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Abstract:  
 
Virtually all machines and mechanisms use mechanical joints that are not perfect from the 
kinematic point of view and for which tolerances, in the fitting of their components, are 
specified. Together with such controlled clearances, mechanical joints may require the use of 
bushing elements, such as those used in vehicle suspensions. Furthermore, in many situations the 
joints exhibit limits (stops) in their translational or rotational motion that have to be taken into 
account when modeling them. The dynamic response of the mechanical systems that use such 
realistic mechanical joints is largely dependent on their characteristic dimensions and material 
properties of the compliant elements, implying that correct models of these systems must include 
realistic models of the bushing/clearance joints and of the joint stops. Several works addressed 
the modelling of imperfect joints to account for the existence of clearances and bushings, 
generally independently of the formulation of the perfect kinematic joints. This work proposes a 
formulation in which both perfect and clearance/bushing joints share the same kinematic 
information making their modelling data similar and enabling their easy permutation in the 
context of multibody systems modelling. The proposed methodology is suitable for the most 
common mechanical joints and easily extended to many other joint types benefiting the 
exploration of a wide number of modelling applications, including the representation of cut-
joints required for some formulations in multibody dynamics. The formulation presented in this 
work is applied to several demonstrative examples of spatial mechanisms to show the need to 
consider the type of imperfect joints and/or joints with stops modelling in practical applications. 
 
Keywords: Kinematic joints, Clearance joints, Bushing joints, Constraint violation, Joint stops, 
Numerical efficiency. 
 
 
1. Introduction 
 
Mechanical joints in any natural or man-made mechanism allow for the relative motion between 
the connected elements of the system. The function and durability of mechanical and biological 
joints is not only associated with the geometry of the mating pairs, which in turn guarantee the 
correct mobility of the system, but also to the materials used in the interface, which may allow 
for some level of energy dissipation and provide local flexibility, and to the tribological fluids to 
ensure the proper friction characteristics and wear control. Joints in mechanisms subjected to 
impact loading or with large transient loads, such as virtually all joints in road or railway 
vehicles, need not only to exhibit some level of compliance but also to provide some isolation to 
the transmission of vibrations between connecting bodies.  

From the physical point of view, when the modelling of local compliance, energy 
dissipation or vibrational isolation/modification on the system kinematics are due to features of the 
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mechanical joints, it is necessary that these are modelled as clearance/bushing joints and not as 
perfect kinematic pairs. From the mathematical, or computational, point of view it is often 
necessary to allow for the modelling of kinematic chains to have cutoff joints, i.e., kinematic joints 
modelled as contact pairs, either because the formulations used cannot handle closed kinematic 
loops, or because the multibody system only works due to slight misalignment of joints or even 
because it is a suitable modelling strategy to overcome the numerical difficulties associated with 
the existence of redundant constraints in the multibody system. In these cases, the availability of 
efficient and accurate models of clearance/bushing joints is a valuable feature in multibody 
computational tools for the development of realistic multibody systems. 

The need for the modeling of clearance joints, in the framework of the dynamics of 
mechanical system, has recognized in earlier theoretical and experimental works by Dubowsky 
(1974), Dubowsky and Gardner (1977), Grant, Fawcett (1979), Haines (1985) or Soong and 
Thompson (1990), among many others. These works showed how clearances can condition the 
dynamical response of mechanisms, affect performance and even interfere with machine control 
systems. In the framework of multibody dynamics Ravn (1998), Schwab, Meijaard and Meijers 
(2002) or Flores and Ambrósio (2004) and Flores et al. (2008) presented some of the basic works 
for the generalized modelling of clearance joints. Most of these works focus on the planar systems 
involving either revolute or translation joints. Based on that early works, the modelling of planar 
clearance joints has been explored by a wide number of researchers to model their lubrication (Li 
et al., 2016), to understand the systems behavior in presence of multiple joints (Ben-Abdallah, 
Khemili and Aifaoui, 2016), to apply their basic formulations in a wider range of contact problems 
(Pereira, Ramalho and Ambrosio, 2015a), to devise controlling strategies for systems in their 
presence (Akhadkar, Acary and Brogliato, 2016; Yaqubi et al.,2016) or simply to implement them 
in computer codes based in different formulations (Gummer A, Sauer B, 2014). 

The solution of any contact problem is not simple and the modelling of clearance joints is 
not an exception. The solution of the contact problem is divided in two parts: the contact detection 
and the modeling of the contact force. Particular care must be put in the numerical issues 
associated with the integration of the equations of motion in the presence of sudden change of 
forces or even discontinuities. The contact detection for planar joints is rather simple being 
solutions for the most common type of joints available in the work of Flores et al. (2008) or Zhang 
and Wang (2016). The modeling of the contact force is either approached by using penalty 
formulations, generally based on Hertz elastic contact (Lankarani and Nikravesh, 1994; Pereira, 
Ramalho and Ambrosio, 2015b), or by using unilateral constraints in the framework of nonsmooth 
contact dynamics (Glocker and Studer, 2005; Flores, Leine et al., 2010; Akhadkar, Acary and 
Brogliato, 2017). A critical issue in the numerical solution of multibody dynamics problems in the 
presence of contact, or impact, is the fitting of the numerical integration method and of the time-
step selected to the correct integration of the equations of motion. This issue is discussed by Flores 
and Ambrosio (2010) in the framework of continuous contact force models using penalty 
formulations, and by Förg, Pfeiffer et al. (2005) or Brogliato (2016) in the context of unilateral 
constraints or nonsmooth contact dynamics. 

The use of multibody models for 3D systems that use of spatial clearance/bushing joints is 
required for a wide number of realistic problems. Road vehicles, whose suspensions use bushing 
elements in the joints (Ambrosio and Verissimo, 2009), railway vehicles for which the extra 
degrees associated with the clearance joints provides the compliance of the suspension systems that 
promote a better wheel-rail contact (Magalhaes, Ambrosio, Pombo, 2016) or in the multibody 
modelling of highspeed train pantographs in which some of the fundamental features of their 
dynamic response are associated with the existence of imperfect joints (Vieira, 2016) or even in the 
modelling of mechanical watches (Robuschi et al., 2017) are examples of the need for using 
imperfect joints. In general, while the numerical issues associated with the numerical methods and 
time-stepping procedures in contact problems are similar in spatial and planar multibody systems, 
the contact detection and the use of the contact force models have different issues in planar and 
spatial clearance/bushing joints. Different computational models for spatial clearance joints, 
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Start with vectors bi and bj, in Figure 1(b), which not only are parallel to si and sj, but also have the 
same orientation of si, i.e., /i i i  and T

j j i i  at time t0, where matrices Ai and Aj are 
the transformation matrices from bodies i and j coordinate systems, respectively, to the inertial 
referential. Generate vector i , in Eq. (5), to be orthogonal to i , for instance by using a 
Householder transformation (Lopes, Silva and Ambrosio, 2013). From the numerical point of view 
it is assumed that the vectors are generated such a way that T

i i i  and T
j j i . Finally 

vectors i  and j  are such that not only Eq. (5) is fulfilled but also that right-hand vector triads are 
obtained. A joint coordinate system (h, t, b)i is associated with the journal and another coordinate 
system (h, t, b)j is associated with the bearing, being these parallel to each other in the initial time 
t0 of the analysis. Of particular importance in what follows is the transformation of coordinates 
from the journal coordinate system to the body i coordinate system, which is expressed by the 
constant transformation matrix .  In all time steps during the numerical 
integration of the equations of motion of a multibody system, the distance vector d, depicted in 
Figure 1(b), is  

( ) ( )  (6) 

 The different perfect kinematic joints are described by defining the convenient vector 
operations with the quantities presented in Eqs (5) and (6). The constraint equations for a 
cylindrical joint are defined as 

( ,4)

T
i j
T

c i j
T
i
T
i

 (7) 

For a revolute joint the constraint equations are obtained by adding to the cylindrical joint 
constraint equations a restriction that prevents the axial displacement of body i with respect to 
body j, i.e.,  

( ,4)
( ,5)

2
0

c
r

T d
 (8) 

in which the square of the axial distance between points P in bodies i and j, defining the joint, 
, is evaluated for time t0. For a translation joint the constraints equations are 

obtained by adding to the cylindrical joint constraints a restraint that prevents the rotation of 
body i with respect to body j, 

( ,4)
( ,5)

2
0

c
t

T
i j h  (9) 

being the square of the angular alignment of bodies i and j along the joint axis, , 
evaluated for time t0. 
 The rigid joint is obtained with the cylindrical joint constraints plus the restrictions for the 
axial displacement and rotation about the axis defined between bodies i and j, as 

( ,4)

( ,6) 2
0
2
0

c

rig T

T
i j

d
h

 (10) 

Note that the rigid joint can be expressed by a formulation alternative to that used here, in which 
the set of constraints defining a spherical joint are complemented by a frame alignment 
constraint as that used in the path motion constraint proposed by Pombo and Ambrósio (2003). 
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In fact, if d0=0 and the frames defined by vectors h, t, b, associated with each body, are 
substituted by the unit vectors associated with the body fixed coordinate systems both 
formulations become identical. 
 
2.3 General Description of Imperfect Kinematic Joints or Contact Joints 
 
 Eqs (7) through (9) define the perfect kinematic joints that need to be included in Eq (1) 
using the Augmented Lagrangean method (Nikravesh, 1988). However, in many applications the 
kinematic joints are not perfect, as that illustrated in Figure 2. Instead of enforcing kinematic 
constraints between rigid bodies, the relative displacements and rotations between them lead to 
contact forces which are related to the relative displacements by appropriate constitutive 
relations. 
 A general clearance/bushing joint that restricts all relative motions between two 
connected bodies requires that the axial and radial displacements, axial misalignment and axial 
rotation, identified in Figure 2, are penalized. The penalization forces must be evaluated and 
applied in the bodies constrained by the joint in specific interaction points, which must be clearly 
defined also. The contact forces between the two bodies are proposed by Ambrosio and 
Verissimo (2009), in the case of pure bushing joints, and by Flores at al. (2008), in the case of 
clearance joints. These contact force constitutive models are revisited here with several 
enhancements, not only to accommodate for the simultaneous application of clearances and 
bushings but also to explicitly use the same vectors obtained for the definition of the perfect 
joints, while providing improved numerical performance. 
 

  
Figure 2: General representation of clearance/bushing cylindrical, revolute and translation joints 

with the identification of specific relative motions required for their formulation. 

 
2.3.1 Relative Displacements/Rotations 
 

The concepts of axial and radial displacements, axial misalignment and axial rotation, 
visualized in the graphical aids depicted in Figure 2, are defined first. For this purpose, let the 
distance vector d be decomposed, as illustrated in Figure 2, into axial displacement component 
along vector bi, which specifies the joint axis in body j, defined as 

��am

Axial misalignment

Axial rotation
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( )
,

( )
,

( , , , , , )
( , , , , , )

cyl
i cyl i n n t t am am

cyl
j cyl j n n t t am am

 (21) 

 For a clearance/bushing revolute joint, the penalization forces due to the axial 
displacement, presented in Figure 2, is also required. Besides the penalization forces and 
moments expressed by Equations (20) and (21) the revolute joint also requires the application of 
contact forces in points Pi and Pj, of bodies i and j respectively, defined by 

( )

( ) ( )
( , )  (22) 

The axial displacement dt is calculated by using Eq (11). The force relation ( , )  is a 
nonlinear relation that involves the axial displacement, its speed and the geometric and material 
characteristics of the joint. 
 For a clearance/bushing translation joint, the penalization forces due to the axial rotation 
between bearing and journal, shown in Figure 2, is required together with the contact forces and 
moments expressed by Eqs (20) and (21). The penalization of the axial rotation requires the 
application of penalty moments in bodies i and j defined by 

( )

( ) ( )
( , )ar T

i ar i i
ar T ar

j j i i

f  (23) 

The relation ( , ) ( , )ar ar arf  is a nonlinear relation that includes the axial rotation angle, 
its speed and the geometric and material characteristics of the joint. 
 The total forces and moments to be applied on bodies i and j resulting from the 
clearance/bushing constitutive equations are defined independently by Eqs (20) through (23), 
being the forces applied on points Pi and Pj, in bodies i and j, respectively. Therefore, their 
transference to the center of mass of each body, where the fixed coordinate system is assumed to 
be attached, must be considered. The contribution of the clearance/bushing joints to the force 
vector of the bodies connected by one of those joints is given by 

 (24) 

 All penalization forces and moments defined in Eqs (20) through (23) involve relative 
displacements and rotations and their time derivatives. For the evaluation of the relative 
displacement and rotation speeds the reader is directed to reference (Ambrosio and Verissimo, 
2009). In the definition of the penalty moments, defined by Eqs (21) and (23) the penalization of 
the axial displacement and axial rotation are decoupled from each other, and from the other 
relative motion penalizing force components. In some particular applications, the relative motion 
components may be coupled as, for instance, in biological structures, such as intervertebral disk 
in the human spine, where the axial deformation is coupled with the axial rotation. 
 
2.4 Application to a Clearance/Bushing Cylindrical Joint 
 
The computational treatment of a clearance/bushing joint has a computational implementation 
similar to that of any other contact problem. First the general contact detection has to be solved. 
The contact detection depends on the geometry of the contact pair being its implementation more 
or less specialized for particular geometries (Hippmann, 2004; Mazhar, Heyn and Negrut, 2011), 
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 (a) (b) 
Figure 8: Slider position of the slider-crank model with spherical clearance joint for: (a) null or 

small clearances; (b) large clearances 

 

 
 (a) (b) 
Figure 9: Crank angle of the slider-crank model with spherical clearance joint for: (a) null or 

small clearances; (b) larger clearances 

The joint reaction forces observed in the spherical joint, along X, are displayed in Figure 
10 for the cases with perfect kinematic joints and clearance joints. It is observed that large peaks 
in the force develop at the instants that the slider reaches its end of range, or end of the stroke, 
and inverts the direction of the motion. For perfect spherical joints modeled either as spherical 
kinematic constraints or as imperfect joints with null clearance the response is rather smooth, 
i.e., no oscillations in the reaction force are observed. However, when the clearance increases the 
joint reaction force exhibits oscillations during the slider mid-stroke, being the amplitude of the 
force oscillations higher as the clearance increases. 
 

  
 (a) (b) 
Figure 10: Joint reaction force in the spherical joint (X component) for: (a) null or small 

clearances; (b) larger clearances. 

Selected results for the slider-crank models with a clearance revolute joint are presented in 
Figure 11 through Figure 13. The results, depicted in Figure 11(a) show that as the clearance in the 
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revolute joint starts to increase, the time at which the slider reaches its end of stroke is increasingly 
delayed. For a clearance of 1 mm it is observed, in Figure 11(b), that the crank angle is unable to 
develop more than two revolutions, after which the crank starts to oscillate about its static 
equilibrium position. The effect of the energy dissipation due to the inclusion of the non-elastic 
restitution parameter in the contact force model is visible when comparing the responses of the 
models with a null clearance revolute joint with and without damping. It is visible in Figure 11(a) 
and (b) that just the existence of the damping favors that the slider oscillation experiences an 
increasing delay reaching its end of stroke. 

 

 
 (a) (b) 
Figure 11: Slider-crank model with revolute clearance joint: (a) slider position; (b) crank angle 

The joint reaction forces observed in the revolute joint, along X and Z, are displayed in 
Figure 12 for the cases with perfect kinematic joints and revolute clearance joints. Just as for the 
cases in which the models considered the spherical clearance joints, for the models with perfect 
revolute joints modeled either as revolute kinematic constraints or as imperfect joints with null 
clearance no oscillations in the reaction force are observed. However, when the clearance 
increases the joint reaction force exhibits oscillations, mostly during the slider mid-stroke, being 
the amplitude of the force oscillations higher as the clearance increases. 

It is interesting to observe the effect of the damping, due to the use of non-elastic restitution 
parameters in the contact force models, on the joint reaction forces. The joint reaction forces in the 
revolute joint, along X and Z, are displayed in Figure 13 for the model with a null clearance of the 
revolute joint. It is clear that, if no damping is considered, the oscillations in the contact force 
develop mostly as a result of the slider reaching its end of stroke, which enhances the impact of the 
journal and bearing, leads to alternate periods of relative free-flight motion and contact following 
motions. 

 
 (a) (b) 
Figure 12: Joint reaction force for the revolute joint slider crank models with perfect and with 

clearance revolute joint: (a) force component X; (b) force component Z. 
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 (a) (b) 
Figure 13: Joint reaction force for the revolute joint slider crank models with perfect and with 

clearance revolute joint with and without damping in the contact model: (a) force 
component X; (b) force component Z. 

 
The presence of hysteresis damping in the normal contact model of the clearance joint 

eliminates the oscillations of the joint reaction forces observed in Figure 13. It has been observed 
in some cases that the friction forces, when present, also mitigate the oscillatory behavior 
observed in the contact joint (Ambrosio et al., 2015). The use of different numerical integrator 
schemes, with fixed or variable time steps or with internal damping can also mask, or emphasize, 
the observed oscillatory behavior. In any case, the clearance joint behavior for a null clearance 
can be expected to be similar to that of a perfect kinematic joint not only in terms of kinematic 
behavior, as observed on the displacements depicted by Figures 8, 9 or 11, but also in terms of its 
kinetic response. Therefore, not only the source of the large amplitude oscillations but also the 
numerical methods used to handle the dynamics of the problem are worth being investigated in 
future works. 
 
3.2 Triple Pendulum with Joint Limits 
 
Consider the triple pendulum mechanism depicted in Figure 14. Body 1, of length 0.6 m, is 
constrained to the ground by a revolute joint with a horizontal axis. Body 2 has also a length of 
0.6 m and is linked to body 1 by the vertical cylindrical joint with limits on its translation 
displacement. Body 3, of length 0.3 m, is connected to body 2 by the revolute joint with limits on 
its rotation range, with an orientation of 45º with respect to the Z axis. The bodies have no initial 
velocity being acted by gravitational forces only. All joints are frictionless. 
  

 
Figure 14: Triple pendulum with joint limits 
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 (b) (c) 
Figure 15: Kinematics of the triple-pendulum, using the Lankarani and Nikravesh contact force 

model, with joint stops in key positions: (a) Sequence of snapshots; (b) Forward 
swing (1st); (c) Backward swing (1st). 

The behavior of the joint stops and contact forces that develop are of interest to understand 
of the methodology proposed here. The time history of the relative translation between bodies 1 
and 2, the corresponding joint stops contact forces, and the relative rotation between bodies 2 and 
3, and respective joint stops moments, are depicted in Figure 16, using the Lankarani and 
Nikravesh contact force, and in Figure 17, using the Kelvin-Voigt contact force model.  

 

  
Figure 16: Relative translation between bodies 1 and 2, with the corresponding joint stops 

contact forces, relative orientation between bodies 2 and 3, with the joint stops 
moments, in which the joint limit forces/moments use the Lankarani and Nikravesh 
force model. 
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Figure 17: Relative translation between bodies 1 and 2, with corresponding joint stops contact 

forces, and relative orientation between bodies 2 and 3, with respective joint stops 
moments, in which the joint limit forces/moments use the Kelvin-Voigt force model. 

As expected the contact with the end stops in the pendulum model in which the Lankarani 
and Nikravesh contact force model is used have a lower energy dissipation and do not present 
any residual deformation. Therefore, the bodies rebound from contact when a joint stop is 
reached, eventually leading the joint displacement, or rotation, to be such that soon after the 
contact takes place with the joint stop in the other side of the joint. 
 When the Kelvin-Voigt contact model is used, with a residual restitution coefficient 
value, not only there is an appreciable energy dissipation during the contact but also there is a 
residual deformation, as seen in Figure 17 in which the contact deformation in the cylindrical 
joint translation stops becomes permanent. For the rotation stops the same tendency for the 
permanent deformation during contact exists. It is only due to the gravitational acceleration that 
the body 3 tend to rotate with respect to body 2 bringing the joint out of contact with its end 
stops. It is also observed that while for the model in which the Lankarani and Nikravesh contact 
force is used the amplitude of the pendulum swing decreases slightly in each period, for the 
model using the Kelvin-Voigt contact force the amplitude of the pendulum swings decreases 
very quickly in each following period. Actually, for the scenario with the Kelvin-Voigt contact 
with null restitution coefficient the swing amplitude decreases there are no more contact events 
with any of the joint stops, remaining basically constant afterwards as no more energy dissipative 
events take place. This behavior is shown in Figure 18 in which the angular velocity of body 1 is 
displayed together with the relative displacements and orientations of bodies connected with 
joints with joint stops. 
 
6. Conclusions 
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The work now presented proposes a common framework for the formulation of common kinematic 
joints and mechanical joints with clearances and/or bushings, with or without joint stops. This 
formulation is novel in the sense that it not only unifies the different vector quantities required for 
the formulation of the joints as kinematic constraints or as contact force elements but also because 
the input data for each type of approach is composed with a common set of topological 
information. This approach leads to the ability to have mixed descriptions of a joint in which some 
relative motions are prevented by kinematic constraints while others are penalized by contact force 
elements, as for instance in the case of the joint stops. The formulation is demonstrated by studying 
two mechanical systems, a spatial slider-crank and a triple pendulum, that include some of the 
features that can be represented by the formulations proposed here. In the process of presenting the 
proposed formulation a new model for contact detection of the pairs of cylindrical clearance joints 
is developed. 
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Figure 18: Response of the triple pendulum model with the Kelvin-Voigt contact model, with a 
null restitution coefficient, for a long simulation: Angular velocity of body 1; Relative 
translation between bodies 1 and 2; Relative orientation between bodies 2 and 3. 

The study of two demonstrative mechanisms allows verifying the use of clearance/bushing 
joints with extremely small clearances have a kinematic behavior very similar to that of the 
mechanisms modeled with perfect kinematic joints, as it was to be expected. The size of the 
clearances and their contact mechanics becomes determinant in the mechanism behavior for large 
clearance sizes but is almost unobservable for very small clearances, i.e., for clearances generally 
associated with precision machining tolerances. The energy dissipation, not existing in 
mechanisms with perfect kinematic joints, is represented in clearance/bushing joints via the contact 
force models used. Actually, joints with larger clearances and with contact models, even with 
contact models in which the energy dissipation is small, lead to a behavior of the mechanism in 
which the continued motion is not possible without external actions applied to the system, as 
shown in the case of the spatial slider-crank demonstrates in which the crank is unable to continue 
having a complete 360º rotation after some revolutions. One of the aspects of the formulation of 
the clearance joints concerns the penalty factor for the contact force law which is of primary 
importance.  When the contact stiffness is underestimated the differences in mechanical behavior 
between mechanisms with different clearance sizes becomes difficult to be appraised. Therefore, it 
is recommended to use penalty factors that result from elastic contact theories, such as those based 
in Hertzian contact or obtained via experimental identification. 

In the process of testing the new formulations proposed here no evidence that the 
computational time required for the simulations increase when clearance/bushing joints are used in 
the model instead of the perfect kinematic joints. In one hand the lower number of equations used 
to describe the constrained equations of motion, as the number of constraint equations decreases 
leads to lower computational times. On the other hand the contact models with less energy 
dissipation, used here, introduce higher frequency contents in the dynamic response that require a 
reduction on the variable time-step integrators, which lead to smaller time-steps and higher 
computational costs, while the lack of constraint violations associated with these joints removes an 
important dynamic contribution to the increase of higher frequencies in the system dynamic 
response, thus removing this contributions for the decrease their time step in virtue of such 
violations. Future studies should be developed to clarify the relative computational efficiency of 
either of the modelling approaches, i.e., the use of kinematic perfect joints versus the use of 
clearance/bushing joints in the models of multibody systems. 
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