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Abstract

We study the conditions for classical r-matrices to be compatible with the generalised
Chern-Simons action for 3d gravity. Compatibility means solving the classical Yang-
Baxter equations with a prescribed symmetric part for each of the real Lie algebras and
bilinear pairings arising in the generalised Chern-Simons action. We give a new construc-
tion of r-matrices via a generalised complexification and derive a non-linear set of matrix
equations determining the most general compatible r-matrix. We exhibit new families of
solutions and show that they contain some known r-matrices for special parameter values.

1 Introduction and Motivation

The application of the combinatorial quantisation programme [1, 2, 3, 4, 5, 6, 7, 8] to the
Chern-Simons formulation of 3d gravity [9, 10, 11] has provided a systematic way of studying
the role of quantum groups and non-commutative geometry in 3d quantum gravity. What
emerges in this framework is that quantisation deforms the classical phase space geometry into
a non-commutative geometry in which the model spacetimes are replaced by non-commutative
spaces and the local isometry groups (gauge groups for the Chern-Simons theory) by quantum
isometry groups.

In the combinatorial quantisation procedure, one begins with the description of the Poisson
structure on the classical phase space in terms of a classical r-matrix. In its original formulation
for generic Chern-Simons theories this description is due to Fock and Rosly [12]. It requires
that the r-matrix satisfies a certain compatibility condition with the inner product used in
defining the Chern-Simons action. When the r-matrix is the classical limit of a quantum R-
matrix associated to a certain quantum group, one can formulate the quantum theory in terms
of the representation theory of that quantum group, see [3] for the general framework and also
[13, 14] for survey accounts related to 3d gravity.

In the case of the Chern-Simons formulation of 3d gravity, r-matrices satisfying the compati-
bility condition are known for all signatures and values of the cosmological constant [15]. The
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associated quantum groups are deformations of the classical isometry groups and thus natural
candidates for the ‘quantum isometry groups’ of 3d quantum gravity.

Unfortunately, Fock and Rosly’s compatibility requirement does not specify the classical r-
matrix uniquely. For a given classical theory, several compatible r-matrices are possible in
general, and the associated quantum groups are equally valid contenders for the role of ‘quantum
isometry group’.

The family of classical r-matrices and corresponding quantum groups that can be associated
to the most general Chern-Simons action for 3d gravity via the Fock-Rosly compatibility re-
quirement has not yet been fully characterised. The quantum groups are known to include a
family of Drinfeld quantum doubles and Maijd’s bicrossproduct quantum groups with spacelike,
timelike and null deformation parameters [15, 16]. However, recent work [17] shows that there
are more and that, at the infinitesimal Lie bialgebra level, all the known solutions can in fact be
viewed as classical doubles. There are also partial results on the relationship between different
compatible r-matrices [16].

Our goal here is to formulate the general equations which determine compatible r-matrices
in 3d gravity, and to exhibit some new solutions. It turns out to be mathematically natural to
consider a generalised form of the Chern-Simons action for 3d gravity, based on the most general
symmetric bilinear form for the relevant Lie algebra. This generalised action was previously
considered in [10, 18, 19, 15]. In addition to the usual gravitational term it contains a non-
standard term which has been interpreted as an analogue of the Immirzi term in 4d gravity
[19], though this interpretation has recently been questioned [20].

The family of real Lie algebras used in the Chern-Simons formulation of 3d gravity depends on
the speed of light and the value of the cosmological constant. It includes so(p, q) with p+ q = 4
as well as the Poincaré and Euclidean group in, respectively, 2+1 and 3 dimensions. All of
these are much studied in geometry and physics. Our results are therefore also of interest in
the context of the bialgebra structures for these Lie algebras and of the Poisson-Lie algebra
structures of the corresponding groups. They generalise previous studies of r-matrices for the
Euclidean and Poincaré group in [21] and [22]1.

We should stress that, in general, the Chern-Simons formulation of 3d gravity is not equivalent
to the Einstein or metric formulation of 3d gravity. The differences arise because the frame field
is necessarily non-degenerate in the metric formulation but may degenerate in the Chern-Simons
formulation, and because of different notions of gauge invariance in the two formulations. The
resulting phase spaces may therefore, in general, be different. This issue has been discussed
extensively in the literature, starting with the papers [23, 24] (showing that the resulting phases
spaces may be the same under certain assumptions) and [25](exhibiting an example where they
differ). This discussion has some parallels with that comparing gauge and metric formulations
of gravity in 4d, see, e.g., [26], but the flatness of classical solutions in the Chern-Simons
formulation leads to special features in 3d. This paper is not intended as a contribution to this
discussion. We take the Chern-Simons formulation as the starting point of our treatment, and
explore its consequences with a view to gaining a systematic understanding of its quantisation.

Our paper is organised as follows. We start in Sect. 2 with a review of the generalised
Chern-Simons action for 3d gravity, the description of the relevant Lie algebras as generalised

1Readers referring to [22] should be aware of the ‘dual’ use of the parameter λ in that paper compared to
the current paper.
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complexifications of so(3) and so(2, 1). We give a precise formulation of the compatibility
requirement for an r-matrix in this context, and explain the reality condition we impose. In
Sect. 3 we derive a particular class of solutions by a process of (generalised) complexification
of the standard r-matrix for the Lie bialgebra of sl(2,R) ≃ so(2, 1). Sect. 4 contains the
main results of this paper. We derive a set of non-linear coupled equations which characterises
the most general compatible r-matrix in 3d gravity. In Sect. 5 we derive two new families
of solutions, and show how they relate to the complexified solutions of Sect. 3 and that they
include some known solutions as special cases. Sect. 6 contains our conclusions.

2 Lie algebras, Chern-Simons actions and compatible r-matrices

2.1 Lie algebra conventions

We use the conventions of [22], so write g for either so(3) or so(2, 1), with generators Ja,
a = 0, 1, 2. The metric ηab = ηab is, respectively, the Euclidean metric diag(1, 1, 1) or the
Lorentzian metric diag(1,−1,−1). The Lie brackets of g are then

[Ja, Jb] = ǫabcJ
c, (2.1)

where indices are raised with ηab and we adopt the convention ǫ012 = ǫ012 = 1. We make
frequent use of the Killing form as an invariant (possibly Lorentzian) inner product 〈·, ·〉 on g,
and assume that it is normalised so that

〈Ja, Jb〉 = ηab. (2.2)

We write At for the transpose of a map A : g → g with respect to the inner product (2.2), i.e.,

〈v, Aw〉 = 〈Atv, w〉 ∀v, w ∈ g. (2.3)

When we expand elements of g via

p = paJa, q = qaJa, (2.4)

we write p = (p0, p1, p2) for the coordinate vector and

〈p, q〉 = p·q. (2.5)

We also use the following notation for the dual of a vector as a linear form:

vt = 〈v, ·〉, v ∈ g. (2.6)

We write gλ for the family of Lie algebras which arise as isometry Lie algebras in 3d gravity.
Depending on the real parameter λ (which is related to the cosmological constant, see [14] and
our discussion in Sect. 2.2 ), gλ is the Lie algebra of the Poincaré, de Sitter or anti-de Sitter
group or their Euclidean analogues in three dimensions, with brackets

[Ja, Jb] = ǫabcJ
c, [Ja, Pb] = ǫabcP

c, [Pa, Pb] = λǫabcJ
c. (2.7)

The Lie algebra gλ can be interpreted as the real form of a generalised complexification of g,
and this viewpoint will prove useful in the following. We refer the reader to [27] and [28] for
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details but briefly summarise the main results. The idea is to introduce a formal parameter θ
satisfying

θ2 = λ, (2.8)

and to set
Pa = θJa. (2.9)

Then the commutators (2.7) follow from (2.1) by extending the Lie brackets linearly in θ. More
formally, one defines the ring Rλ = (R2,+, ·) as the commutative ring obtained from R2 with
the usual addition and the λ-dependent multiplication law

(a+ θb) · (c+ θd) = (ac+ λbd) + θ(ad+ bc) ∀a, b, c, d ∈ R, (2.10)

and defines gλ as the realification of g⊗Rλ [27].

The Lie algebra gλ has a two-parameter family of non-degenerate symmetric Ad-invariant
bilinear forms [10]. Defining

t(Ja, Jb) = 0, t(Pa, Pb) = 0, t(Ja, Pb) = ηab, (2.11)

s(Ja, Jb) = ηab, s(Ja, Pb) = 0, s(Pa, Pb) = ληab, (2.12)

the most general such form is given by

(·, ·)τ = αt(·, ·) + βs(·, ·), (2.13)

in terms of two real parameters α, β. It turns out [15] that the condition for the non-degeneracy
for (2.13) can conveniently be written in terms of the complexified parameter τ = α+ θβ ∈ Rλ

as
τ τ̄ = α2 − λβ2 6= 0. (2.14)

2.2 Chern-Simons theory and 3d gravity

The Chern-Simons theory on a 3d manifold depends on a gauge group and an invariant, non-
degenerate symmetric bilinear form on the Lie algebra of that gauge group. One recovers the
Einstein-Hilbert action for 3d gravity for any signature and value of the cosmological constant
from the Chern-Simons action by choosing the appropriate local isometry group Gλ with Lie
algebra gλ as gauge group and using the non-degenerate form (2.11), see [9, 10]. Here we are
interested in the Chern-Simons action with the more general bilinear form (2.13). This was
previously considered in [10, 18, 19] and, in our notation, in [15]

Consider a three-dimensional spacetime manifold M3 of the product topology R × S, where
S is an oriented two-dimensional manifold, possibly with handles and punctures. Physically, S
represents ’space’ and the punctures particles. The gauge field of the Chern-Simons theory is
locally a one-form A on the spacetime with values in the Lie algebra gλ. It can be expanded in
terms of the generators Ja and Pa as

A = ωaJ
a + eaP

a, (2.15)

where ω = ωaJa is geometrically interpreted as the spin connection on the frame bundle and the
one-form ea as a dreibein. The curvature of this connection combines the Riemann curvature
R, the torsion T and a cosmological term, see [15] for details.
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The Chern-Simons action for the gauge field A is

Iτ (A) =

∫

M

(A ∧ dA)τ +
1

3
(A ∧ [A,A])τ . (2.16)

Integrating by parts and ignoring boundary terms, this can be expanded as

Iτ (A) = α

∫

M

(

2ea ∧Ra +
λ

3
ǫabce

a ∧ eb ∧ ec
)

+ β

∫

M

(

ωa ∧ dωa +
1

3
ǫabcω

a ∧ ωb ∧ ωc + λea ∧ Ta

)

. (2.17)

The first term is the usual Einstein-Hilbert action for 3d gravity with a cosmological constant.
To make contact with the physical constants of 3d gravity identify

α =
1

16πG
, λ = −c2Λ, (2.18)

where G is Newton’s constant in 2+1 dimensions, c is the speed of light and taken to be
imaginary in the case of Euclidean signature, and Λ is the cosmological constant.

The term proportional to β contains the Chern-Simons action for the spin connection and a
cosmological contribution. There have been attempts to interpret this term as the analogue of
the Immirzi term in 4d [19], but this is contentious [20].

A discussion of the classical equations of motion obtained when varying the action (2.17) with
respect to ea and ωa, treated as independent variables, can be found in [15].

2.3 Bi-algebras and classical r-matrices

We refer the reader to [29, 30] for details on the background reviewed in this short section.
A Lie bialgebra (g, [ , ], δ) is a Lie algebra (g, [ , ]) equipped with a map δ : g 7→ g ⊗ g (the
cocommutator, or cobracket) satisfying the following condition:

(i) δ : g 7→ g⊗ g is a skew-symmetric linear map, i.e., δ : g 7→ ∧2
g

(ii) δ satisfies the coJacobi identity (δ ⊗ id) ◦ δ(X) + cyclic = 0, ∀X ∈ g.

(iii) For all X, Y ∈ g, δ([X, Y ]) = (adX ⊗ 1 + 1⊗ adX)δ(Y )− (adY ⊗ 1 + 1⊗ adY )δ(X).

An element r ∈ ∧2
g is said to be a coboundary structure of the Lie bialgebra (g, [ , ], δ) if

δ(X) = adX(r) = [X ⊗ 1 + 1⊗X, r].

For any Lie algebra g, let r = rabXa ⊗ Yb ∈ g⊗ g, r21 = σ(r) = rabYb ⊗Xa and set

r12 = rabXa ⊗ Yb ⊗ 1, r13 = rabXa ⊗ 1⊗ Yb, r23 = rab1⊗Xa ⊗ Yb. (2.19)

The classical Yang-Baxter map is the map

CYB : g⊗2 → g
⊗3, r 7→ [[r, r]] = [r12,r13] + [r12,r23] + [r13,r23]. (2.20)

It is easy to check that CYB restricts to a map ∧2
g → ∧3

g. The equation

[[r, r]] = 0, (2.21)
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is called the classical Yang-Baxter equation(CYBE). Any solution r ∈ g ⊗ g of the CYBE is
called a classical r-matrix. If [[r, r]] is non-zero but an invariant element of g ⊗ g ⊗ g then r
is said to satisfy the modified classical Yang-Baxter equation(MCYBE). The triple (g, [ , ], r)
defines a coboundary Lie bialgebra if and only if

adX([[r, r]]) = 0, adX(r + r21) = 0, ∀X ∈ g, (2.22)

where ad is the usual Lie algebra adjoint action extended to products in the usual way (as a
derivation).

2.4 Compatible r-matrices

As reviewed above, a Chern-Simons theory requires a gauge group and an invariant, non-
degenerate, symmetric bilinear form on the Lie algebra of the gauge group. In the Fock-Rosly
construction, a classical r-matrix is said to be compatible with a Chern-Simons action if it
satisfies the CYBE (2.21) and its symmetric part is equal to the Casimir associated to the
invariant, non-degenerate symmetric bilinear form used in the Chern-Simons action. Fock and
Rosly went on to show how to describe the Poisson structure of an extended phase space for
the Chern-Simons theory in terms of a compatible r-matrix.

Decomposing a compatible r-matrix into the symmetric Casimir part K and antisymmetric
part r′ via r = K + r′ we have the identity [29]

[[K + r′, K + r′]] = [[K,K]] + [[r′, r′]]. (2.23)

Therefore, an r-matrix is compatible with a Chern-Simons action if its symmetric part equals
the associated Casimir and its antisymmetric part satisfies the modified classical Yang-Baxter
equation (MCYBE)

[[r′, r′]] = −[[K,K]]. (2.24)

We can now apply this prescription to the Chern-Simons action (2.16). The Casimir in gλ

associated to the bilinear invariant form (2.13) is

Kτ =
α

ττ̄
(Ja ⊗ P a + Pa ⊗ Ja)− β

τ τ̄
(λJa ⊗ Ja + Pa ⊗ P a). (2.25)

It is shown in [15]2 that

Ωτ = [[Kτ , Kτ ]]

µǫabc(λJ
a ⊗ J b ⊗ Jc + Ja ⊗ P b ⊗ P c + P a ⊗ J b ⊗ P c + P a ⊗ P b ⊗ Jc)

+ νǫabc(P
a ⊗ P b ⊗ P c + λP a ⊗ J b ⊗ Jc + λJa ⊗ J b ⊗ P c + λJa ⊗ P b ⊗ Jc), (2.26)

where we introduced

µ =
α2 + λβ2

(τ τ̄ )2
, ν = − 2αβ

(τ τ̄ )2
, (2.27)

so that

µ+ θν =
1

τ 2
. (2.28)

2In the corresponding expression in [15], there is a missing factor of 2 in the second term. This term was
not considered further there, so the missing factor does not affect the conclusions of that paper.
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In fact, the right-hand-side of (2.26) is the most general general invariant element in (gλ)
3.

We sum up the discussion in the following definition.

Definition 2.1 An r-matrix for any of the Lie algebras gλ is compatible with the Chern-Simons

action (2.16) if r = r′ +Kτ , and r′ satisfies

[[r′, r′]] = −Ωτ . (2.29)

Our goal here is to find the most general real solution of equation (2.29). At the level of Lie
algebras we need to keep track of the real structures in order to distinguish between the various
physically distinct regimes of 3d gravity. The reality of the classical r-matrices is required in
the Fock-Rosly construction in order to have a real Poisson structure on the extended phase.
This allows for the usual interpretation of functions on the phase space as observables, and is
expected in the classical limit of any quantisation of the theory where observables are Hermitian
with respect to a given ∗-structure.
The combination of a real Lie algebra structure with a real r-matrix amounts, in the termi-

nology of [30], to a real-real form of the Lie bialgebra structure defined by the r-matrix. It is
mathematically possible to impose other conditions (for example the half-real structure defined
in [30] where the anti-symmetric part of the r-matrix is imaginary) but the relevance of such
structures to the generalised Chern-Simons formulation of 3d gravity is not clear. We therefore
restrict our discussions in the following to real r-matrices; the interested reader should have no
difficulty in obtaining solutions satisfying other reality conditions.

3 Compatible r-matrices via generalised complexification

In this section we show that a particular class of solutions of (2.29) can be obtained by a process
of (generalised) complexification of the standard solution of the MCYBE for the Lie algebra
sl(2,R). As explained in the appendix of the paper [15], the well-known identity

[X, [Y, Z]] = 〈X,Z〉Y − 〈X, Y 〉Z (3.1)

for the three dimensional Lie algebras g can be used, together with the Jacobi identity and the
invariance of the Killing form, to establish that

r′ = ǫabcmaJb ⊗ Jc (3.2)

satisfies
[[r′, r′]] = mam

aǫbcdJb ⊗ Jc ⊗ Jd. (3.3)

The quadratic Casimir
K = Ja ⊗ Ja (3.4)

satisfies
[[K,K]] = Ω, (3.5)

where Ω is the cubic Casimir Ω = ǫabcJ
a ⊗ J b ⊗ Jc. Therefore, by (2.24),

r = K + r′ (3.6)
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satisfies the CYBE (2.21) provided
mam

a = −1. (3.7)

This has a non-trivial real solution only in the case g = sl(2,R) and leads to the standard
bialgebra structure in that case.

Consider now the (generalised) complexification gλ ⊗ Rλ of the (real, 6-dimensional) Lie
algebra gλ. The generators

J±
a =

1

2
(Pa ± θJa) (3.8)

satisfy
[J±

a , J
±

b ] = ±θǫabc(J
±)c, [J+

a , J
−

b ] = 0. (3.9)

It follows that
K± = J±

a ⊗ (J±)a (3.10)

are both invariant element of the universal enveloping algebra U(gλ ⊗Rλ), and that

r±(τ,m) =
1

τ
K± + ǫabcmaJ

±

b ⊗ J±
c (3.11)

both satisfy the CYBE over Rλ for any invertible τ ∈ Rλ and vector m ∈ R3
λ satisfying the

condition

m
2 = − 1

τ 2
. (3.12)

Since the + and the − copy of the Lie algebra gλ⊗Rλ commute, we also deduce that any linear
combination

a+r+(τ+,m+) + a−r−(τ−,m−) (3.13)

satisfies the CYBE for any a± ∈ Rλ, m
± ∈ R3

λ, provided the condition (3.12) holds for the
parameters τ± and m

±. In particular, therefore, the combinations

r+(τ,m)± r−(τ̄ , m̄) = r(τ,m)± r(τ,m) (3.14)

satisfy the CYBE.

In order to obtain a real solution of the CYBE for gλ with the symmetric part agreeing with
the general Casimir element (2.25), we note that

1

τ
K+ − 1

τ̄
K− =

θ

2τ τ̄
(α(Pa ⊗ Ja + Ja ⊗ P a)− β(Pa ⊗ P a + λJa ⊗ Ja)) . (3.15)

Assuming for a moment that λ 6= 0 (so that θ is no a zero-divisor), we can take the negative
sign in (3.14) and multiply the result by 2/θ to obtain a solution with the required symmetric
part:

r(τ,m) =
2

θ

(

r+(τ,m)− r−(τ̄ , m̄)
)

. (3.16)

Writing
m = p+ θq, (3.17)

the solution takes the form

r(τ,m) = Kτ + ǫabc(pa(Pb ⊗ Jc + Jb ⊗ Pc) + qa(Pb ⊗ Pc + λJb ⊗ Jc)). (3.18)
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Spelling out the condition for (3.18) to be a solution of the CYBE, we find

p
2 + λq2 = −µ, 2p · q = −ν, (3.19)

where we used the abbreviations (2.27).

The division by θ is potentially problematic in the case λ = 0. However, one can also check
that (3.18) is a solution of the CYBE in the limit λ → 0 by making careful use of the identity

qap
dǫdbc + qbp

dǫadc + qcp
dǫabd = qdp

dǫabc. (3.20)

One needs to check if (3.19) has solutions. To simplify the analysis we define

m
′ = τm, (3.21)

and expand m
′ = p

′ + θq′. The condition (3.12) is now simply

m
′2 = −1 (3.22)

or
(p′)2 + λ(q′)2 = −1, p

′ · q′ = 0. (3.23)

In other words, solutions are determined by two orthogonal vectors whose squares satisfy one
constraint. When λ > 0, this constraint is clearly impossible to satisfy (for real vectors!) in the
Euclidean case, but has various types of solutions in the Lorentzian case, including p

′ and q
′

being orthogonal spacelike vectors, but also cases where only one of either p′ or q′ is spacelike
and the other either lightlike or timelike.

When λ < 0, we can write the constraint as

(p′)2 + 1 = (−λ)(q′)2, p
′ · q′ = 0. (3.24)

This clearly has solutions in the Euclidean case. In fact, assuming λ = −1 without loss of
generality, any such solutions may be interpreted as determining an ellipse in R3 with minor
axis p

′ (including the degenerate case p
′ = 0) and major axis q

′. There are also solutions in
the Lorentzian case, of all the types described for the λ > 0 case above.

4 Conditions for compatible r-matrices in 3d gravity

4.1 A Lie-algebraic equation

We first derive a Lie-algebraic condition for the most general solution of (2.29). In order to
distinguish the various kinds of terms in that equation it is helpful to the use the notation of
generalised complexification. Then the invariant element (2.26) takes the form

Ωτ = (µ(λid⊗ id⊗ id + id⊗ θ ⊗ θ + θ ⊗ id⊗ θ + θ ⊗ θ ⊗ id) + ν(θ ⊗ θ ⊗ θ

+ λθ ⊗ id⊗ id + λid⊗ id⊗ θ + λid⊗ θ ⊗ id))ǫabcJ
a ⊗ J b ⊗ Jc. (4.1)

The antisymmetric part r′ of the r-matrix can be written as

r′ = (id⊗A + θ ⊗ B − B ⊗ θ + θ ⊗ θ C)Ja ⊗ Ja

= Ja ⊗ A(Ja) + P a ⊗ B(Ja)− B(Ja)⊗ P a + P a ⊗ C(Pa)

= AbaJ
a ⊗ J b +BbaP

a ⊗ J b − BbaJ
b ⊗ P a + CbaP

a ⊗ P b, (4.2)
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where we can assume that A and C are anti-symmetric, i.e., Aab = −Aba and Cab = −Cba.

Note that all the matrices appearing in (4.2) should be thought of as matrices for linear maps

A,B,C : g → g (4.3)

with respect to the orthonormal basis {J0, J1, J2} of g. An antisymmetric map A : g → g can
always and uniquely be expressed in terms of an element u = uaJ

a ∈ g, acting via commutator.
Also note that

A = [u, ·] ⇒ Aab = −ǫabcu
c, (4.4)

and that
A = [u, ·], C = [v, ·] ⇒ AC = vut − 〈u, v〉 id, (4.5)

which we will use frequently later in this paper.

Inserting (4.2) into the left hand side of (2.29) generates 48 terms. Setting them equal to the
right hand side of (2.29) yields eight equations, each having six terms. We have found it useful
to contract the equations with an element X ⊗ Y ⊗ Z ∈ g

3, using the metric 〈·, ·〉. That way,
for example, the equation

[[Ja ⊗ A(Ja), J
b ⊗A(Jb)]] = ǫabcJ

a ⊗ J b ⊗ Jc (4.6)

turns into

〈X, [At(Y ), At(Z)]〉+〈Y, [A(X), At(Z)]〉+〈Z, [A(X), A(Y )]〉 = 〈X, [Y, Z]〉 ∀X, Y, Z ∈ g (4.7)

which in turn is equivalent to

A([X,At(Y )]) + A([Y,A(X)]) + [A(X), A(Y )] = [X, Y ] ∀X, Y ∈ g. (4.8)

This is the sort of equation studied and solved in [22]. In the case at hand we can simplify the
condition by using that, because of the antisymmetry At = −A, A is an adjoint action with a
suitable Lie algebra element and therefore obeys the Jacobi identity

A([X, Y ]) = [A(X), Y ] + [X,A(Y )]. (4.9)

Then the condition (4.8) can be written as

[A(X), A(Y )]− A2([X, Y ]) = [X, Y ] ∀X, Y ∈ g. (4.10)

Proceeding similarly with (2.29) but omitting the explicit statement of ∀X, Y ∈ g, we find,
the following ‘raw’ terms, where we have not yet used the antisymmetry of both A and C.

From the id⊗ id⊗ id term:

A([X,At(Y )] + [Y,A(X)]) + [A(X), A(Y )]

+ λ(B([X,Bt(Y )] + [Bt(X), Y ]) + [Bt(X), Bt(Y )]) = −µλ[X, Y ]. (4.11)

From the θ ⊗ id⊗ id term:

A([Y,B(X)] + [X,Bt(Y )]) +B([X,At(Y )]) + [B(X), A(Y )]

+ λ(B([Y, C(X)]) + [Bt(Y ), C(X)]) = −λν[X, Y ]. (4.12)
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From the id⊗ θ ⊗ id term:

B([Y,A(X)]) + [A(X), B(Y )]− A([X,B(Y )] + [Y,Bt(X)])

+ λ(B([X,Ct(Y )])− [Bt(X), C(Y )]) = −λν[X, Y ]. (4.13)

From the id⊗ id⊗ θ term:

− Bt([X,At(Y )] + [Y,A(X)])− [Bt(X), A(Y )])− [A(X), Bt(Y )]

+ λ(C([X,Bt(Y )])− [Y,Bt(X)]) = −λν[X, Y ]. (4.14)

From the θ ⊗ θ ⊗ id term:

B([Y,B(X)]− [X,B(Y )]) + [B(X), B(Y )] + A([X,Ct(Y )] + [Y, C(X)])

+ λ[C(X), C(Y )]) = −µ[X, Y ]. (4.15)

From the θ ⊗ id⊗ θ term:

− Bt([X,Bt(Y )] + [Y,B(X)])− [B(X), Bt(Y )] + C([X,At(Y )] + [C(X), A(Y )])

+ λC[Y, C(X)]) = −µ[X, Y ]. (4.16)

From the id⊗ θ ⊗ θ term:

Bt([X,B(Y )]) + [Y,Bt(X)])− [Bt(X), B(Y )] + C([Y,A(X)] + [A(X), C(Y )])

+ λC[X,Ct(Y )]) = −µ[X, Y ]. (4.17)

Finally, from the θ ⊗ θ ⊗ θ term:

− Bt([X,Ct(Y )])−Bt[Y, C(X)]) + [B(X), C(Y )] + [C(X), B(Y )]

+ C([Y,B(X)]− [X,B(Y )]) = −ν[X, Y ]. (4.18)

We can simplify the equations (4.11) and (4.18) using the antisymmetry of A and C to find

[A(X), A(Y )]− A2([X, Y ]) + λ(B([X,Bt(Y )] + [Bt(X), Y ]) + [Bt(X), Bt(Y )]) = −µλ[X, Y ].
(4.19)

and

BtC([X, Y ]) + [B(X), C(Y )] + [C(X), B(Y )]− C([B(X), Y ] + [X,B(Y )]) = −ν[X, Y ].
(4.20)

The equations (4.15)-(4.17) turn out to be mutually equivalent. The best way to see this is
to contract again with a general vector Z and to use cyclic identities. Thus we can replace the
three equations by the single equation obtained from (4.15) after using the antisymmetry of C
and the Jacobi identity:

[B(X), B(Y )]− B([X,B(Y )] + [X,B(Y )])− AC([X, Y ]) + λ[C(X), C(Y )] = −µ[X, Y ].
(4.21)
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The equations (4.12)-(4.14) are also mutually equivalent. We can see this again by projecting
onto Z, using cyclic identities and re-naming. Using also the antisymmetry of A and C, we
obtain

BtA([X, Y ])− [Bt(X), A(Y )])− [A(X), Bt(Y )] + λC([X,Bt(Y )] + [Bt(X), Y ]) = −λν[X, Y ].
(4.22)

We thus obtain a set of four coupled equations for the linear maps A,B,C. We combine them
here for clarity:

[A(X), A(Y )]− A2([X, Y ]) + λ(B([X,Bt(Y )] + [Bt(X), Y ]) + [Bt(X), Bt(Y )]) = −µλ[X, Y ],

BtC([X, Y ]) + [B(X), C(Y )] + [C(X), B(Y )]− C([B(X), Y ] + [X,B(Y )]) = −ν[X, Y ],

[B(X), B(Y )]− B([X,B(Y )] + [X,B(Y )])− AC([X, Y ]) + λ[C(X), C(Y )] = −µ[X, Y ],

BtA([X, Y ])− [Bt(X), A(Y )])− [A(X), Bt(Y )] + λC([X,Bt(Y )] + [Bt(X), Y ]) = −λν[X, Y ].

∀X, Y ∈ g (4.23)

4.2 An equation involving three linear maps

Our main tool in this section is Lemma 3.1 of [22]. We recall it here for the convenience of the
reader.

Lemma 4.1 For every linear map F : g → g, there is a uniquely determined linear map

F adj : g → g, (4.24)

which satisfies

〈F adj(Z), [X, Y ]〉 = 〈Z, [F (X), F (Y )]〉 ∀X, Y, Z ∈ g. (4.25)

It is given by

F adj = F 2 − tr(F )F +
1

2

(

tr(F )2 − tr(F 2)
)

id, (4.26)

which is the adjugate of F .

We need a corollary of this lemma, which is obtained by polarisation:

Lemma 4.2 For linear maps E, F : g → g, there is a uniquely determined linear map

(E, F )adj : g → g, (4.27)

which satisfies

〈(E, F )adj(Z), [X, Y ]〉 = 〈Z, [(E(X), F (Y )] + [F (X), E(Y )]〉 ∀X, Y, Z ∈ g. (4.28)

It is given by

(E, F )adj = FE + EF − tr(F )E − tr(E)F + (tr(F )tr(E)− tr(EF ))id. (4.29)
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It follows that
(id, B)adj = −B + tr(B) id (4.30)

Thus, taking adjugates of equation (4.19), we obtain, using that tr(A) = 0,

− 1

2
tr(A2)id + λ((−Bt + tr(B) id)Bt

+ (Bt)2 − tr(B)Bt +
1

2

(

tr(B)2 − tr(B2)
)

id = −µλ id, (4.31)

or

−1

2
tr(A2)id +

λ

2

(

tr(B)2 − tr(B2)
)

id = −µλ id. (4.32)

Similarly taking adjugates of equation (4.20) and using tr(C) = 0, we find

−CB + (BC + CB − tr(B)C − tr(CB)id) + (−B + tr(B) id)C = −ν id, (4.33)

or

−tr(CB)id = −νid, (4.34)

Proceeding with the equation (4.21) in a similar fashion gives

B2 − tr(B)B +
1

2

(

tr(B)2 − tr(B2)
)

id− (−B + tr(B) id)Bt − CA

+ λ(C2 − 1

2
tr(C2)id) = −µ id (4.35)

or

(B − tr(B))(B +Bt) +
1

2

(

tr(B)2 − tr(B2)
)

id− CA+ λ(C2 − 1

2
tr(C2)id) = −µ id (4.36)

Finally, we obtain from equation (4.22) that

−AB − (ABt +BtA− tr(B)A− tr(ABt)id)− λ(−Bt + tr(B) id)C = −λν id (4.37)

or

−A(B +Bt)− (Bt − tr(B))A− tr(AB)id + λ(BtC − tr(B)C) = −λν id (4.38)

The conclusion from these calculations is one of the main results of this paper:

Theorem 4.3 The r-matrix r = r′ +Kτ with r′ given in (4.2) is compatible with the Chern-

Simons action (2.16) in the sense of definition 2.1 if the linear maps A,B and C satisfy the

following coupled equations:

1

2
tr(A2)− λ

2

(

tr(B)2 − tr(B2)
)

= µλ,

tr(CB) = ν,

(B − tr(B)id)(B +Bt) +
1

2

(

tr(B)2 − tr(B2)
)

id− CA + λ(C2 − 1

2
tr(C2)id) = −µ id,

−A(B +Bt) + (Bt − tr(B)id) (λC −A)− tr(AB)id = −λν id. (4.39)

The coupled matrix equations (4.39) are non-linear but can be analysed with linear algebra
of the sort used in [22] and [21]. We have not been able obtain a complete set of solutions.
In the next section, we give two classes of solutions which contain some compatible r-matrices
known in the literature, as well as new ones.
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5 Two families of compatible r-matrices

5.1 Solutions for the case A = λC

It is possible to determine a family of solutions by making the ansatz A = λC. If λ 6= 0, the
equations (4.39) reduce to

λ

2
tr(C2)− 1

2

(

tr(B)2 − tr(B2)
)

= µ, (5.1)

tr(CB) = ν, (5.2)

(B − tr(B)id)(B +Bt) = 0, (5.3)

−λC(B +Bt) = 0. (5.4)

We can solve this system in terms of non-zero element v ∈ g, a further element w ∈ g and real
numbers x, y by parametrising (without loss of generality)

C = x[v, ·], (5.5)

and making the further ansatz
B = y vvt + [w, ·]. (5.6)

Then tr(B) = y〈v, v〉 and

B +Bt = 2y vvt B − tr(B)id = y(vvt − 〈v, v〉id) + [w, ·], (5.7)

so that (5.3) and (5.4) are satisfied provided

y[v, w] = 0. (5.8)

It follows that
B2 = y2〈v, v〉vvt + wwt − 〈w,w〉id, (5.9)

Moreover, if y 6= 0, the condition (5.8) means

w = zv, z ∈ R. (5.10)

Assuming this, one checks that

1

2

(

tr(B)2 − tr(B2)
)

= z2〈v, v〉. (5.11)

so that (5.1) and (5.2) give us the two normalisation conditions

− (λx2 + z2)〈v, v〉 = µ, −2xz〈v, v〉 = ν. (5.12)

A particular solution in this case is the ‘special’ double solutions in [17]. In this case µ > 0,
λ > 0, the metric is necessarily Lorentzian and the solution is parametrised by a spacelike
element v ∈ g satisfying 〈v, v〉 = −1. Comparing with equation 5.26 in [17], the parameter ρ
used there is related to our parameters x, y, z via

x =
1− ρ2

4
√
λ

, y =
ρ

2
, z =

1 + ρ2

4
, (5.13)
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so that

λx2 + z2 =
1 + ρ4

8
, 2xz =

1− ρ4

8
√
λ

. (5.14)

From equation 5.25 in [17], our parameters µ, ν can be written in terms of the parameter ρ is
as

µ =
1 + ρ4

8
, ν =

1− ρ4

8
√
λ

, (5.15)

so that, with 〈v, v〉 = −1, our condition (5.12) is indeed satisfied.

To sum up, the most general solution with λ 6= 0, A = λC and B of the form (5.6) with y 6= 0
has an r-matrix with anti-symmetric part

r′ = (yvavb + zvcǫabc)(P
a ⊗ J b − J b ⊗ P a) + xvcǫabc(λJ

a ⊗ J b + P a ⊗ P b), (5.16)

and x, z and v satisfying (5.12). The real parameter y can take any value.

If y = 0, we need no longer require that [v, w] = 0 and then (5.16) is not the most general
solution of the form (5.6). In this case, the family (5.16) coincides with the family of solutions
obtained by complexification in Sect. 3. To make contact with the notation there, we expand

Bab = −ǫabcp
c, Cab = −ǫabcq

c, Aab = λCab. (5.17)

Then
tr(B) = 0, tr(B2) = −2p2, tr(C2) = −2q2, tr(BC) = −2p · q, (5.18)

and so (5.1) and (5.2) become the condition (3.19) derived via complexification.

Finally, we turn to the limiting case λ = 0. In that case, the ansatz A = λC means that
A = 0, and the first and fourth equation in (4.39) are automatically satisfied. In order to retain
the simplification in the third equation we need to impose

− 1

2

(

tr(B)2 − tr(B2)
)

= µ, (5.19)

and solve (5.3). The matrix C can be chosen freely subject to the constraint (5.2). This
reproduces the λ = 0 solutions discussed in Sect. 3, but also includes solutions of the form
(5.16) with y 6= 0.

5.2 Solution for ν = 0

It is important to classify solutions compatible with either the gravitational pairing (2.11) or
the pairing (2.12). This case is characterised by αβ = 0 or ν = 0. We obtain the complete
family of solutions and highlight the new ones.

We first show that, if ν = 0, and λ 6= 0, one can use the fourth equation in (4.39) to express
B in terms of A and C. Inserting the ansatz

B = AC + x id (5.20)

into the fourth equation, and again writing the antisymmetric maps A and B in terms of Lie
algebra elements u, v as

A = [u, ·], C = [v, ·], (5.21)
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we can use (4.5) to write
B = vut + (x− 〈u, v〉) id (5.22)

and hence to write the equations (4.39) in terms of u, v and x. In particular, one finds

1

2
(tr(B)2 − tr(B2)) = (2x− 〈u, v〉)2 − x2. (5.23)

Inserting(5.21) and (5.22) in the fourth equation of (4.39), and setting ν = 0 leads to

− 〈u, w〉[u, v] + 〈u, v〉[u, w]− 〈v, [u, w]〉u+ λ(〈u, v〉 − 2x)[v, w] = 0. (5.24)

It follows from the identity

[w, [u, [u, v]]] = 〈u, v〉[w, u]− 〈u, u〉[w, v] = 〈w, [u, v]〉u− 〈w, u〉[u, v], (5.25)

that
〈u, v〉[w, u] + 〈w, u〉[u, v] + 〈w, [v, u]〉u = 〈u, u〉[w, v]. (5.26)

Using this to simplify (5.24), one concludes that, for λ 6= 0, the fourth equation in (4.39) is
equivalent to

x =
1

2

(

〈u, v〉+ 〈u, u〉
λ

)

. (5.27)

Inserting (5.22) with this expression for x into the third equation in (4.39), yields

(〈u, u, 〉+ λ)(vvt − 1

λ
uvt)− 1

4

(

〈u, v〉 − 〈u, u〉
λ

)2

id + 〈u, v〉id = −µ id. (5.28)

This is equivalent to
〈u, u〉 = −λ, (〈u, v〉 − 1)2 = 4µ. (5.29)

The second equation in (4.39) is automatically satisfied for B of the form (5.20) since CAC
is antisymmetric and so tr(CAC) = 0. Finally, if λ = −〈u, u〉 then x = 1

2
(〈u, v〉− 1) and so the

first equation in (4.39) becomes
λ− λ(1− x2) = λµ, (5.30)

which, for λ 6= 0, is equivalent to the second equation in (5.29).

The equation (5.29) has real solutions when µ ≥ 0. When λ < 0 there are solutions for both
Euclidean and Lorentzian signatures, but when λ > 0 we require Lorentzian signature and a
spacelike element u. Assuming these conditions are met, the only condition on C is that

〈u, v〉 = 1± 2
√
µ. (5.31)

The map B then takes the form

B = vut − (1±√
µ) id, (5.32)

and the antisymmetric part of the r-matrix is

r′ =
(

uavb − (1±√
µ)ηab

)

(P a ⊗ J b − J b ⊗ P a) + ucǫabcJ
a ⊗ J b + vcǫabcP

a ⊗ P b, (5.33)

with λ 6= 0 and u, v ∈ g subject to the constraints (5.29).
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6 Conclusion

The set of equations (4.39) determines the most general r-matrix which is compatible with the
generalised Chern-Simons action for 3d gravity. In Table 1 we summarise the solutions found
in this paper. Some of the solutions listed there, like the ‘standard doubles’ and ‘generalised
bicrossproducts’ for some parameter values, have been known for some time, but the family
of solutions obtained by generalised complexification and the family of solutions for ν = 0 are
new.

Type Solution Constraint

Standard doubles B = ±√
µ id, A = [p, ·], C = 0 µ ≥ 0, 〈p, p〉 = −λ

Generalised bicrossproducts B = y vvt + z[v, ·], (λx2 + z2)〈v, v〉 = −µ,
A = λC, C = x [v, ·] 2xz〈v, v〉 = −ν

Generalised complexifications A = λC, B = [p, ·], C = [q, ·] 〈p, p〉+ λ〈q, q〉 = −µ,
2〈p, q〉 = −ν

Solutions for ν = 0 A = [u, ·], B = [v, ·], µ ≥ 0, 〈u, u〉 = −λ,
B = vut − (1±√

µ) id (〈u, v〉 − 1)2 = 4µ

Table 1: Types of compatible r-matrices discussed in this paper: the maps A,B,C parametrise
r′ via equation (4.2) so that r′+Kτ , with Kτ given in (2.25) satisfies the classical Yang-Baxter
equation (2.21). The names are not standard; note in particular that some of the ‘generalised
bicrossproducts’ may also be viewed as doubles for certain parameter values, see the discussion
in Sect. 5.1 and in [17].

It remains a challenge to determine all solutions systematically. Meeting this challenge would
allow us to understand possible non-commutative geometries arising in the quantisation of
(generalised) 3d gravity and the relation between them.

It would also be of interest in the context of gravitational scattering. When studying 3d
gravity in a universe with compact spatial slices, one expects different r-matrices compatible
with the same Chern-Simons action to give rise to equivalent quantum theories. However, when
the spatial slices have boundaries, different r-matrices may encode different physics. In [31], for
example, it was shown how quantum R-matrices determine scattering of massive particles in a
universe with non-compact spatial slices. Corresponding results for other scattering processes,
for example of massive particles with BTZ black holes in AdS3, are not known, but would
require quantum R-matrices corresponding the solutions of our set of equations (4.39).
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