y ∈ N
∗ then their concatenation xy is a finite sequence obtained by appending y to x .

(The empty sequence is a neutral element.) Form a graph on N
∗ by considering as an edge

any (x, y) such that y is obtained by concatenating x with a single integer, y = xk, k ∈ N,
say. Let E(N∗) be the set of edges. This is a countably infinite, locally finite, infinitary tree,
often known as the Harris-Ulam tree. We take the empty sequence ∅ as its root.

We can make N
∗ a wgg by considering functions �, u : E(N∗) → R+, v : N

∗ → R+ and
use � as a length function on its edges and u, v as weight functions on its edges and vertices,
respectively. We denote the wgg thus obtained by (N∗, �, u, v). The difference between �

and u is that � is used to define a metric on N
∗, whereas u is additional decoration.

We also define a map

C : (N∗, �, u, v) �→ (V ′, E ′, �′, u′, v′),

calling it collapse map, that takes the weighted geometric tree (N∗, �, u, v) onto some
weighted geometric graph (V ′, E ′, �′, u′, v′) with V ′ a certain subset of R. The definition of
C is straightforward: The root of N

∗ is mapped to 0. We take V ′ to be all t ∈ R+ such that
there is x ∈ N

∗ with �(x, ∅) = t . We let E ′ be all (s, t), 0 ≤ s < t , such that s = �(x, ∅),
t = �(xk, ∅), for some x ∈ N

∗ and k ∈ N. If (s, t) ∈ E ′ we let �′(s, t) = t − s. Basically,
(V ′, E ′) is the “shadow” of N

∗ when vertices are placed at the correct distance from the ori-
gin. Note that vertices in V ′ may have multiple preimages inN

∗. We finally assign weights to
V ′ and E ′. For each s ∈ V ′ let x be the lexicographically least x ∈ N

∗ such that �(x, ∅) = s
and let v′

s be equal to vx . If, in addition, t is such that (s, t) ∈ E ′ choose x as above, let k be
such that �(x, xk) = t − s and give (s, t) weight u′

s,t = ux,xk .

Lemma 6 The collapse map C is continuous in the metric D of G∗.

The following lemma is stronger than what we need here.

Lemma 7 Let (�, u, v), (�n, un, vn), n ∈ N, be a random elements of (RE(N∗)
+ , R

E(N∗)
+ , R

N
∗

+ )

such that (�n, un, vn)
(d)−→ (�, u, v), in the sense of convergence of finite-dimensional distri-

butions. Then (N∗, �n, un, vn)
(d)−→ (N∗, �, u, v) as random wgg’s.

We now construct a specific T = (N∗, �, u, v). Let �x , x ∈ N
∗, be an i.i.d. collection

of Poisson(1) processes on (0,∞). That is, let τxk , x ∈ N
∗, k ∈ N, be i.i.d. exponential(1)

random variables. The kth point of �x is a.s. equal to τx1 + · · · + τxk and we let

�(x, xk) := τx1 + · · · + τxk (11)

be the length of the edge (x, xk). Without adding any extra weights on edges and vertices, the
random tree, (N∗, �), thus formed is a random rooted geometric graph known as the Poisson
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Weighted Infinite Tree (PWIT), introduced by Aldous and Steele [1]. Add next i.i.d. weights
to the edges and vertices ofN

∗ distributed according to u and v, respectively. We let T denote
random rooted wgg tree thus obtained and refer to it as the PWIT(u, v). Observe now that

Lemma 8 With T being the weighted PWIT(u, v) we have CCM0(u, v) = C(T ).

On the other hand, let, for each n, g(n) be a geometric random variable with parameter
pn , that is, P(g(n) > k) = (1− pn)k , k ∈ N. Take a collection (g(n)

xk )x∈N∗,k∈N of i.i.d. copies
of g(n) and define lengths on the Harris-Ulam tree by

�n(x, xk) := g(n)
x1 + · · · + g(n)

xk

n
, x ∈ N

∗, k ∈ N. (12)

Again, add i.i.d. weights to the edges and vertices of N
∗ distributed according to un and vn ,

respectively. Let Tn = (N∗, �n, un, vn) denote the random rooted wgg tree thus obtained.

Lemma 9 With Tn being the tree just defined we have G0
n = C(Tn).

Proof of Theorem 3 By Lemma 7, we have Tn
(d)−→ T and this is simply because, with g(n)

geometric with parameter pn , and τ exponential with parameter 1, we have g(n)/n
(d)−→ τ .

Then, from (11) and (12), we see that �n(x, xk)
(d)−→ �(x, xk) and, by independence, we see

that the conclusion of Lemma 7 holds. Since (Lemma 6) the map C is continuous, we have

that C(Tn)
(d)−→ C(T ). This reads G0

n
(d)−→ CCM0(u, v) because of Lemmas 8 and 9. 
�

Remark 1 We did not attempt to define the limit of the full Gn = SOG( 1n Z, pn, un, vn)

graph, but just of its the graph G0
n obtained by those vertices that are reachable from 0.

4. Recursive distributional equation for maximal weight Having established a weak conver-
gence result for G0

n , with CCM0(u, v) as a limit, we can now apply it to various interesting
functionals, so long as these functionals are continuous.

As an example, consider CCM0(u, 0). (Set all vertex weights equal to zero but let edge
weights be i.i.d. all distributed as u.) Let

W̃t := max weight of all paths in CCM0(u, 0) starting from 0 and having length at most t.

We then have

W̃t
(d)= max

1≤i≤Nt

{
ui + W̃x−Ti

}
,

where N is a Poisson process on [0,∞), independent of W̃ , with points 0 < T1 < T2 < · · · ,
and where Nt is the number of points on [0, t]; TNt ≤ t . Since, conditional on {Nt = k}, the
set {T1, . . . , Tk} is a set of k i.i.d. uniform random variables with values in [0, t], we obtain

F(t, w) := P(W̃t > w) = exp
∫ x

0
E[F(y, w − u)] dy. (13)

This equation, in the special case where u = 1 a.s., has been derived in [16], along with some
heuristics on its behavior for large t .
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6 Some Open Problems

1. Motivated by the results in [17,18] we may ask a last-passage percolation question for
the following model, a 2-dimension generalization of the continuum cascade model. Let
� be a unit-rate Poisson process on the positive orthant R

2+. Let (�t , t ∈ R
2+) be i.i.d.

copies of �. For s = (s1, s2), t = (t1, t2) ∈ R
2+, write s < t if s1 < t1 and s2 < t2. Now

define a graph with vertices in R
2+ and edges (s, t) provided that s < t and that t is a

point of �s . Let Lx,y be the maximum length of all paths starting from 0 and contained
in the rectangle [0, x] × [0, y]. The question is the asymptotic growth of Lx,y and its
fluctuations.

2. Consider the graph SOG(Z, p, u, 0), for a reasonable edge weight variable u. The case
u = 1 and p > 1/2 has been settled in [19]. However, if u is not deterministic, and even
in the simplest possible case where u takes 2 values only, it appears that even bounds
on the asymptotic growth of the maximum length are not easy to get. For example, the
method of [11] fails.

3. A discrete model that simultaneously generalizes that of [17,18] is as follows. Consider
last passage percolation on Z

2+ with vertex weights as in [17] but allow the possibility of
random edges as well as in [18]. Do the fluctuations of maximal path lengths also have
a Tracy–Widom limit in distribution?

4. Equation (13) provides an approximation for the distribution heaviest path in the discrete
graph SOG(Z, p, u, 0) in the small p regime. It is a very complicated integral fixed-
point equation whose properties are not understood. In the u = 0 case (no weights at
all), heuristics for its solution are in [16]. A similar fixed-point equation can be derived
for the general (u, v) case.
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