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This thesis is concerned with the development of methodology for nonstandard Se-
quential Monte Carlo algorithms. It is very important in practice to be able to sample
from a target probability distribution which can be evaluated only up to a normalising
constant and does not have a standard form. Scientific disciplines in which this problem
arises include; statistics, engineering, bioinformatics, finance and computer vision. In
many cases using standard sampling techniques such as inversion or rejection to sam-
ple from a target distribution is not possible or proves too much of a computational
burden. This has led to the development in recent years of much more advanced al-
gorithms which allow one to obtain the required samples from the target distribution.
In batch settings one typically utilises some variant of the well regarded Metropolis-
Hasting algorithm. However, in on-line settings in which data is arriving sequentially,
often Metropolis-Hastings is no longer a viable alternative and as a result, Sequential
Monte Carlo techniques have been developed to tackle these problems. Sequential Monte
Carlo utilises the idea of Importance Sampling to perform the task of sampling in on-line
scenarios. It is a technique which uses a collection of particles or samples to represent
the inferred posterior distribution and updates the particles as more observations are
received. The algorithms developed using Sequential Monte Carlo sampling have enjoyed
wide-spread use in tracking and computer vision due to the fact that they provide a nat-
ural means of sampling a state distribution of a target sequentially in time. It was not
until recently that Sequential Monte Carlo approaches have started to be applied in more
traditional statistical problems which would typically be handled by batch algorithms.

It is the focus of this thesis to develop a methodology that will allow one to ob-
tain samples from a sequence of distributions which are all defined on the same fixed
dimensional space. This is a non-standard idea, since standard Sequential Monte Carlo
algorithms deal with situations in which the space on which the sequence of target poste-
riors are defined upon, grows with each iteration, as a product space. Therefore, one may

view the work in this thesis as a means of turning problems, which would typically be
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solved using classical batch algorithms, into a sequential problem in which the solution
utilises qualities of the Sequential Monte Carlo framework. The advantage of such an
approach is detailed throughout the thesis and guidelines as to when this methodology
will be a viable alternative to Metropolis-Hastings have been presented. Finally several
detailed examples have been provided to demonstrate how effectively the new Sequential

Monte Carlo methodology performs relative to several standard algorithms.
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IS Importance Sampling

SIS Sequential Importance Sampling

SMC Sequential Monte Carlo

MCMC Markov Chain Monte Carlo

RIMCMC Reversible Jump Markov Chain Monte Carlo
1.i.d. independent identically distributed

ave., std. average, standard deviation

MAP Maximum a Posteriori

MMSE Minimum Mean Square Frror

(R)MSE (Root) Mean Square Frror

SMC Samplers Sequential Monte Carlo Samplers

TDSMC Trans-Dimensional Sequential Monte Carlo
AIS Annealed Importance Sampling

SA Simulated Annealing

SVM Support Vector Machine

RVM Relevance Vector Machine

SLLN Strong Law of Large Numbers

CLT Central Limit Theorem

Eyg Effective Sample Size

GLM General Linear Model
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expectation operator
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Inverse Gamma distribution with parameters a and (3
Uniform distribution over [a, 0]
Poisson distribution parameter A
FExponential distribution with parameter u
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matrix at previous iteration or neighbouring time step
matrix with 5 column changed
forward transition kernel giving probability
of moving from 7’ to z (at time t)
backward transition kernel giving probability
of moving from 7’ to z (at time t)
vector or sequence of k¥ random variables at time ¢
path history of k random variables from time 1 to time ¢
time ¢ have model order k; and Xy, is interpreted as
the vector or sequence of k; random variables at time ¢
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1.1 Introduction

This chapter provides a review of the fundamental ideas required for Bayesian analy-
sis. There are two well studied approaches to performing probabilistic inference in the
analysis of data, namely the frequentist approach and the Bayesian approach. In the
classical frequentist approach one takes the view that probabilities may be seen as rel-
ative frequencies of occurrence of random variables. This approach is often associated
with the work of J. Neyman and E. Pearson who described the logic of statistical hy-
pothesis testing. Other key figures include J. Venn, R. A. Fisher, and R. von Mises. The
second approach known as the Bayesian paradigm takes a different view. In a Bayesian
analysis the distinction between random variables and model parameters is artificial, and
all quantities may have a probability distribution associated with them, this probability
represents a degree of plausibility. Basically, "Bayesians" condition on the observed data
and use a probability distribution over the hypotheses. It is beyond the scope of this
thesis to enter into the well documented debate over the merits of either method, instead
the author suggests that the interested reader can find a more in-depth philosophical

discussion on the details of each approach in [15], and the many papers of J. Berger.
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1.2 Bayesian Inference

The premise of the work presented in this thesis revolves around a statistical analysis built
on Bayesian methodology. The Bayesian approach to data analysis is a widely accepted
means by which one may carry out modern statistical data analysis. Bayesian analysis
is so named as it centres around Bayes’ rule shown below in equation (1.1). It should
be noted that, when one uses x and y this may be understood to represent both a single
variable or a multi-dimensional vector of random variables, respectively observations.
The following terminology is used; p(z|y) is known as the posterior probability, p(y|z) is
the likelihood, p(z) is the prior probability and p(y) is the evidence.

ploly) — EUERE) (1.1
p(ylz) p(z)

[o(lz)p () dz

The Bayesian approach [12] involves estimation of unknown "states" from a set of
observations. Generally, one has prior knowledge of the system being modelled which
can be formulated, in a Bayesian framework, as a prior distribution. Then using the
mathematical model that one has to approximate the physical phenomena being observed,
one may obtain the likelihood which relates the prior knowledge to the observations. This
is then used to construct the posterior distribution for the "state" of the system given
the observation sequence obtained.

In this Bayesian framework the unknown parameters are treated as random variables
and their prior distribution is updated via Bayes theorem to provide the posterior dis-
tribution which is conditioned on the set of observations. Then all inference that is of
interest is carried out with the aim being to obtain estimates of the posterior probability
of a state given the observations. It is also important to mention that much literature
has been devoted to understanding how one can sensibly assign prior probability distri-
butions and what they mean in different contexts. There is a multitude of references

available on this topic and the author recommends; [19], [15],[48],[75].
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Bayesian Parameter Estimation

As stated, the focus of Bayesian analysis revolves around the posterior distribution.
However, when one wants to perform parameter estimation, the value of the unknown
parameter vector x can be estimated in several ways. The two most common methods
used to obtain a parameter estimate from the posterior distribution of interest are the
Maximum A Posteriori (MAP) criterion and the Minimum Mean Square Error (MMSE)
or minimum variance estimator [79).

The MAP estimate depends on the likelihood function weighted by the prior proba-

bility and is given as follows,

Tppap = 0L l’l’lep (:U’y) :

The MMSE estimate is given by,

Toinisy = / zp (zly) dz.

Bayesian Model Selection

There are three broad approaches to understanding model selection which are labelled,
according to [15], [44] as the Mopen, Meompietea and the M. jpseq modelling perspectives.
The M 504 approach takes the view that the class of models under consideration con-
tains the true model. The M ompietea View corresponds to the case where although a
formulated belief model is known, due to intractability of analysis other models are con-
sidered. The M., approach takes the view that none of the models under consideration
completely captures the intricate relationship between the inputs and the outputs, [34]
page 24. Hence, the Mcompietea and Mper, approaches places prior probabilities on each
model which reflect the relative degree of belief in each model, for the class of models
being considered. All of these approaches lend themselves to a Bayesian analysis. A

key aspect of Bayesian model selection is that one can improve the quality of the model
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selected through the introduction of prior quantitative or qualitative knowledge. This
is achieved by assigning prior distributions to the model parameters and then updating
these parameters in light of the observations. Bayesian model selection involves the selec-
tion of the model, usually from a finite set of possible models denoted {M;}, which most
accurately represents the observations, according to some criterion of interest. Hence
Bayesian model selection can be considered as the process of determining the most plau-
sible model for the data given the set of possible models to choose from. The Bayesian

model selection approach is,

p (y|M;) p (M)

p(y)
fp (y|z, M;) p (x| M;) p (M;) dx

> [ p Wiz, My) p (x[M;) p (M;) d

p (Mily)

It is important to mention that one should not forget that the outcome obtained
from the above analysis results in a distribution and hence reflects a probability of each
given possible model choice; in the continuous range of models scenario one will obtain a
density. Hence one can decide to either perform subsequent evaluations using weighted
model averages or to use a point estimate such as a MAP estimate. A discussion of the
pros and cons of this method are presented lucidly in [83],[72],[71]. A very insightful
discussion of the merits of both open and closed perspectives of model selection, in terms
of Bayes factors or loss functions, is presented in [34].

It is important to mention that model selection can be computationally challenging.
Often an exhaustive search of the model space to determine the best model for a given
situation proves to be a massive computational effort and is therefore infeasible or im-
practical. For this reason many techniques have been developed to aid in the search for
the optimal model, these include Greedy searches, Leaps and bounds, EM algorithm [33],
Simulated Annealing [57] and Genetic algorithms. This thesis will also present a new
technique to perform model selection, which efficiently explores the model space to find

the optimum model.
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1.3 Definitions and Notation

This section shall be used to introduce some notation which will be used throughout the
thesis. It shall be assumed that a random variable X can be defined on a probability
space of the form (#,€,P). Where, I/ will represent the space of all outcomes which
may be either discrete or continuous and may be of multiple dimension, but will always
be real. € will represent o (/) which is the sigma algebra generated by the space I,
which is the set of all possible outcomes and P will be a probability measure on the space
E. The notation 7 (dz) shall be used to represent the law or distribution of the random
variable X, which is a probability measure given by the image measure on the space in
question. One may then assume that given the law of the random variable X, one can
define a Radon-Nikodym derivative with respect to the dominating measure dz. This is
equivalent to stating that 7 (dz) admits as a density 7 (z) with respect to dominating
measure dz. Additionally, the following notation was used throughout this thesis, where

for any probability density 7 and sequence of transition kernels { K},

TTKz‘:j (lg) £ /7?(%‘1) Hjs:l K, (ajsflaxs) dl‘iflzjfl-

In terms of notation it shall also be assumed that the un-normalised version of the
density 7 (x) is given by f(z). In all models considered in this thesis the spaces of
interest will be either discrete or continuous, open or compact subsets of Fuclidean space.
Furthermore, it shall be assumed that all distributions of interest admit densities with
respect to either the counting measure or Lebesgue measure. Having established this
notation which shall be used throughout the thesis, it is now important to highlight the

aims of the thesis and how the thesis will be structured.
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1.4 General Aim of Analysis

The general aim of the analysis contained in this thesis can be summarised as trying to
estimate a posterior distribution, given a noisy observation sequence. This estimation can
either involve receiving sequential observations and carrying out updates to the posterior
in light of the new observations, or batch scenarios in which all the observations are
available and the aim is to estimate the posterior conditional on knowledge of the batch
of noisy observations. Markovian, non-linear and non-Gaussian signals will be considered
in this thesis. Systems which are linear and (Gaussian are not of particular interest, in
the sense that they have an optimal solution known as the Kalman filter, which is well

studied and widely implemented in practice.

1.5 Structure of Thesis

To a certain extent, each chapter in this thesis may be read independently as they are
fairly self contained. However, the chapters do lead into one another, in the sense that
each chapter builds on previous chapters. The second chapter provides a literature review,
which motivates the reason for developing the new methodology forming the body of this
thesis. The third chapter develops the fundamental framework and provides guidelines
for the use of the new methodology developed in this thesis, termed Sequential Monte
Carlo Samplers (SMC Samplers). Chapter three also provides an application and then
the results of simulations obtained using SMC Samplers methodology are compared to
existing algorithms in the literature.

The fourth chapter extends the Sequential Monte Carlo Samplers methodology to pro-
vide a new framework for trans-dimensional analysis, which is termed Trans-Dimensional
Sequential Monte Carlo (TDSMC). Again, applications are provided with comparison to
existing techniques. The fifth chapter is devoted to two detailed applications, the esti-
mation of an inhomogeneous Poisson Process rate function and secondly, basis function

regression for the General Linear Model. These applications provide the reader with
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a detailed account of how to implement the new algorithms for TDSMC in real world
problems. Simulation results which demonstrate how effective the new algorithms are in
comparison to existing techniques and algorithms are also provided. The final chapter is
conclusions.

Chapter 2: Monte Carlo Methods

This chapter will provide a literature review of Monte Carlo methods and the justi-
fication for new methods, which are not as computationally constrained as the standard
classical Monte Carlo approaches which utilise sampling techniques such as inversion sam-
pling and rejection sampling. The sampling techniques presented include, batch sampling
algorithms such as Metropolis-Hastings algorithm, the Gibbs sampler and the method-
ology of Reversible Jump Markov Chain Monte Carlo to carry out trans-dimensional
analysis. In the sequential setting the basics of Importance Sampling is presented fol-
lowed by the methodology of Sequential Monte Carlo.

Chapter 3: Sequential Monte Carlo Samplers

Initially, this chapter provides justification for developing the new SMC Samplers
methodology, whilst motivating its use in several situations which include; utilising SMC
in situations typically associated with MCMC, optimisation and moving from an easy to
sample distribution to a difficult distribution, through a sequence of intermediate distri-
butions. Guidelines are provided to aid effective implementation of SMC Samplers algo-
rithms, along with theoretical analysis to support these algorithmic guidelines. Finally,
an example is presented which deals with Bayesian variable selection. This example pro-
vides comparison to existing algorithms such as Annealed Importance Sampling, MCMC,
parallel MCMC and Simulated Annealing.

Chapter 4: Trans-Dimensional Sequential Monte Carlo

This chapter presents an extension of the ideas developed in the previous chapter.
The TDSMC algorithm is developed and motivated through analogy to RIMCMC. In
this respect it is demonstrated that TDSMC is to SMC Samplers methodology, what
RIMCMC is to MCMC methodology. Then guidelines are presented for efficient applica-

18



tion of TDSMC. Finally, a comparison between existing algorithms such as SVM, RVM
and MCMC is made through application of TDSMC to two real data sets, which are
considered bench-marks for comparison of algorithms. This application involves radial
basis function regression.

Chapter 5: Applications

This chapter is dedicated solely to developing two detailed applications of the TDSMC
algorithm. The first application involves the estimation of an inhomogenecous Poisson
Process rate function, using a simple piecewise linear function approximation. Several
examples are presented, culminating in application of the new TDSMC algorithm to the
coal mining disasters between 1851-1962 data set. This allows for a comparison between
the RIMCMC algorithm and the TDSMC algorithm, in a batch data scenario. The
second application involves basis function regression for the General Linear Model. A
generic algorithm is developed which includes developing different types of "moves" which
are very general and may be applied in a range of situations. The application presented
here involves estimation of parameters of exponential basis functions, in a scenario in
which noisy observations are arriving sequentially.

Chapter 6: Discussions, Conclusions and Future Research

A summary of the work undertaken and ideas for future research are presented.

19
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2.1 Introduction

This chapter provides an overview of several methodologies which have been developed
to produce samples from a target distribution, 7 (dz). This has been the focus of a
significant amount of scientific research for the past few decades and in the context of this
thesis the general aim of the analysis can be summarised as trying to estimate a target
posterior distribution given a noisy observation sequence. In this Bayesian inference
setting the target distribution 7 (dz) takes the form of a posterior distribution p (dz|y).
The Bayesian inference approach used in this thesis requires the ability to simulate from
the posterior distribution of interest. Several techniques have been developed to obtain
samples or realisations of random variable X which is distributed according to 7 (dx).
This is a significant problem in many fields of research as the samples obtained may
have several applications as will be explained. Omne of the fundamental uses of these
samples is to help characterise the distribution, 7 (dz), through empirical estimates of
the moments and sufficient statistics. Another, very important use of samples drawn
from a distribution, which has spawned several fields of research, involves the casting of
difficult integrals which are in high dimensional spaces in the form of expectations with

respect to the distribution, 7 (dz). This plays a particularly significant role in Bayesian

20



inference. Other significant uses of these samples involve; optimization and obtaining
estimates of solutions to many inference problems which are contained in the fields of
electrical engineering, communications, control, bioinformatics and finance, to mention
a few.

In the Bayesian framework presented previously, one generally requires the ability to
solve multidimensional integrals to determine things such as the model evidence, or the
marginal posterior distributions in situations such as filtering recursions or smoothing,
expectations and moments with respect to some known function and the removal of
nuisance parameters. These integrals are generally difficult and may not have tractable
closed form solutions, hence there was a strong need to develop simulation techniques to
approximate the solutions of these integrals. Classical numerical integration techniques,
such as Gaussian Quadrature and Simpsons rule, are fine in low dimensions, however
as the integrals become more complicated and higher dimensional the computational
requirements of such techniques rapidly becomes too costly for these techniques to be
viable [79]. This is especially bad for "on-line" applications in which the integrals are
solved progressively in time, as new data or observations are recorded. The success of
Monte Carlo techniques stems from the fact that unlike the classical techniques mentioned
above which require a grid of points, the Monte Carlo techniques to be discussed do
not have this dimensional constraint. That is there is no direct dependence between
computational requirements and dimension in Monte Carlo integration [37]. Obviously
as the dimension grows, the number of samples required will need to be increased, and
one can also not typically say how many samples would be required for a given problem

in a given dimension.

2.2 Monte Carlo Methods

The power of Monte Carlo techniques to solve high dimensional integrals has been utilised

extensively throughout many fields. The reason why these techniques have been so suc-

21



cessful is that they are not subject to any constraints on linearity or Gaussianity and
hence prove to be very general in nature. The importance of the method lies in the fact
that one may consider difficult integrals as expectations, and thus may draw samples from
the distribution with respect to which the expectation is defined and compute an approx-
imation of the integral as a sample average. Furthermore, convergence results for several
key classes of Monte Carlo approximation techniques have been studied and are now well
understood. This allows one to optimise Monte Carlo techniques and places them on a
sound mathematical footing, which enables practitioners to be confident that the results
obtained through application are mathematically consistent, logical and reproducible.
The basic idea behind Monte Carlo methods is that any probability measure, 7, de-
fined with respect to a measurable space, (I, £), can be approximated using the following

empirical measure:

N
1
N . _
7 (dz) = N ;1 Sy (dx)

where, {X(i)}i

_,.y 18 a sequence of N iid. samples of law, 7, and one assumes 7 (dx)
admits a density with respect to Lebesgue measure denoted 7 (z).

This approximation has led to wide-spread use of Monte Carlo techniques, specifically
with respect to approximating difficult integrals. The classical approach to Monte Carlo

integration can be understood by looking at the generic problem shown below, where one

requires a solution to the integral.

E, [ (X)) = / o (2) 7 (2) da

In what is known as "Perfect Monte Carlo Sampling", one can generate samples,
(X M L xw )) , from the density, 7(z), using some technique such as rejection sampling,
inversion sampling or a technique such as Box Muller. Then these samples may be used

to obtain an empirical average, which can be used as an approximation to the solution
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of the integral in question,
N
o i
SON:NE P (X9).
i—1

Then, applying the Strong Law of Large Numbers (SLLN), it can be seen that @y
converges almost surely (m-a.s.) to E,[¢(X)], for a suitable class of functions. The
second thing to note is that when the second moment is finite, then not only is it known
that a.s. convergence applies but one can also obtain a rate of convergence of @, to
E. [¢ (X)], assuming that ¢ is an element of the class of square integrable functions.

This rate of convergence is obtained by estimating the variance using the generated

samples, (X(l), ....,X(N)), as follows,

1 N

Vv = 10 o (X9) -2y

i=1

Combining this information one may invoke the Central Limit Theorem (CLT) to
determine that W ~ N (0,1). This has the advantage that now one may obtain
confidence bounds on the estimator, @, . Furthermore, the rate of convergence is clearly
independent of the dimension of the integrand. It is important to realise that this all
relies on the fact that it is possible and not too computationally difficult to obtain samples
from the distribution of interest, 7(z).

There is a large literature on methods for simulating from a target distribution, 7 (dz).
The most basic of these techniques involves uniform random variate generation followed
by inverse transforms, there is a long list of these general transform techniques which
include methods such as Box-Muller. Many of these techniques are thoroughly detailed
in the two excellent texts [35] and [75].

However, most distributions which are of importance in modelling real world systems
are too complicated to obtain samples from using direct inversion techniques as they may
be multi-variate, non-standard and only known up to proportionality. In these cases, one

may attempt another class of simulation techniques known as Accept-Reject, which only
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requires a knowledge of the functional form of the density of interest, up to normalisation.
Given a target density of interest 7 (z) o f (z) and a density g (z) o g (x) which is casier
to simulate from than the target density, the first requirement is to determine a constant

M such that
f(z) < Mg(z)

is true on the support of f (z), [74]. The Accept-Reject algorithm then proceeds as
shown below,[76] page 49.

Accept-Reject Algorithm
e 1. Generate X ~ g, U ~U[0,1]
2. Accept Z =X ifU < f(z) /Mg (z)

3. Return to 1. otherwise

The proof of this procedure for obtaining samples form the target distribution of

interest is very simple. The distribution of Z is given by,

Mg(x)

Pr(US /(z) )

Mg(z)

f(=)
T z) = Pr z f(x))_Pr(XSZ’US )
Pr(Z<z) = P <X§ V<5 =

ffooo fof(x)/Mg(m) du g (z)dz - ﬁ SO f (z)dz

S M dug @) de g [ f (@)de [ 1w

which proves the required result. These techniques are widely studied and it is not
the aim of this thesis to provide a detailed review of these fundamental techniques, the
interested reader is referred to [75] and [18].

In situations where the described techniques either fail or become too computationally
intensive, researchers have developed other techniques to utilise the framework of Monte
Carlo simulation. The first of these techniques to be discussed will be Markov Chain

Monte Carlo (MCMC) techniques.
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2.3 Markov Chain Monte Carlo Methods

In order to overcome the problems discussed, with regard to difficulties in obtaining sam-
ples from the required target distribution. The MCMC approach constructs an ergodic
Markov Chain, { X, ...., Xx}, taking values in a measurable space, F2. This Markov chain
is constructed to have the property that it has a limiting, invariant distribution, which
is the target distribution of interest, 7 (dz). This invariant distribution is the target
distribution that we require samples from in order to calculate Monte Carlo estimates.
Now for the Markov Chain samples to be used as samples from the target distribution,
it is necessary that there exists a unique invariant distribution which is the target dis-
tribution and that the Markov Chain is ergodic. The requirement of ergodicity, in the
most simple situation of the discrete state space, effectively requires that there is a single
non-empty closed class which is aperiodic and that there exists a state, jg, such that the
expected recurrence time, E7;,, is finite. An excellent review of the properties of more
general state space Markov chain theory and the analogous definitions can be found in
the following references [67], [46], [75]. It should also be mentioned that a lot of work has
been focused on reversible chains that satisfy the condition shown in(2.1), where 7 (dz)

is the stationary distribution and K (z,z) the transition kernel.

7 (dz) K (z,dz) = 7 (dz) K (z, dz) (2.1)

When these sufficient conditions are satisfied one can use the Markov Chain iterations,
{Xi,..... Xn}, in the Monte Carlo integral to obtain the estimator @,. This estimate
can be considered as an ergodic average and convergence to the required expectation
is ensured by the ergodic theorem. A technical discussion on some of the properties of
this convergence is found in Roberts and Tierney’s sections of [46]. There are several
methods of constructing a Markov Chain which has as its stationary distribution the
required target distribution, however they are all special cases of the general framework

established by Metropolis and Hastings [46]. The two methods that will be presented in
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this chapter are the Metropolis-Hastings algorithm and the Gibbs sampler.

It is worth drawing to the attention of the reader that, although a lot of research has
been carried out using reversible Markov chains, recent work by Diaconis, Holmes and
Neal [36], [68] has focused on non-reversible chains. It has been shown that a reversible
Markov chain on a finite state space, that is irreducible, can be used to construct a
non-reversible Markov chain. When estimates are carried out using the samples from
the non-reversible Markov chain, the variance of the estimate has been proven to be at
least as low as that obtained with the reversible chain. This suggests potential for more
exploration and it would be interesting to consider more general state spaces such as

continuous state spaces to see if these results still hold.

2.3.1 Metropolis-Hastings

The Metropolis-Hastings algorithm was first developed by Metropolis et al. (1953) [66]
and then later extended by Hastings (1970) [55]. The Metropolis-Hastings algorithm
has a proposal distribution, g (z,.), which conditioned on the current state, is used to
sample a proposed new state, Z; 1, for the Markov chain. Then this proposed new state
along with the current state of the Markov chain, X3, are used to calculate an acceptance
probability. The acceptance probability is the probability of whether the Markov chain
makes a state transition to the new sampled state, otherwise the Markov chain remains in
the state it was in at the previous iteration. Hence, this acceptance probability is crucial
as it ensures that the Markov chain that is being constructed will have the required
stationary distribution. For clarity, the reader is reminded that the notation X; will be
used to represent the state of the Markov chain at time ¢, and will in general be a vector.

It should also be mentioned that the Metropolis-Hastings algorithm allows one to
construct a Markov chain which is free to make moves in any direction and to anywhere in
the state space, defined by the support of the target distribution of interest. Additionally,
when calculating a Monte Carlo ergodic average estimate for the integral, one would like

the variance of the estimate to be as small as possible. One way of helping to ensure
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that the variance of the estimate is kept to a minimum is to use only samples from the
Markov chain created, which one is fairly confident come from the Markov chain once it
has reached its stationary regime. This is achieved in most simulations by discarding a
certain number of initial samples known as "burn in" samples. For a detailed discussion

of these ideas there are several good references, the author directs the reader to [46], [75],

[84], [25], [66], [55], [63].

Metropolis-Hastings Algorithm
e Initialisation : t =0, Xg = xg

e Fort=1: N

1. Draw proposal Z; 1from proposal distribution g (¢, .)

2. Evaluate the acceptance probability :

(87 (l‘t, Zt+1) - min (17 W(:Bt)q(SUt,Zt+1)

3. Sample random variate U ~ U]0, 1]
4. MU < a(Xe, Zi1)
Xit1 = Za
else
X1 =Xy

end

The Markov chain created by this algorithm is reversible and has the required target
distribution, p (z). The transition kernel of the Markov chain created in the Metropolis-

Hastings algorithm has form,

K (»Tt; d$t+1) = (g (:Eta de‘t+1) Q ($t;$t+1)

4 l1 _ /q(mt,z)a(mt,z) dz| T (21 = ).
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Where I(.) is the indicator function, the first term represents the acceptance probability
of the proposed state and the second term represents the rejection probability of the pro-
posed state. The choice of proposal distribution is very general, however blind selection
can lead to slow mixing of the chain and long burn in times. This will be reflected in
the acceptance probability ratio. For example, for the GGaussian random walk proposal
it has been shown that ideally one should use acceptance probabilities between 15% and
50% [78], [77] as a general guide. There have been a few studies for optimal acceptance
rates using different types of proposal distribution in different dimensions, a summary of
these may be found in [46] on page 55. This will ensure that the chain is not proposing
steps which are too large, hence rejecting lots of moves and also not steps which are too
small and hence accepting most moves, but exploring the state space very slowly.

There have been many versions of this algorithm developed all of which have differ-
ent properties with respect to the manner in which the Markov chain created explores
the state space. The most commonly known algorithms include the Metropolis algo-
rithm, which has only symmetric proposal distributions [66], the Independence sampler
[46], Random walk Metropolis [46], Configurational Bias Monte Carlo [80], Multiple Try
Metropolis [65] and the single component Metropolis-Hastings algorithm. The single
component Metropolis-Hastings algorithm is so named since it does not update every
component of the state vector X; in a block at each iteration. Instead it is more conve-
nient and computationally efficient to divide X; into sub components, of possibly differing
dimension and then update them one by one. This can be done either one element at
a time or larger sub-blocks can be used. The other consideration is that the ordering
of which components should be updated can be decided randomly or deterministically.
If the deterministic scan sampler is used, which consists of say d consecutive reversible
components, it is important to keep in mind that although each component is reversible
the over all sampler is not reversible. A method of obtaining a reversible sampler would
be to use the random scan, as discussed in [46] on page 51, where the component block

to be updated at each iteration is determined randomly.
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2.3.2 Gibbs Sampling

Gibbs sampling is the most widely used form of the single component Metropolis-Hastings

algorithm. It involves sampling from full conditional distributions shown below,

7 (2)

[ (z)dz;

7 (zi|x_;) =

Due to the construction of the Gibbs importance distribution, the acceptance proba-
bility of a proposed new state for the Markov chain being simulated is always identically
one. It is important to understand the nature of the moves that are possible for any
given Markov chain construction method, since the types of move possible will affect the
rate at which the Markov chain mixes. This ultimately has effects on factors such as
the chain length required for the "burn in" stage, and the variance and validity of the
estimate obtained using the Markov chain variates in the Monte Carlo approximation.
The Gibbs sampler only permits moves which, at any given time ¢, are parallel to the
axis of the component of the state which is to be updated. As mentioned this can affect
the ability of the Gibbs sampler to explore the state space thoroughly. For an in depth
discussion of these factors the reader is referred to [46],[75], [63].

Gibbs Sampling Algorithm
e Initialisation :t =0, Xg = x9
e Fort=1: N

— Iterate from s =1 : p where p is the number of sub-blocks

Sample X ~ 7 (.|z_s¢) where

X*S,t = {Xl,ta ceey Xsfl,b Xs+1,t*17 "'Xp,tfl}
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Now the transition kernel for the Gibbs sampler is given by the following expression,

p

K (ﬂﬁt; $t+1) = HW (mk,t+1’$7k:,t+1) .

k=1

For an in-depth discussion on the finer details of convergence and other properties of
Markov Chains the reader is referred to [67].

Finally another important methodology, that is of key relevance to this thesis, is
Reversible Jump Markov Chain Monte Carlo (RJMCMC) which was first introduced
in its current form by Green [52]. However, carlier work by Grenander and Miller [53]
presented an algorithm for continuous time models which they termed jump-diffusion.
For the purpose of this report the author will be most interested in thinking about
RIJMCMC as methodology to deal with problems which are trans-dimensional in nature.
For an in-depth discussion and measure theoretic presentation of RIMCMC methodology
the reader is directed to [52], [51] and [91].

2.3.3 Reversible Jump Markov Chain Monte Carlo

When one wants to carry out Bayesian analysis in a situation where there is a range of
models which have parameter spaces of differing dimensionality, it is usual to account for
the model uncertainty by assigning a prior distribution over the collection of competing
models. In such situations the posterior distribution over the unknown models and model
parameters, cannot be analysed using the standard Metropolis-Hastings framework. The
difficulty that arises when trying to perform model selection on such general state spaces,
which include the model indicator and each models parameters, is that it no longer makes
sense to consider ratios of densities in the acceptance probability which have support in
different dimensions. RIMCMC solves this problem by extending the basic Metropolis-
Hastings algorithm to these general state spaces. That is, RIMCMC methodology is
designed to create a Markov chain which has as its invariant distribution a posterior

distribution which takes its support on such general state spaces. This extension means
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that now one must work with a target probability measure, 7 (dz) , and a proposal kernel,
q(z,dz), since comparing densities in different dimensions has no real meaning. So, in
working with distributions instead of densities, it is possible to ensure that we only make
comparisons under the same volume measure, which as stated earlier, we assume to be
either counting measure or Lebesgue. Hence, now the acceptance probability will contain
the ratio of densities and the ratio of the measures, leading to an additional Jacobian
term in the formulation of the acceptance expression.

The next idea of Green [52] was to realise that instead of doing the model search
in the full product space that would arise if one sampled over the model indicator and
the parameters. Alternatively, one could focus on disjoint union spaces of the form
{(k,zr)} = Urex ({k} x &%) and the target distribution defined on such a space is then

given by,
M

7 (k,dz) = Z 7 (m, dzm) Ly x x,, (k, )

m—1
where M is the family of models and z,, € A, are the model dependent parameters.

So RIMCMC, in Green’s formulation, allows the Markov chain to explore within the
sub-spaces and also jump between the sub-spaces, say from A, to A,,. It is important to
mention that to allow this behaviour one must extend the spaces to ?mn £ X, XU, and
?n,m £ X, % Uy, m and also define a deterministic diffeomorphism, dimension matching
function between these extended spaces, labelled h,,,. Borrowing the notation of [2],
this basically means that the user must define the proposal distributions gy, (.|m, Z.m)
and gnm (.|n, 2,) which go from (n,z,) to (m,z,) and back again, the extended state
spaces ?m,n and ?n,m and the deterministic transform between these spaces h,,,. Now
as explained in [2], in a move which goes from (n, z,) to (m, z,,) one must first generate
Unm ~ Gnm (N, Tn) and then evaluate (Zp, Umn) = hnm (Tn, Unm) Where the notation
zh = hl (Tp, Unm) is used for the z,, component of the function hyy,. This move

will then be accepted according to the following acceptance probability of a dimension
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changing move as shown in equation (2.2) below,

min {17 T (m7 :U;kn) q (n’m) Gmn (Um,n’my 1'7*71) det ahnm (l'm, um’n)
T <n’ n) ¢ <m’n) Gnm (un,m]n, Tn) d (ana Um,n)

} (2.2)

det Ynm@mimn) | 5o the Jacobian of the function hpm. The Jacobian

8($m 7um,n)

term in RJIMCMC is an important part of the analysis of RIMCMC and hence warrants

where the term

a brief discussion. The dimension changing move, performed by the function Ay, must
obey the change of variables theorem. This theorem effectively describes how volumes
are distorted by differentiable functions. The change of variables theorem reduces the
problem of determining the distortion of the volume to understanding the infinitesimal
distortion given by the linear map’s determinant. Hence, if S is any subset of R" and
the move involves a function h,,, : R® — R™, then the volume of h,,,’s image is given
by |det %ﬂw times the original volume, which explains why the Jacobian now
appears in the Metropolis-Hastings ratio. Further examples of how to formulate different
types of moves may be found in [51], [52], [2], [20].

The big restriction in this methodology is that the trans-dimensional moves that
are made must be reversible in nature. This means that the Metropolis-Hastings type
proposal moves between dimensions must have an acceptance probability which preserves
detailed balance or equivalently reversibility. Note there has been some discussion about
the Jacobian term which is required for the RIMCMC methodology, however the author
points out that when one proposes moves directly in the new parameter space as opposed
to dimensional matching of random variables, then the Jacobian term is unity in the
acceptance probability expression.

RIJMCMC is applied in; mixture modelling where the number of mixture components
is unknown, the number of splines in a multi-variate adaptive splines regression (MARS)
model, non-parametric Bayesian smoothing, linear regression with varying number of

covariates and finite point processes, for more details see [91]. Further references which

provide detailed insight into RIMCMC are; [52], [91], [8], [7], [2],[20], [34].
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2.4 Importance Sampling

As has been discussed, the ability to estimate integrals using a collection of random
samples is very important. Importance sampling avoids the problem of trying to sample
directly from the target distribution by instead sampling from an importance distribution,
g (z), which is selected to have the property that it is simpler to obtain samples from
than the target distribution. Then one must correct for the fact that these samples
were not taken from the distribution of interest, 7 (z), but instead from the importance
distribution, g (z). This correction step is known as importance weighting. Together
these steps produce the point mass representation of the target distribution presented
previously. Integrals of some bounded, integrable test function, ¢, with respect to the

target distribution,

mwuw=/mmawm=/ﬂ@i@ﬂmm=mpav

may then be approximated as

I (¢) = 3 T, W (X0) ¢ (x) (2.3

where the importance weight is W* (z) = 7 (z) /q (), and the particles, X® are samples

from the importance distribution, ¢ (z). This will produce an unbiased estimate since

E [qu\ (goW*)} = I, (¢W*) = I (¢)

and the variance of the estimate will be inversely proportional to the number of particles
N.

Importance sampling is performed as demonstrated below. Version one demonstrates
importance sampling in which the target distribution can be evaluated point wise and ver-
sion two demonstrates the situation in which the target distribution can only be evaluated

pointwise up to a normalising constant, which occurs most frequently in applications.
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Importance Sampling IS: ( version 1 )

e c.g. 7(z) is difficult to sample, yet can be evaluated analytically

° {X (i)}i: x4 (z) samples easily generated from Importance density ¢ (z)

W(X(i))
()

samples are weighted

N
o m(z) = Y W*®§ 4 (z) particle representation of the target density
i—1

)

Importance Sampling IS: ( version 2 )

e c.g. 7(z) x f(x) is difficult to sample, yet can be evaluated analytically up to a

normalisation constant

the samples are weighted and w® is the un-normalised weight and W® is the

normalised weight
N .
o m(z) = S WO (z) particle representation of target density
i=1

i w(®)
Where I/Vv() = W

When version two of the importance sampling techniques is used then the normalised
weights obtained provide an estimate of the "true" importance weights [42], as shown

below

W — N,
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It should be noted that when one uses importance weights given by W to estimate
an integral then the solution will be biased as a result of taking the ratio of estimates.
However, it has been shown that under mild assumptions the SLLN yields asymptotic
convergence of the estimate formed using these importance weights to the true solution,
[42]. Importance sampling can now be used to develop the more widely used sequential

version known as Sequential Importance Sampling (SIS).

2.5 Sequential Monte Carlo Methods

In many applications one is interested in "on-line" or sequential data analysis, for this
reason much effort has been devoted to developing Sequential Monte Carlo methods,
otherwise known as Particle Filters. Generally, in non-linear filtering one is interested
in calculating the solution of a non-linear system which takes values in a space of prob-
ability measures. The problems encountered usually require one to resort to using nu-
merical approximations in the form of interacting particle systems. Particle filters have
developed from this methodology and allow one to approximate distributions, sequen-
tially in time, using point-masses. The sequence of probability distributions that are
being approximated shall be denoted {%t}tzl' These distributions shall be defined to
take support on {Et}t21 such that dim (F;) < dim (E;4); eg. By = E, B, = E* and

7t (dz14) = Tt (214) dz14 where each T (214) is known up to a normalizing constant, i.e.
%t ('rl:t) = \Z;I 'ft (':El:t) where T1:t £ (SE'l, Zo, ... )mt) .

~r N —~
unknown known

This situation arises, for example when one is interested in the sequence of posterior
distributions which are formed when updating a posterior distribution in light of new

observations, arriving sequentially in time.
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Essentially the SMC principle is to approximate each distribution 7; by a weighted
sum of random samples/particles {Xl(?, W, i)} (I/Vt(i) > 0, Zi\il M/t(i) =1); ie

N
%t (dzy1y) = Z M/t(i)5x§f2 (dzy¢) and %t — 7 as N — o0

i—1
This approximation is carried out sequentially by first sampling from 7y then 79 and so
on.

Using this approximate representation of the target distribution clearly has advan-
tages as it allows computations of integrals to be carried out easily using the sampling
property of the Dirac delta mass. The weights present in the above expression are chosen
using the principle of Importance Sampling (IS). As mentioned earlier, it is often very
difficult to generate samples from the target distribution using standard techniques. Al-
ternatives for generating such samples from the target distribution, in batch scenarios
were presented at the start of this chapter. This section is now going to present sequential
sampling methods, on which there is much literature. The reader is directed towards the
following far from comprehensive selection of papers and books for further details [41],
[37], [63], [64], [24], [30], [70], [L1]. For convergence results and Central Limit Theorems
relevant to this rich class of algorithms and methodology, the following papers provide

excellent insight into the field [32],[27], [62], [39], [29].

2.5.1 Sequential Importance Sampling, Resampling and MCMC

Diversification Move
The generic Sequential Importance Sampling situation can now be derived as follows. At
time ¢t — 1, assume a set of weighted particles {VVt(f)l,Xl(fzfl} (t=1,...N, M/t(i)l > 0,
Zi\il VVt(i)l = 1) approximating 7; 1 is available, i.c. the empirical measure

7Tt 1 dﬂ?lt 1 2142(%)15)((1) ) dl‘l:tfl);
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is an approximation of 7; 1. At time ¢, one extends the path of each particle by sampling
from an importance distribution, g (x¢|Zo. 1,%1.) , which could for example be a Markov
kernel, Ky (z,2'), giving the probability or probability density of moving to 2’ when the
current state i1s . Importance sampling can then be used to correct for the discrepancy
between the sampling distribution and the target, 7 (21.). In this situation one has;

o If Xﬁ?ﬁl ~ p, , and target is 7; 1 then

,  Fa(x)
W, ; Z w® =1.
Hi—1 (Xlt 1) i=1

o If Xgi)

Xt(i)l ~ K, (Xf@l, ) and target is 7; then

7 (x()
s (X0) Fe (X0, 50)

o 7 (x{))
= t—1
7y (Xlaz 1) K, (Xt(”l,X(“)

W

the normalized weights are given by
W oc W w, (Xl(;) Z W = (2.4)

where the incremental weight is equal to

ﬂ}t (Zlfl.t) _ %t (:‘Ul:t) .
' o1 (T1-1) Ke (ze-1, 1)

(2.5)

Hence, it has been shown how one may approximate the target distribution using
a weighted delta mass or particle representation. It is also worth noting that this rep-
resentation involves approximating a continuous random variable by a discrete random

variable, with random support from the continuous target density. Additionally, the
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weighted particle representation will form an increasingly more accurate representation
of the target distribution as the number of particles is increased. As was shown in the
papers mentioned earlier, convergence results have been established in which the asymp-
totic limit of the particle representation of the target distribution has been shown to
converge to the true target distribution for a range of different classes of convergence.

Of key importance is the fact that in order to obtain a well represented point mass
approximation of the target distribution, in which the particles are located in regions of
the support where the target distribution has most mass, one must endeavour to select
an importance density which resembles the target distribution as closely as possible.
Hence, when it is possible, in order to obtain a set of weighted particles which accurately
represents the true target distribution, one should strive to select the importance density
so as to minimise the variance of the importance weights. It is intuitive therefore that
the efficiency of the importance sampling methodology is directly related to the choice
of the importance sampling density.

In [41], it is demonstrated that the optimal Importance Sampling density for a general
SIS framework is given by 7 (24|14 1) . This importance density is optimal in the sense
that it minimises the conditional variance of the particle weights. It is important to
understand that much work has been spent developing importance densities which may be
used as an approximation to this optimal importance density, in applications in which it
is not possible or not easy to sample the optimal importance density. The "efficiency", 7,
of an importance density has been studied and a "rule of thumb" criterion was established

by which one could use the estimated efficiency to quantify the effective sample size, as

first shown in [14] and [61].
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In order to obtain this expression for the effective sample size, one must first consider

the efficiency. The efficiency is determined by the following set up :
e Suppose the mean B [p (z)] of some function ¢ (z) is of interest

A~ N . .
° Eév () = %;Mf* (X(%)> ¢ (X(%)> an estimate of the mean using samples drawn

from importance density ¢(.)

N
o EY (¢) = % Z:lga (X (i)) an estimate of the mean using samples drawn from the true

target distribution 7(.)

My = ; ~ 1+ vary, (W (X)) = E, [W* (X)?] .

This approximation has been shown to hold in [61], when test function ¢ (z) varies
sufficiently slowly. This approximation is obtained by utilising the Delta method, which
is explained in [87] Chapter 3, and disregarding all but the first two terms of the Taylor
expansion. This approximation has had such a wide use due to the fact that in quantifying
the efficiency it only depends on the weights obtained from the IS step. This makes
it applicable for any scenario. The related yet more common form of quantifying the
performance is to consider the effective sample size. The effective sample size is a well
established measure used throughout the literature to quantify the performance of a
particular importance density. The effective sample size Erf provides a measure of how
much the importance distribution differs from the target distribution. If N independent
samples are drawn from the importance distribution ¢(.), then the effective sample size
is given by,

a N N ~ < 1

-1
') —_— — YV W (X 2)
rf ,),/q Eq <I/{/* (X)2> N2 szl ( )

Further consideration is that SIS in its present form suffers from a serious problem
which has become known as degeneracy. The degeneracy problem of the SIS algorithm

is that in nearly all situations, after only a few iterations, all but a few particles will
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have negligible weight. This is a serious problem as it means that the particle estimate
of the target distribution is not very good, since all but a few of the particles are located
in regions of the target distribution with significant mass. It should be noted that the
degeneracy problem will always be present since the variance of the importance weights
can only increase over time. However, one should take steps to minimise the degeneracy.
One of the most important applications of the effective sample size is in quantifying the
degeneracy. A small effective sample size indicates severe degeneracy of the algorithm.

One can take several steps to minimise the degeneracy of an algorithm, the most
obvious being to increase the number of particles used until an acceptable effective sample
size 1s obtained. This is not necessarily practical as it presents an excessive computational
burden in many situations. The next option is to ensure that one uses an importance
density which is as close to the optimal as possible. This will ensure that the variance of
the IS weights is minimised and hence the effective sample size will be maximised. This
can be explained as a direct result of sampling an importance density which places most
of its mass in regions of support to which the target distribution also places most of its
mass. The third means of minimising the degeneracy is known as resampling which was
first introduced in this context by [50] and then shortly after by [59].

The resampling criterion commonly used, is to resample only when the effective sam-
ple size drops below some threshold, which as a rough guide is typically in the range of
30 to 60% of the total number of particles used. The purpose of resampling is to reduce
the degeneracy present in a particle filter by eliminating samples which have low impor-
tance weights and multiplying samples with large importance weights [11]. There are
many methods that one may use to perform resampling, such as multinomial resampling
[81], residual resampling [64] and "stratified /systematic/minimum variance" resampling
[58]. The multinomial approach is the simplest, involving sampling from a multinomial
distribution in which the normalised weights of the particles are used as the probabilities

in the multinomial distribution.
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All the methods mentioned ensure that the number of times a particle is multiplied as
a result of resampling is unbiased, that is [E [Nt(i)] {VV 1? H = NW, 1(? , however they differ
in var [Nt(i)] The method that the author recommends is that of systematic stratified
resampling, which is the minimum variance unbiased resampling technique.

The final point to make is that, although resampling reduces the effects of degeneracy
on the particle approximation, it does introduce other problems. Resampling increases
Monte Carlo variance, is time consuming and limits the ability of an algorithm to be run
on parallel computers, since all particles must be combined for resampling. Secondly,
although resampling may aid in the problem of degeneracy, when particles which have
high weights are statistically resampled many times, this will lead to a loss in diversity
of the particles since the resultant set of resampled particles will contain many repeated
samples. This problem is known as sample impoverishment and can be severe when the
process noise is too small. In the situation in which one experiences sample impoverish-
ment, since the diversity of the particles paths is reduced, then any smoothed estimates
which are based on these particle paths will degenerate, making smoothing inaccurate.
In order to counteract this problem of sample impoverishment, by introducing diversity
to the resampled batch of particles, it was first suggested in [45] that an MCMC step,
may be used in order to add diversity to the repeated particles. This technique, when it
is possible to apply an MCMC or "particle diversification" step, can be very effective in

reducing the sample impoverishment.
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To summarise, the generic SMC algorithm proceeds as presented next. The initial

importance distribution is denoted as p;.

Initialization; ¢ = 1.

Sampling step

e Fori=1,...,N, sample Xl(i) ~ 14 (+) and evaluate the normalized weights M/li).

(0 %1( 1(1)) o )
Wi oc —— L > oy =1. (2.6)
Hq (Xl ) i=1

At time n; n € N\ {1}.
Sampling step

e Fori=1,...,N, sample Xt(i) ~ K; (Xt(i)l, )
e Fori=1,..., N, evaluate the normalized weights W using (2.4) and (2.5).

Resampling step

o If /4y <Threshold then resample particles {M/ti),Xf@} to obtain N new particles
{N*l,Xf)}.

e Diversification step : MCMC step

To finish of this section on Sequential Monte Carlo methods it will be instructive
to provide an example of how the general framework just presented is used in many
applications, in practice. The framework which is adopted by many practitioners who use
SMC methods involves state space modelling and presenting SMC in the case of filtering
for a state conditioned on some noise observation sequence. In these situations the target

distribution of interest is typically the posterior distribution of the state conditioned on a
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realisation of some noisy observation sequence. Due to the prolific representation of SMC
methods in this light, the author feels it instructive to briefly present the basic ideas of
casting SMC in this framework. This has relevance in many fields including tracking,
control, computer vision and finance and hence the author feels it is important to include
as an example in any discussion on SMC methods.

State space modelling is a widely used method in science and engineering, for formu-
lating models of dynamical systems [26], [1], [13]. State space modelling assumes that
one has an observed time series (Y;) which is derived from an unobserved state process
(X;¢). The state process forms a Markov chain {Xp, X7,...} and conditionally on this
state process the Y;’s are independent, and Y; depends on X;. The general model that
will be of interest involves two measurable spaces (I, ) and (F, F), where X; and Y;
respectively take their values.

It is useful to note that the joint process (Xy,Y;) is a Markov process on the product
space IJ x F', however the observation process (Y;) is typically not a Markov process.
The transition equation and initial distribution for the state Markov process {z;;t € N},
z; € R" will be denoted by p (z¢|z;_1) and p (xg), respectively. The observation process
{ys;t € N}, y, € R™, is assumed to be conditionally independent given the hidden state
process, with likelihood p (y¢|x;). Hence, the general aim of the analysis will be to estimate
the posterior distribution p (zo.|y1+) and its attributes. It is often useful to formulate

this problem as shown below:

zy = fi(Te1,v1) State equation

w = he(ze,ny) Observation equation

where f; (.) represents the state equation, v;_; the state noise process and hy (.) is the
observation equation with observation noise n;.
Given this first order Markov dependence in the state equation, one may write the

combined distribution of the state process at time ¢ as shown in equation (2.7). Ad-
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ditionally, the joint distribution over the observation process conditioned on the state

sequence, at time ¢, may be written as shown in equation (2.8).
P (w01) = P (0) [Ty P (@] 201) (2.7)

P (Y1:t|w14) = Hizlp(yn’l‘n) (2.8)

Using the Bayesian methodology explained previously, one may obtain the posterior

distribution of the state conditional on the observations, as shown in equation (2.9).

P (y1:|214) P (Tos) (2.9)

e (Zox) = P (Z14|y14) = P (1)

In many real world applications one is interested in making a sequential ‘on-line’ in-
ference on the "state" of the system as new observations are considered, hence a recursive
update to the posterior is required. Using the model assumptions stated previously this

recursive update can be performed, as shown in equation(2.10).

Fora ($0:t+1) _ p(xt+1’$t)p($0:t)p(yt+1’$t+1)p(y1:t’$1:t) <2‘10>
P (Yes1|y1e) © (Y1)
D (?Jt+1 ’$t+1) P ($t+1’$t)

D (?Jt+1 ’Z/l:t)

= T (Sﬂozt)

One may also obtain the filtering distribution by marginalising out the previous states

T (Sﬂt) = /P(iﬂlzt’yl:t) dTy.e—1

or, in a recursive setting, by following prediction and update steps, shown below.

1 (24) /P (ze|ze—1) P (@41 |Yra-1) A2 q Prediction

. (SEt) _ p(ytlxt)p(xt’ylztfl) Update

D (yt’ylztfl)

Now that the general SMC framework has been recast in the form of filtering recur-
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sions it is also instructive to present the form of the optimal importance distribution,

which is now given by,

Q(%’»thl;yt)opt, = p(zelzi1,91)
p(?Jt’xt;mtfl)p(xt’xtfl)
P (yelze-1)
o p(ytlzt;mtfl)p<$t’$tfl)
[l p (e 1) day

2.6 Summary

To summarise it is noted that the importance of Monte Carlo methods in simulations of
stochastic systems and in estimation of integrals has been presented. It was explained
why the key to Monte Carlo methods revolves around the ability of one to efficiently
simulate samples from an appropriate probability distribution. It was explained what
alternatives are possible when generating samples directly from the desired distribution
is not possible. These included importance sampling in which one generates samples from
a importance distribution close to the desired target distribution and also Markov Chain
Monte Carlo methods in which one produces statistically dependent samples. These
samples may then be used in the Monte Carlo analysis. The next chapter deals with the
new contributions developed by Pierre Del Moral, Arnaud Doucet and the author of this

thesis.
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3.1 Introduction

This chapter introduces work which is a collaboration between the author of the thesis,
Dr. Arnaud Doucet of Cambridge University and Professor Pierre Del Moral, working
at Université Paul Sabatier (Toulouse III) at the time of collaboration. This work is
found in [31]. The work focused on developing a general methodology to enable one
to sample sequentially from a sequence of probability distributions which are known up
to a normalizing constant and defined on a common space. In the same manner as
standard Sequential Monte Carlo, it will be the aim to approximate these probability
distributions by a cloud of weighted random samples which are propagated over time
using Sequential Monte Carlo methods. The generality of this methodology, termed SMC
Samplers, allows one not only to derive simple algorithms to make parallel Markov Chain
Monte Carlo runs interact in a principled manner, but also to obtain new methods for
global optimisation and sequential Bayesian estimation. This methodology also paves the
way for the discussion and development of Trans-Dimensional Sequential Monte Carlo,
TDSMC, which forms the second body of work in this thesis. The algorithms developed
using SMC Samplers will then be demonstrated through simulation for various integration

and global optimisation tasks arising in the context of Bayesian inference.
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3.2 Motivation for SMC Samplers

The idea that has driven the development of SMC Samplers was the need to be able to
obtain a particle estimate from a sequence of probability distributions, (), , which
are defined on a common measurable space, F, where N' = {1,...,p} or N = N,
Throughout this thesis ¢ will be referred to as the time index, however this variable
is just a counter and need not have any relation with "real time". The idea behind
SMC Samplers will be to sample the sequence of distributions 7y, ms... sequentially.
This has many important applications and it should be mentioned that the generality
of the method to be presented, comes from the freedom in the choice of the sequence of
distributions (7¢), - -

Some of the interesting applications involve sequential methods to move from a
tractable and easy to sample distribution, 7y, to a distribution of interest, m,, through
a sequence of artificial intermediate distributions as discussed in [69]. In the setting of
Bayesian inference one could consider 7y to be the posterior distribution of a parameter
given the data collected until time ¢, where 7, (z) = p(z|y1,...,¥). In a batch setting,
in which a fixed set of observations ¥, ...,yr 1s available, then the sequence of distrib-
utions one is interested in could be p(z|yi,...,y) for t <T. There are two reasons for
approaching a batch problem in this manner. First, treating batch data sequentially has
been shown to provide a beneficial tempering effect [28]. This is especially important
for very large data sets, for which the chosen models typically exhibit complex proba-
bility surfaces. In these situations treating the data sequentially causes the probability
surface to exhibit a natural tempering effect, which results in the ability to move from a
simple to an increasingly more complex surface as more data points are included. Thus,
a sequential strategy allows an efficient exploration of the probability surface without
the need to construct complex annealing schedules. Second, for huge data sets, stan-
dard simulation methods such as Markov Chain Monte Carlo (MCMC) methods require
a complete "browsing" of the observations, in contrast a sequential strategy may have

reduced computational complexity, as discussed in [73]. Another interesting application
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can be found in the context of optimisation, and similar to simulated annealing, one
could consider the sequence of distributions 7; (z) o [7 (z)]" for an increasing schedule
{7¢}en- Finally, one could simply consider the sequence of distributions where m, = 7
for all t € N. Hence, one can see that the motivation behind developing SMC Samplers

methodology is that it would find applications in several areas of interest.

3.3 SMC Samplers Methodology

The framework of Sequential Monte Carlo (SMC) has been discussed in Chapter 2. Stan-
dard SMC techniques have been developed to deal with "on-line" applications which
involve sampling from a sequence of distributions sequentially in time. Until the devel-
opment of SMC Samplers, SMC techniques have been solely confined to situations which
involve a sequence of probability distributions (7;) where a distribution, at time ¢ in the
sequence, is defined on a measurable product space of the form I, = F x ' x E.... = E*,
which means that dim (%, ;) < dim (F;). SMC Samplers generalises the methodology
of SMC in order to sample sequentially from a sequence of probability distributions ()
where now each distribution in the sequence is defined on a common measurable space,
L. Typically the methods favoured by statisticians to sample from complex distribu-
tions, on a fixed space F, are MCMC methods. The fundamental ideas that underpin
MCMC techniques were presented in Chapter 2. Two problems with MCMC are that it
is difficult to assess when the Markov chain has reached its stationary regime and it can
easily get stuck in local modes. Moreover, it is not ideal to use MCMC in a sequential
Bayesian estimation context.

It is important to note that SMC Samplers should be viewed as a complementary ap-
proach to MCMC, and that MCMC kernels will in most cases be ingredients of the meth-
ods proposed here. Additionally, it is worth noting that an SMC based approach in which
particles are carried forward over time using a combination of Sequential Importance Sam-

pling (SIS) and resampling ideas is completely different from parallel MCMC/tempering
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mechanisms, where one runs an MCMC chain on an extended space /Y. When carrying
out parallel MCMC/tempering, one specifies a joint invariant distribution on EV for
the particles [49], whereas the use of SMC samplers requires only the specification of a
distribution on F.

In the development of SMC Samplers one would like to be able to maintain the ben-
efits of standard SMC methodology. This was achieved by effectively transforming the
problem posed above into the framework familiar to standard SMC techniques. The im-
portant concept developed is that in order to use the methodology of SMC, which involves
Sequential Importance Sampling (SIS), resampling or resample and move techniques, one
would need to come up with a means of transforming the idea of sampling from a sequence
of distributions, which are each defined on F, to that of sampling from a sequence in
which each distribution, 74, is defined on the product space E*, ¢ € N. Hence the idea was
to construct a sequence of distributions, (7;), which are defined on the product space,
E*, required by the standard SMC methodology. The important consideration is however
that in order for this construction to be used as a method to sample sequentially from the
sequence (7;) where each distribution, 7y, is defined on I, one needs to construct 7 in
such a way that it admits as a marginal distribution the required target distribution .
This approach has connections with Annealed Importance Sampling (AIS) [69] and the
algorithms recently proposed in [28] and [23]. However, it will be demonstrated that the
generic framework presented by SMC Samplers is more general and allows one to develop
new algorithms to make parallel MCMC runs interact in a simple and principled way, to
perform global optimization, solve sequential Bayesian estimation problems or compute
the probabilities of rare events. As with MCMC, the performance of these algorithms is
highly dependent on the target distributions (7;),. , and proposal distributions used to
explore the space. Throughout this thesis effective guidelines will be presented for the
design of efficient algorithms which utilise SMC Sampler methodology.

Consider now the construction of the target distributions, (7;), . The construction

of the sequence of distributions, as proposed in [31], is carried out as shown in equation
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(3.1). For t =1, consider 7y (z1) = 1 (x1) and for ¢ > 1, one has

Tt (ﬂflzt) = Ty (l‘t) Tt ($1:t71’$t) (3-1)

The distribution 7 (#1.4-1|%:) is designed in such a way that for any z; € I the distri-
bution 7y (z1.4 1|%;) is a probability distribution on the product space B! In order to
allow for a recursive evaluation of the importance weights it is wise to use 7y (214 1|%4)

as shown in equation (3.2).

Tt $1t 1’% HL $s+1;$s (3-2)

The kernels L, form a sequence {L;},  which would ideally be a sequence of auxiliary
Markov transition kernels, in which the kernel L, (z, ') represents the probability or
probability density depending on the context, of making a move from state z to state x’'.
It is now obvious how this construction allows one to transform the problem of sampling
from the sequence of distributions (7;), defined on the space F, to that of sampling
from a sequence of distributions (7;) defined on E* and then obtaining samples from the
required distribution by just taking the marginal distribution as shown in equation (3.3).
Note that for ease of exposition, x; shall be used to represent the state of the system
at time £. It is also the case that z; may be an element of a state space F which in
generality can be multi-dimensional, in which case z; would be a vector of state variates

at any given time .

/%t (1:4) dx1. 1 = 4 (T4) (3.3)

This formulation is that of the familiar family of algorithms developed in the SMC
literature, as illustrated in Chapter 2, section 4. Thus one may consider the application
of this idea to carrying out SIS on a sequence of distributions, coupled with resampling
or resample-move steps. After constructing (7),. 5 in order to transform SMC Samplers

framework into the form of standard SMC algorithms, it is important to present what
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form the incremental importance weight will take for this new framework. The standard
incremental importance weight for SMC techniques is presented in (2.5) and this can
now be used to develop the new importance weight for this SMC Samplers algorithm to
obtain equation (3.4). Hence, the Particle Filtering framework is recovered using these
new SMC Sampler ideas as follows. The sequential weighting steps are presented below,
with the importance sampling density given by the transition kernel K;(2',z) and the

incremental weight,

T (Sﬂlzt)
wy (21 = = 3.4
¢ (@) Te—1 (T14-1) Kt (-1, 24) (3:4)
Ty (lUt) Tt ($1:t71’$t)
-1 (-rtfl) -1 ($1:t72’$t71) K; (Itfla ZUt)
t—1

T (mt) H Ls (ms+la xs)
s=1

t—2
o1 (1) [ Ls (o1, 2s) Ki (@41, 2¢)
s=1
Tt (SUt) L (SUt, 5171571)
= = W (Tg—1, Tt) -
Ti—1 (%4) K (ZEtfl; 9515) ! ( ot t)

Where the IS weight is now given by VVt(i) X wlgi)W’t(j)l. The particles may then be
resampled from these weights in the desired method, several examples of which are
mentioned in the chapter on SMC methods. The author always advocates the use of
stratified /systematic resampling technique, as it has been shown that this resampling
method minimises the variance of the importance weights. It is important to point out
that the introduction of the sequence of auxiliary kernels, {L;}, -, allows for the use of
importance sampling without having to compute the marginal distribution of the parti-
cles {Xt(i)} explicitly, which is typically difficult to calculate. This is discussed further in
the next section along with discussion of how to choose the parameters of the algorithm
which include {K;}, - and {L;}, 5 in order to minimise the variance of the importance

weights obtained.
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3.4 SMC Samplers Specifics: Theoretical and
Algorithmic Considerations

This section explains how one may deal with the fact that the SMC Samplers methodology
introduces additional degrees of freedom to standard SMC. In standard SMC algorithms,
one has the sequence of distributions, {7;} which have typically been selected according
to the problem being solved and the user must choose a suitable sequence of importance
distributions / transition kernels {K;},. . Typically one chooses the transition kernels
to have two properties; easy to sample and also as close to the transition kernel that min-
imizes the variance of the importance weights as possible. In SMC Samplers algorithms
there is also the additional freedom in choosing the auxiliary transition kernels {L;}, -
The following section provides a theoretical analysis of how to select these kernels in
order to minimise the variance of the importance weights, then suggested algorithmic

settings are presented.

3.4.1 Asymptotic Analysis of Variance

This section provides an expression for the asymptotic variance of the estimate shown in
equation (3.5) , which was obtained using the SMC Samplers algorithm. The expression
presented in Proposition 1 was derived in [31] and builds on the work of [62], [32] using
similar ideas to [27]. This expression is included as it will be very useful when it comes to
understanding how the selection of the auxiliary kernels {L;},. - will affect the variance

of estimates obtained using SMC Samplers.

Er, (o) = X2, W% () (3.5)
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Proposition 1 Under the weak integrability conditions given in (Chopin, 2004; theorem
1) or (Del Moral, 2004, section 9.4, pp. 300-306), one obtains the following results.

When no resampling is performed, one has

VN (Br, (¢) = Br, () = N (0,035, ()

with

2 _ %f (1) ) — 2 10
Thoa () = [ T (o a1)  Br, () v 36)

where the importance distribution p, is given by

e (T1:) = py (1) HZ:2 K (z5-1,5) -

When multinomial resampling is used al each iteration, one has

VN (Em (p) — En, (SO)) =N (0, O%MC’,t (SO))

where, forn > 2,

() 2 57
/M </¢<It>%ﬁ (we|21) dy — B, (s@)) dzy

Hq (951)
t—1 (%t(:ﬂs) Lsfl(l.s;l‘sfl))Q 25 (2l dar — ? .
vy [P Rl il ([ ) o) o~ B (9)) o,

. / (me o) Los @u 1) o0y B (o)) ey

T—1 (ajtfl) K, (SUtfl; ZEt)

In these expressions [ 7y (214) dZ1.s-1dZs414 1s denoted by 7, (z5) and
[ 7 (@14) dz1.s 1dzs 141/ (25) by 7y (24 z5). The proof of Proposition 1 is found in
Appendix 1.

What is evident from this theoretical analysis is that careful selection of the auxiliary

kernels {1} is imperative in order to obtain an algorithm that provides sensible answers.
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This is made explicit by the fact that, in the expression for the asymptotic variance,
it can be seen that the faster the mixing of the {L;} kernels then the faster 7 (2] x)
converges to m; (x;), as t — s increases. Therefore in the situation that the {1;} kernels
are mixing well, variance terms in the summation, with s < ¢, will become insignificant

since the square difference given by

</ ¢ (zt) T (24| z5) dzy — B, (90)>2

will be negligible. This means that in situations in which the {I;} kernels are mixing
rapidly, one may obtain a good approximation of the variance by just taking the last
few terms in the expression for the variance shown in equation (3.7), since the remaining
terms in the sum will be negligible. However, it is worth considering the situation in
which the {L;} kernels have their fastest mixing. This will be the situation in which
Ly q (2,2 1) = Ly (24 1). Now, in this situation if one assumes all terms in the
variance expression obtained in 3.7 are negligible except for the last term, then one

obtains a variance expression given by,

Fhuscy o) = [THILL LI (g () () s

T—1 (5171‘,71) K, (fUtfl; ZEt)

Given the form of this variance expression it would be tempting to select Ly (24, 1) =
71 (1) as then cancellation is possible and one obtains a variance expression given

by,

cale) = [T (0 ) — B, () do

As pointed out in [31], the reason why this is not a good idea is a result of the fact that,
in order to ensure that the variance expression U%Mo’t () is small for any function ¢,
this would require the ability to control the importance weight

7 (24)

Ky (21, 24) 39
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over IY X IJ. As mentioned in the paper, this expression would typically prohibit the use
of MCMC moves, as the ratio in 3.8 is typically not defined. The example provided to
demonstrate this point involves taking 7 (z;) as a probability density on R and K; a
Metropolis-Hastings kernel. Hence for these reasons it is wise not to use Li_1 (24, 24—1) =
Li—1 (x4-1) and the trade-off is that a sum or terms will appear in the expression of the
variance. However most of these terms in the sum will contain a part which takes the

form
%t (’rs) Lsfl (xsa :L.sfl)
Ts—1 (l‘sfl) Ks (l‘sfl; ms)

which can be controlled more easily via selection of Ls i (zs,2zs-1) as a function of
K (zs-1,2s) and w1 (25-1).

With these results in mind the following section will discuss and motivate different
choices for the sequence of auxiliary kernels, {L;}. In addition to this, a comparison and
links will be drawn with algorithms in the literature which can be viewed as special cases

of this general SMC Sampler framework.

3.4.2 Auxiliary Kernels {L;}

As discussed above, careful selection of the sequence of auxiliary kernels { L, isi  ortant
if one is to obtain sensible esti ates usin the a lersfra e ork heex ression
obtained in 37 su ests that one should try to o ti ise the selection of {L ith
res ect to { kernels  here see s to bet oa roaches to consider hen selectin
the sequence of kernels {L he rst involves ini isin the asy totic variance of
the esti ate 35  ith res ect to the kernels {L he second a roach ould be to
look directly at the variance of the i  ortance ei hts, as found in 34 , and to try to
ini ise the variance of the i ortance ei hts ith res ect to the {L kernels As
as ointed out in it as found to be a ood idea to consider the second o tion and
select {L  kernels by considerin directly the variance of the i ortance ei hts since

this ould ake the choice of the {L  kernels inde endent of the function ¢



n order to ex lain ho to obtain the solution to ini isin the variance of the

i ortance ei hts ithres ect tokernels {L one wust rstde nethefollo in ite s
he ar inal distribution of articles, { ()} at ti e shall be denoted and 1ll
have one of the follo in for sde endin on hether resa lin has taken lace  hen

noresa lin hasoccurred u toti e one has

and if the last t1 e the articles ereresa led as at ti el then one has
T 1+ 0

No , assu eone has articles distributed accordin to ,atti e and it is desired

to have the distributed accordin to the tar et distribution 7 One ay of obtainin
articles distributed accordin to m  ould be to correct for the discre ancy bet een
the distributions via si le ortance a lin el hts Hence, one ould obtain the

follo in ex ression for the un-nor alised correction ei hts for the articles

he roble ith usin this si  listic a roach is that it could be either too co -
utationally intensive or extre ely difficult, if not i  ossible, to obtain an analytical
ex ression for at each t1 ¢ herefore a rst naive a roach ould be to look

for a solution to this dile a such as usin an a roxi ation of the for
N
~ 1 0
v (9)

his is also not ideal since clearly it ould roduce an al orith hich is O N | and

this should be avoided hen ossible fone took the a roach resented reviously and



erfor ed the correction, usin the el hts obtained in 34 then clearly one no
lon er has toco ute Ho ever, this co es at a rice since no thei ortance
el htsare de nedondo ain /¥ ,aso osedto IV, and so ill ulti ately roduce lar er
variance in the 1 ortance e1 hts his roble is recti ed by the fact that one ay
choose the sequence of {L,  kernels, and intuitively the o ti al choice ini isin the
variance of the 1 ortance ei hts 1ill be the one that takes us fro evaluatin the
el hts on I/ back to evaluatin the ei htssi lyon £  he follo in  ro osition
fro rovides a solution to this roble he version of the solution resented ill

be for the situation sho nin 39 here noresa lin has occurred

Proposition 2 The conditional distribution 7° on E _  which minimises the variance

of the importance weights, w , 1§ given by

T | 2

and this conditional distribution takes the form provided in equation 3.2, with for any s,

Lop 55— S— S S— S
5— S S—

he roof of Pro osition 2 ay be found in A endix 2 No , it is obvious that
althou hthisistheo ti alsolutioninter sof ini isin the variance of thei  ortance
el hts, ith res ect to the {L kernels, this ill not be of use in ractice since one
still can not easily calculate , as ex lained reviously One can either choose
toa roxi ate L”” or choose kernels {I. so that the i ortance ei hts are easily
calculated or have a fa iliar for t is in this second a roach that arallels are found
ith existin literature on the subject  he connections to other orks are ex lained in
t is ho ever useful for co  leteness to outline the connections found bet een the
a lers ethodolo y and existin  ork, in ore detail
he rst connection that 1ill be entioned isofi1  ortance to the si ulation section

to be resented next his connection relates to the ork of Jarzynski, 6 and also



to the Annealed ortance a lin A  al orith of Neal, 6 he roble Neal
discusses involves ovin fro a tractable distribution to a distribution of interest via a
sequence of inter ediate annealed distributions Neal discusses the fact that the annealed
sequence of distributions is ty ically used as an inexact eans of handlin isolated odes
in arkov chain sa lers He then de onstrates ho the arkov chain transitions
used for the annealin sequence can be develo ed to de ne ani  ortance sa ler He
ar ues that the co bination of i ortance sa lin and arkov chain sa lers has
t o advanta es he rst advanta e co es fro the fact that the arkov chain as ects
allo for acce table erfor ance in hi h di ensional s aces here it ay be difficult
to desi n effective 1 ortance sa  lin  ro osal distributions  he second advanta e is
that usin 1 ortance sa lin allo s for a correction to be ade to the arkov chain
sa les, to ake these techniques asy totically exact, that is as the nu ber of runs
is increased the esti ates 1ll conver e to their correct values Hence, Neal co bined
ositive as ects of both ethods to rovide a eans of assi nin el hts to the states
hich are obtained by akin  ulti le i ulated Annealin A 7 runs hen one
is lookin at the roble of ovin fro a distribution hich is easy tosa le
to a distribution of interest m throu h a sequence of inter ediate distributions One
ay of doin this could be to consider the sequence of distributions su ested in 47,

here they consider a eo etric ath such as the one iven by equation 3 14 belo

T < [r ] ] 4

f one considers such a eo etric sequence and uses a transition kernel, hich is an
transition kernel of invariant distribution 7 , then the for of the L _ kernel
hich recovers the A al orith as resented in 6 ith the ti e index reversed is

iven by the follo in auxiliary kernel

L_ _




his selection of kernels for { and {L  ill roduceanincre entali ortance ei ht

iven by equation 3 16 belo
T

m_ _

learly this 1ill roduce i ortance ei hts hich are fairly unifor in situations

for hichm _ =7 Ho ever, hen thisisnot the case one can ex ect oor erfor ance
fro such an al orith he el ht u date resented in 6 also allo s one to erfor

auxiliary article lter conce ts to hel boost the articles in re ions of the state s ace

hich ill be of i  ortance in the next iteration, rior to utation by the transition

kernel  his can be seen to be the case since the article ei hts only de end on the

osition at the revious iteration and not thene ti e tisalsoi ortant to ention

that the A al orith does not use resa  lin , the effect of this ill be de onstrated

in the exa les at the end of this cha ter

he second exa le that de onstrates ho a lers relates to existin  ork
is iven by analysin 28 his a er resents the ortance ub-sa lin terative
che e, his al orith allo s one to obtain sa les fro a static osterior,

m Oly x by carryin out initial ex loration of artial distributions, 7 Oly , n < N
he al orith considers the sequence of artial osterior distributions 7 0|y »,
ithn < <n < <nyp N to erates by obtainin aset of articles distributed

as7 Oly ,, then this inference is "u dated" in a consistent anner, recursively takin

the next p observations into account accordin to the ei ht iven in equation 317

m 9@ n+p OCp Yy n+p’9

=0y » p—— P Ynt ntpll ¥

Wpp O

he nu ber of observations p used in this u date ste is ada tively deter ined
accordin to a criterion resented in the a er and sho n in equation 3 18 , here one
resa  les the articles hen D,, > d, hereforexa led 10 Basically the need
for this criterion is due to the fact that each u date ste adds ore variability to the

initial esti ates, hichleadstoa ro ressive de eneracy of the article ei hts  his can



be stated another ay; as p increases the su  ort of m,4, 1ill continue to shrink, relative
to the su  ort of 7, and hence the articles 1ill beco e increasin ly de enerate Hence
in the sa ¢ vein as the standard effective sa  le size criterion resented in  ha ter 2,

one uses this criterion to decide hen the articles need to be resa  led

1V (Bus) 1V (V)
"oy 9 T4y g

Tn+p Trn+tp

Once resa  lin is carried out there is likely to be sa  le1  overish ent and this
ust be co bated if one antsasa le hichisa ood re resentation of the osterior
Tntp 0 o co bat the roble ofsa lei overish ent and the fact that the os-
terior 4, is likely to lace ost of its ass either in different re ions or in a reduced
re ion of the state s ace hen co ared to m,, one can use the idea of Gilks et al 4

" oved" accordin to a etro olis-Hastin s transition kernel

here the articles are
ith invariant distribution m,, 0
t is the vie of the author that develo in effective oves hich 1ill lace the arti-
clesin hi h assre ionsof thesu ortofm,;, 0 isin eneral a non-trivial task  his
ises ecially true hen the assofthe osterioris ovin ra idly around the state s ace
as each observation is added, hich is the case hen one has infor ative observations
and also in the initial sta es hen one only has a s all nu ber of observations, n s all,
and the ass of the osterior is still concentratin = itself
he su ested ethod of 28 istousean nde endent etro olis-Hastin s transition

kernel hich de ends eakly on the revious value of the oved article hesu ested

transition kernel is iven by a Gaussian ith ean F,,, and covariance V,;, sho n in
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318 hinkin in the fra e ork of a lers, one can see that the al orith

resented in 28 is obtained as a s ecial case ithin the a lersfra e ork hen
one has  asan transition kernel of invariant distribution 7 and L _ is iven by
315 Hence, can be seen to be very si ilar to A, exce t that the al orith

allo sforresa lin and the sequence of distributions one ishes to sa  le is different

he third exa le to be resented relates the ork of 2 to the a lers
fra e ork  he Po ulation onte arlo al orith resented in 2 can be vie ed as
a s ecial case of a lers fra e ork in hich one considers the ho o eneous
situation in  hich 7 T and L L As entioned in the Po ulation

onte arlo al orith considers the case in  hich the transition kernel
is an kernel of invariant distribution 7 such as a Gibbs sa  ler or the
situation in  hich  de ends on the statistics of the entire o ulation of articles at the
revious iteration  he auxiliary kernel they consider corres onds to L L
77
t as ex lained in that if one as considerin the s ecial situation of the ho-
o eneouse set u  resented above then in the case that one used an auxiliary kernel
iven by the sa e for as 6 and 28 then after resa  lin once, the articles ould
be distributed a roxi ately accordin tom  hen the L kernel beco estheo ti al L
kernel and the 1 ortance ei hts beco e unity so that each article evolves inde en-
dently accordin to  and it is not necessary to ake the interact any ore t isthen
ar ued that if any other choice is used for the L kernel in this ho o eneous situation
then resa  lin  ould need to be erfor ed eriodically and it is ointed out that this
a roach is not really justi ed since resa  lin is not carried out to odify the ar inal
distribution of the articles but only to odify the correlation bet een survivin  arti-
cles at t o successive ti e instants  his ould li it the diversity in the set of articles
and in eneral one ould not ex ect the variance of esti ates for ed usin the articles
fro such a sche e to be any better than that obtained by usin non-interactin

chains



here are any other choices one ay consider and so e of these are hi hli hted in
detail in his thesis ex lores the choice resented in 3 15 and also investi ates

another a roach hich astoa roxi atethe ex ression for the o ti al kernel L%

he a roxi ation used is resented in equation 319 his a roxi ation involves
substitutin the distribution 7w _ hich is de ned by the roble bein solved and
assu ed kno nu toanor alisin constant, for the distribution hich is difficult

if not 1 ossible to evaluate analytically

L_ _

No follo in the de nition in equation 310 , it is clear that if the articles are
resa led at ti e — 1 then in thiscase il a roxi ately equal 7 = and the
ex ression for L, =~ ivenin 319 ill equal 313 his a roxi ation can be solved
in several interestin situations, so e of hich 1ll be resented next t should ho ever
be entioned that it ay in eneral be difficult to solve the inte ral iven by 7 _
and hence other a roaches should be considered  here ill be ore discussion on this
in the cha ter on rans- 1 ensional equential onte arlo sin thea roxi ation
found in 319 the follo in section resentst o detailed exa les hich de onstrate

the erfor ance of the a lers ethodolo y

his section rovidest o detailed exa lesco lete i1th co arisons bet een existin
al orith s and a lers ethodolo y  hese exa les are the joint ork of the
author and oucet and can be found in he roble to be studied is that of vari-

able selection in a Bayesian context  he rst exa le resented ill use a sequence of

inter ediate distributions to ove fro an initial distribution, to a tar et distribu-
tion, m wusin the a lers ethodolo y o arison ith Annealed ortance
a lin 6 and al orith s 1ill be rovided to de onstrate the erfor ance
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of a lers relative to other al orith s in the literature
he second exa le is an o ti ization roble in hich one ould like to nd the
ode of the distribution 7 his allo s a ler ethodolo y to be co ared to
a lon chain annealed al orith and also a arallel annealin al orith
Before oin into the details of these t oexa les, the Bayesian variable selection rob-
le shall be resented so that one can understand hat sequence of distributions 1ill be

used in each exa le

or any , e consider the follo in re ression odel 60
> +V;V 0 20
here the indicator variable, {01 is such that 0 if 0 and 0 if
1 n this situation there ill be 2 ossible odels for the re ression function

No ,if one assu es there are  inde endent identically distributed data oints, denoted

7 7 then the follo in vector- atrix notation can be used

r D +Vor
here D is a l atrix and / > _  isthenu ber of basis ter s
included in the odel he colu nof D corres onds to (1 )
(1 ,) T here is the index of the non-null coefficient of the se-
quence and is the associated [ -di ensional vector of non-null re res-

sion coefficients o co lete the odel in a Bayesian fra e ork the follo in  riors

shall be used for the a  litudes of the basis functions and the variance of the observation



noise

(0 D D - )
(7 7)
his choice of rior as adeasit allo soneto erfor ao-Black ellisation on the
ara eters for the a  litudes of the basis functions and the observation noise variance
hat is, they can be inte rated out of the osterior since they have the for of a - rior

4

, hich cou led ith the linear for ith non-linear basis functions of ex ression
320 and the Gaussian observation noise, allo s for this inte ration to be ade he
details of such an inte ration are o itted, but a reference in hich they are carried
out in detail ay be found in 7 , a endix A, a e 202 econdly, the choice of a
- rior as o osed to, for exa le, arid e rior allo s one to re ove the assu  tion
of rior inde endence bet een the a  litude coefficients, hence one does not need to
i ly that one is usin ortho onal basis functions  he ro erties hich ake the -
rior favourable are that hen one has basis functions alon si ilar rojections, then the

coeflicients of these basis functions 1ill be hi hly correlated, a priori. A lucid discussion

of the attributes of the - rior and the rid e rior ay be foundin 4, a e 80

inally, the follo in s eci cations ere ade, 1] here is uni-
for ly distributed on [0 1] and , and are xed hy er ara eters After inte ratin
out those ara eters discussed reviously and iven a realization T Y T ,one obtains

the follo in ar inal osterior distribution for the indicator variables

T +—

—1
D | 7y 7 +y r YT 1+ (v —1

here

(; y— 1+ D D D D
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ith ;, ) theidentity atrix of di ension I
he rstexa leofinterest illbetosa lethis ar inal osterior distribution and
in the second exa le it 1ill be the ai to carry out o ti isation in order to deter ine
the axi al odeof this distribution he data for both exa  les is taken fro the sinc
function, i e c corru ted by additive GGaussian noise, ith 01 for
50 evenly s aced oints in the interval [-10 10] t is assu ed there are

basis functions of the for

here 16

he ai  of this rst exa le 1ill be to consider a sequence of distributions iven by the
ex ression

™ OC[P ’ T?JT]%

here the "annealin " schedule [0 1] and {1 p is onotonically increasin

his roduces the exa le here one ould like to ove fro a tractable distribution,

for exa le here is the unifor distribution hich corres onds to 0, to
the distribution of interest m, P | 7y r hich corres onds to , 1
n this exa le the kernels { ere selected as deter inistic scan Gibbs sa  lers of

invariant distributions here one variable as u dated er iteration

?

here () (=) (—) and (,(7) ,(7))

n

Hence the total nu ber of ste s, p, required in the "annealin " schedule, as set

such that p 1 or the selection of the L kernels both equation 319 and the A



) )

choice 315  ere considered No , for the article (- res o attl e
—1 res these al orith ic choices roduce the follo in incre ental i  ortance
el hts

or the A choice of the L kernel one obtains the incre entali ortance ei ht as

follo s

w(())L,(() ()7)
w (O ) ’ ’ (=)
(=) = 0) 0) O)
7“( ,H) ( () )
7T(() )Wt ! t 1 L t 111 ¢
’ T
() () ()
7“( ,(7)) ( () )
()
”( ,H)
()
7“( ,(7))

or the second choice of the I kernel iven by 319 one obtains the incre ental i -

ortance e1 ht
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no the inte ral 7w _ . has the follo in for

T - T - () () + T ()

™ _ ’(,)—I—W,

hence this roduces an incre entali ortance ei ht ith the follo in for

() ) 7((()7)

w( Ve ) = (0)
W(()’(i))JrW(()’)
(O ) (V)

n this case, and ore enerally in any discrete state-s ace roble s ith local ex-

loration, it is usually ossible to co ute 319 exactly tis orth entionin that
hen one considers the i ortance ei hts for each of the choices of I kernel, clearly
one can not ex ect uch difference bet een usin 319 or the A  choice, hen one is
in the situation that m ~ 7t should also be ointed out that the co  utational
co lexity of A and of the alternative ethod ro osed are si ilar
he follo in set of ex eri ents ere carried out for different values of
p {250 500 1250 2500 5000 he schedule used for this exa  le had 0 ith the

sequence {  initially increasin linearly for 2 ste s and then accordin to +

ith 1

p

he nu ber of articles, used for all si ulations in this exa le, as N 1000
Additionally, an ada tive resa lin sche e as used for the a lers al orith
hereresa lin as erfor ed henthe F/ asbelo N 2 he a lersal o-
rith asalsoco aredtosa lin fro 7 itha Gibbssa ler, usin pN iterations
for the co  utational co lexity of both ethods to be a roxi ately si ilar
he results of the si ulations are resented in table , hich dis lays the avera e

ean quare ITOor and the standard deviation of the esti ate of the re-
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ression function over 0 si ulations usin the sa e data set he avera e and standard

deviation of the ean of the lo - osterior of the last o ulation of articles is also re-

sented  or the results, the avera e and standard deviation of the ean of the
lo - osterior of the sa  les obtained after burn-in are resented o sets of results are

resented for A ith noresa lin , one usin 319 and the other usin 3 15 he
results for the ne a lersal orith ere roduced usin 3 19 for the choice of

the I _ kernel and the Gibbs sa  ler results ere roduced by discardin the rst 40
of sa  les as burn-in eriod or each si ulation, the sa e¢ N rando initial startin

oints are used for A and and one of those N oints as used to initialize the
Gibbs sa  ler  he results de onstrate that there is al ost no difference bet een A
usin 319 or 315

he results de onstrate that in all si ulations, the resa  lin ste wused in the

al orith  roduces a reduction in the variance chea ly  he reduction of the variance is

ost ro inent henthenu berofu dates ersiteiss all, hencepiss all ntuitively
this akes sense, since in these situations the difference bet een m = and 7 can be
si ni cant hen co ared to the situations in hich p is very lar e and 7 = =~ 7
An additional oint is that, as ould be ex ected, the nu ber of ti es resa lin
is carried out increases as p decreases he results also de onstrate that for lar e p

here 7 = =~ 7, the al orith and A ive al ost si ilar results ith re ard
to the avera e and its standard deviation Ho ever, the avera e lo - osterior for
the nal o ulation of sa les is clearly hi her for co ared to A | this trend is
de onstrated ra hicallyin ure belo he lotin ure de onstratesthe avera e
and the standard deviation of the eanlo osterior for all of the si ulations versus the
nu ber of u dates ersite for A and a lers neachof the 0si ulations this
avera ¢ asco uted usin the last set of articlesat ti ep  he avera e and standard
deviation results for si ulations are also resented, exce t the eanlo osterior
for each si ulation as calculated for the sa  lesre ainin after discardin the burn in

eriod tcan beseen, fro the lotin ure ,that fors all values of p a lers
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yields sa  les ith hi her lo - osterior values than the A al orith and the
Gibbs sa  ler As p increases, the al orith out erfor ed a lers and
A in ter s of the avera e ean lo osterior, ho ever the standard deviation of the

ean lo  osterior as si ni cantly lar er for co ared to both A and

a lers n fact the a lers al orith results are contained ithin 1 of the

avera e ean lo osterior as de onstrated in  ure
able also de onstrates that co ared to , al orith s yield a lo er

avera e Nevertheless, only one realization of observations has been used so this is
not si ni cant his ar u ent is su orted by the fact that the avera e a eared
to be unchan ed at a roxi ately around 2 2 even for lo values of the avera ¢ ean
lo osterior Additionally, it is orth entionin that the avera e effective sa le size
for the last o ulation of the articles for the a lers al orith 1is si ni cantly
better than the results obtained for the A al orith , as sho n belo in able hen
this result is cou led ith the results of the avera e ean lo  osterior for the last

o ulation of articles it de onstrates that the articles si ulated in the a lers
al orith are ex lorin 1 ortant re ions of the state s ace ith res ect to here the
tar et osterior laces ost of its ass Ho ever the A al orith as not ex lorin
re ions of the state s ace hich ere as si ni cant and very fe  articles ere located

in these re ions of interest ith res ect to the tar et osterior
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