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Adaptive Sensing Schedule for Dynamic Spectrum
Sharing in Time-varying Channel

Mengwei Sun, Xiang Wang, Chenglin Zhao, Bin Li, Y.-C.Liang, George Goussetis, Sana Salous

Abstract—Dynamic spectrum sharing is considered as one of
the key features in the next-generation communications. In this
correspondence, we investigate the dynamic tradeo� between the
sensing performance and the achievable throughput, in the pres-
ence of time-varying fading (TVF) channels. We first establish
a unified dynamic state-space model (DSM) to characterize the
involved dynamic behaviors. On this basis, a promising dynamic
sensing schedule framework is proposed, whereby the sensing
duration is adaptively adjusted based on the estimated real-
time TVF channel. We formulate the sensing-throughput tradeo�
problem mathematically, and further show that there exists the
optimal sensing duration maximizing the throughput for the
secondary user (SU), which will change dynamically with channel
gains. Relying on our designed recursive sensing paradigm that
is able to blindly acquire varying channel gains as well as the
PU states, the sensing duration can be then adjusted in line with
the evolving channel gains. Numerical simulations are provided
to validate our dynamic sensing schedule algorithm, which can
significantly improve the SU’s throughput by reconfiguring the
sensing duration according to dynamic channel conditions.

Index Terms—Sensing-throughput tradeo�, time-varying fad-
ing channel, dynamic sensing schedule, spectrum sensing, channel
gain estimation.

I. Introduction

By permitting dynamic spectrum sharing, cognitive radio
(CR) provides a new paradigm for opportunistic access of
secondary users (SUs) to licensed bands, which are allocated
originally to primary users (PUs) [1]. To share the primary
band harmoniously without interfering the legal PUs, the SUs
should firstly monitor licensed bands within given sensing time
[2], and then opportunistically emit signals in transmission
slots if none of the ongoing licensed operations are detected.

One of the fundamental importance to CR networks is the
tradeo� between the sensing accuracy and the SU’s through-
put. That is, in the context of shared access, an optimal
sensing duration should be determined, by maximizing the
achievable shared throughput under the constraint that the PUs
are su�ciently protected against harmful interference. Such an
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optimization problem was firstly considered by [3]. According
to [3], the optimal sensing duration exists indeed, and a
periodical sensing-transmission frame structure was proposed.
Thereafter, the trade-o� over Nakagami fading channel was
considered in [4], which focused on the e�ects from fading
parameters on the achievable throughput. In general, previous
works assume the knowledge of wireless channels to be fully
available at SUs, which will become impractical in some ap-
plication scenarios [5], e.g. mobile or dynamic environments.
Lately, an estimation-sensing-throughput tradeo� was formu-
lated in [6] to solve the optimization problem with imperfect
link knowledge. Reference [7] investigated this problem in the
presence of Rayleigh fading channel by using multi-antenna
system to improve the sensing-throughput tradeo�. However,
the way to deal with random fading channel is based on the
a priori statistical probability density function (PDF). Hence,
it can only characterize the instantaneous random behavior,
while may fail to model the evolutions of fading channels.

In this correspondence, we focus on the e�ects from time-
varying fading (TVF) channel to sensing-throughput tradeo�.
The main contributions are summarized into three aspects.
Firstly, we formulate a dynamic state-space model (DSM)
which fully characterizes the spectrum sharing system in the
presence of TVF channel. In our stochastic model, relying on
the transfer characteristic of TVF channel, the frame period is
fixed while the sensing duration changes adaptively. Secondly,
the sensing-throughput tradeo� is formulated mathematically
as a dynamic optimization problem under the constraint condi-
tion of predefined sensing accuracy. Based on this formulation,
we prove that the optimum sensing duration is uniquely
existing for identical channel gain but varies with respect
to dynamic channel gain. Finally, an adaptive schedule with
joint spectrum sensing algorithm is designed. Joint spectrum
sensing algorithm can track the TVF channel gains and detect
the PU states. Based on the real-time channel estimation, the
adaptive optimal sensing duration is derived.

The paper is organized as follows. In Section II, we for-
mulate the DSM. The traditional sensing-throughput tradeo�

problem is smartly introduced in Section III. In Section IV, the
adaptive sensing schedule program is formulated. Numerical
results and conclusions are provided in Section V and VI.

The notations used are defined as follows. Q(�) denotes
Q function which is the tail probability of standard normal
distribution. PUT-SUT, PUT-SUR and SUT-SUR represent the
sensing channel link from PU emitter to SU emitter, inter-
ference link from PU emitter to SU receiver and secondary
link from SU emitter to SU receiver representatively. S NRps

denotes the signal-to-noise ratio (SNR) of PUT-SUT link.
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II. System Model

Fig. 1 shows the frame structure designed for SU with
periodic spectrum sensing. Each frame consists of one sensing
slot and one data transmission slot, i.e., T f = Ts(n) + Tt(n),
n = 0; 1; � � � . In the sensing slot, the detection result is obtained
based on the sampling signals. M(n) and � denote the sampling
size and period respectively, Ts(n) = M(n)�. In this work, we
design a dynamic sensing schedule scheme with considering
TVF channel of PUT-SUT link. Specifically, the frame period
is fixed while the sensing duration may change adaptively re-
lying on the transitional behavior of fading channel. Given the
sampling frequency fs = 1=� is generally fixed for a receiving
device, then the sampling size M(n) will be adjustable.

Fig. 1. Frame structure for SU with dynamic sensing duration

The discrete time DSM is formulated as:

x(n) = �(x(n � 1)); (1)
h(n) = 	(h(n � 1)); (2)
y(n) = 
(x(n); h(n);w(n)): (3)

In the state equation (1), x denotes the PU states and come
into two forms: active H1 and dormant H0, the complex
PSK modulated signal is considered under H1. The evolution
behavior of PU state is characterized as a two-state Markov
chain. The durations of active and dormant states are assumed
exponentially distributed with mean values of �1 and �0,
respectively [8]. Parameters �1 and �0 can be estimated using
statistical methods based on finite samples and regarded as a
priori information. Then, the stationary probabilities of two
states can be calculated as p(H1) = �1

�1+�0
and p(H0) =

�0
�1+�0

.
The transition probability matrix (TPM) Ps is time-varying but
can be estimated easily with established parameters �1 and �0.

Ps =

2666664 pH0!H0 pH0!H1

pH1!H0 pH1!H1

3777775 ;
=

1
�0 + �1

2666664 �0 + �1e�(�0+�1)t �1 � �1e�(�0+�1)t

�0 � �0e�(�0+�1)t �1 + �0e�(�0+�1)t

3777775 :
(4)

In state equation (2), h = ae j� denotes the TVF channel
state of PUT-SUT link, with fading amplitude a and phase �.
The phase � is uniformly distributed within the domain [0; 2�).
The amplitude a is assumed to be Rayleigh fading [9] and its
statistical PDF with scale parameter �2

R is:

fA (a) =
a
�2

R

exp
0BBBB@� a2

2�2
R

1CCCCA ; a > 0: (5)

Since our study focuses on the slow-fading case, we assume
the fading channel changes at a rate much slower than the PU
state, i.e. the coherence time of channel Tc � 1= fD is greater
than the frame period T f , where fD denotes the maximum
Doppler shift. Furthermore, the channel gain is assumed to be

invariant within several successive frames, i.e., Tc = JT f and
J is a positive integer. To this end, we define the transition
frame as the frame where the channel gain will possibly vary
and whose indexes are n = lJ (l = 0; 1; � � � ).

As far as the slow-fading TVF channel is considered, the
first-order finite-state Markov chain (FSMC) model is adopted
owing to its e�ectiveness [9]. In the FSMC model, the fading
amplitude is partitioned to K non-overlapping regions, i.e.,
[v0; v1) ; [v1; v2) ; � � � ; [vK�1; vK), and each region is represented
by one feasible state Ak, Ak 2 [vk; vk+1) with the stationary
probability �k ,

R vk+1

vk
fA(a)da; k = 0; 1; : : : ;K � 1. A common

strategy in constructing the FSMC model is the equal partition
rule, i.e., let �k = 1=K. And the representative fading state
is Ak =

R vk+1

vk
a fA (a) da=�k. The set of representative fading

states is given as A = fA0; A1; � � � ; AK�1g. The amplitude
a(n) 2 A and evolves according to the first-order Markov
process at the transition frames but stays the same at the
remaining frames. The transitional probabilities in the TPM
of the channel evolution process Pa relate only to the PDF of
channel amplitude and states number [9], and hence can be
regarded as static and established as a priori information.

Without losing the generality, the ED-based sensing is used
and the observation in (3) conditioned on two hypotheses is:

y(n) =

8>><>>:
PM(n)

m=1 jw(n;m)j2 ; H0;PM(n)
m=1 ja(n)x(n;m) + w(n;m)j2 ; H1:

(6)

Here, w(n;m) denotes circularly symmetric complex Gaus-
sian (CSCG) noise case. In the following analysis, we make
the following assumptions for the above DSM.

(AS1) The emitted signals are independent and identically
distributed (IID) with mean zero and variance �2

x. The noise
is IID with mean zero and variance �2

w. These two random
processes are independent from each other and known to SU.
The noise uncertainty and hardware imperfections will not be
considered in our investigation [10], [11].

(AS2) As the ED detection is used, the amplitude-centric
FSMC model is suitable, without considering the e�ects from
channel phase to the observations, as shown in (6).

III. Traditional Sensing-throughput Tradeoff

In this section, the regulatory constrains for sensing-
throughput tradeo� under statical channel are presented, where
the sampling size is constant, i.e., M(n) � M. The sensing
performance is characterized with the probability of false
alarm p f , p (y > � j H0) and the detection probability pd ,
p (y > � j H1). � is the detection threshold and is chosen to
obtain a certain detection probability p̄d owing to the regula-
tory constraints from some telecommunication standards. For
instance, p̄d is chosen above 0.9 in IEEE 802.22 WRAN [12].

Based on [3], the fundamental tradeo� under statical chan-
nel can be stated as an optimization problem with an overall
consideration of sensing capability and achievable throughput,

max
M

U(M; 
); (7)

s:t: pd(�;M; 
) � p̄d: (8)

where 
 = a2�2
x=�

2
w is the value of S NRps, the achievable

throughput U(M; 
) =
T f�M�

T f
C0

h
1 � p f (M; 
)

i
p(H0) [3]. C0 =
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log2(1 + S NRss) where S NRss represent the SNR for the SU-
SU link.

Existing methods give the optimization solution by obtain-
ing the M corresponds to the maximum point of U(M; 
̄)
where 
̄ is the expectation SNR. However, in practical CR
networks with wireless propagations, the value of 
 is com-
monly unknown and dynamic (e.g. due to TVF channel), and
therefore, existing methods can only achieve an expected fair
performance but is no longer optimal. To combat with these
challenges, we further design an adaptive sensing schedule
which can adjust the optimal sensing duration for every frame
based on the accurate real-time estimation of 
.

IV. Adaptive Sensing Schedule

In this section, we first formulate the sensing-throughput
tradeo� under TVF channel mathematically, then analyze
the relation between the optimal sampling size and S NRps.
Finally, the adaptive sensing schedule is illustrated.

A. Problem Formulation

Considering the dynamic 
(n), the achievable throughput
can be written as:

U(M; 
) = C0 p(H0)
N�1X
n=0

u(M(n); 
(n)); (9)

where u(M(n); 
(n)) denotes the throughput in one frame and,

u(M(n); 
(n)) =

"
1 �

M(n)�
T f

# h
1 � p f (M(n); 
(n))

i
: (10)

The optimization problem in (7) (8) can be restated as:

max
M(n)

u(M(n); 
(n)); n = 0; 1; � � � ;N � 1; (11)

s:t: pd(M(n); 
(n)) � p̄d: (12)

Di�erent from the conclusive results in [3], we can see
from (10) that the achievable throughput is a joint function
of sampling size as well as S NRps.

Theorem 1: The maximum point of u(M(n); 
(n)) for M(n)
is uniquely existing on one certain 
(n) when p f (M(n); 
(n)) 6
0:5 but sensitive to di�erent 
(n).

This theorem will hold if the following two propositions
can be proven.

Proposition 1: There is a unique maximum point of the
u(M(n); 
(n)) within the interval M� 2 (0;T f ) with respect
to one certain 
(n).

Proposition 2: The optimal sampling size yields the highest
throughput varies with respect to di�erent 
(n).

Proof for Proposition 1: For a target p̄d, the partial derivative
of u(M(n); 
(n)) with respect to M(n) can be derived as
(13), where, �(n) =

p
2
(n) + 1Q�1( p̄d) +

p
M(n)
(n) and

p f (M(n); 
(n)) = Q(�(n)).

D(M(n); 
(n)) =
@u(M(n); 
(n))

@M(n)
;

= �
�

T f

�
1 � Q (�(n))

�
+

(n)

h
T f � M(n)�

i
2T f
p

2�M(n)
exp

"
�
�(n)2

2

#
:

(13)

As Q(�) is monotonic decreasing and Q(0) = 0:5, we have:

lim
M(n)�!0

D(M(n); 
(n)) = +1; (14)

lim
M(n)�!T f

D(M(n); 
(n)) < �
�

T f

h
1 � Q

�
�(n) �

p
M(n)
(n)

�i
< 0:

(15)
We conclude from (14) and (15) that D(M(n); 
(n)) in-

creases when M(n) is small but decreases when M(n) ap-
proaches T f =�. Thus, there exists a maximum point of
u(M(n); 
(n)) within definitional domain M(n) 2 (0;T f =�).

As for the probability of false alarm,

@p f (M(n); 
(n))
@M(n)

= �

(n)

2
p

2�M(n)
exp

"
�
�(n)2

2

#
< 0; (16)

@2 p f (M(n); 
(n))
@M(n)2 ;

=

(n)

4
p

2�M(n)

"
1

p
M(n)

+ 
(n)�(n)
#

exp
"
�
�(n)2

2

#
:

(17)

We can conclude from (16) that p f (M(n); 
(n)) is decreasing
with M(n). Furthermore, when �(n) > 0, i.e., p f (M(n); 
(n)) 6
0:5, from (17) we have @2 p f (M(n); 
(n))=@M(n)2 > 0 which
means that @p f (M(n); 
(n))=@M(n) is monotonically increas-
ing in M(n), i.e., p f (M(n); 
(n)) is convex. Therefore, from
(13), it follows that D(M(n); 
(n)) is decreasing in M(n),
which further implies u(M(n); 
(n)) is concave in M(n) when
p f (M(n); 
(n)) 6 0:5. This indicate the maximum point of
u(M(n); 
(n)) will be unique in this range.

Proof for Proposition 2: The mixed partial derivative of
u(M(n); 
(n)) is shown in (22), which is impossible to become
zero. Hence, we conclude that the optimal M(n) satisfying
D(M(n); 
(n)) = 0 will be associated with the varying 
(n).

Note that, since the channel gain a(n) evolves as a FSMC
process and a(n) 2 A, we can have that 
(n) = a(n)2�2

x=�
2
w

evolves also as an FSMC process with the same TPM Pa, and

(n) 2 R = fR0;R1; � � � ;RK�1g where Rk = A2

k�
2
x=�

2
w. Continue

without changing paragraph, the reconfiguration relation be-
tween the optimal sampling size Myk and Rk can be presented
as � =

hn
R0;M

y

0

o
;
n
R1;M

y

1

o
; � � � ;

n
RK�1;M

y

K�1

oi
which should

meet the condition that D(Myk ;Rk) = 0. The key conception of
our proposed adaptive sensing schedule is that the sampling
size M(n) of each frame will be adapted with regards to
the current 
(n), which is determined via the reconfiguration
relation above, i.e. M(n) 2 M =

n
My0 ;M

y

1 ; � � � ;M
y

K�1

o
.

B. Adaptive-Joint Sensing Algorithm

In order to accomplish the dynamic reconfiguration of
the sampling size, the channel gain estimation and the PU
state detection need to be jointly implemented. The proposed
adaptive-joint sensing algorithm is iterative and accomplished
by the following three steps.

1) Sampling size determination: Inside one frame n, the
SU is fed with an initial number of optimal sample size
M(n) which is determined based on the predictive S NRps,
i.e., 
(n j n� 1), with the reconfiguration set �. As mentioned
before, the S NRps related to channel state may transmit only
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@2u(M(n); 
(n))
@M(n)@
(n)

=
1

p
2�T f

exp
"
�
�(n)2

2

# 8>><>>:T f � M(n)�

2
p

M(n)
�

2666664 Q�1( p̄d)

2
p

2
(n) + 1
+ M(n)

3777775 "� +
T f � M(n)�

2
p

M(n)
�(n)
(n)

#9>>=>>; : (22)

in the transition frames but stay static in the remaining frames.
Therefore, 
(n j n � 1) is obtained by:


(njn � 1) =

8>>><>>>:arg max

(n)2R

p (
(n) j 
̂(n � 1)) ; transition;


̂(n � 1); remaining;
(23)

where the prior probability p (
(n)j
̂(n � 1)) is obtained based
on the TPM Pa and the estimated S NRps of the previous frame.

The reconfigure is executed by establishing the optimal
sampling size M(n) as Myk if the predictive S NRps value

(njn � 1) � Rk, where k 2 f0; 1; � � � ;K � 1g. After reconfig-
uring the sampling size, the observation y(n) can be obtained
according to (6).

2) Channel gain estimation: According to our past investi-
gation focus on the channel estimation in uncertain CR system,
i.e., [5], the algorithm for channel estimation contains two
main steps as coarse detection and channel estimation by
di�erent mechanisms.

The objective of coarse detection is to obtain a rough
detection of PU state and facilitate di�erent strategies to
estimate channel gain. It is derived via maximum a posteriori
probability (MAP) criterion with inaccurate channel state
assumption ay which is the minimum of channel gain set A:

x(n)y = arg max
x(n)2fH0;H1g

p
h
x(n) j y(n); ay

i
: (23)

For di�erent results of coarse detection, the channel estima-
tions will be implemented respectively according to di�erent
mechanisms. Specifically, when x(n)y = H0, there is little
observed information that can be utilized. So, we obtain the
estimation based on the prior transition property,

â(n) =

8>>><>>>:arg max
a(n)2A

p [a(n) j â(n � 1)] ; transition;

â(n � 1); remaining:
(24)

Otherwise, when x(n)y = H1, the joint estimation algorithm
will be implemented via the MAP criterion and accumulative
modification mechanism [5].

â(n)MAP = arg max
a(n)2A

p
h
a(n) j âpre; x(n)y;Y(n);G(n)

i
: (25)

where âpre denotes the estimated channel of the previous chan-
nel coherent time, i.e., âpre = âbnTs=Tcc�1. The accumulation
observation and counter fY(n);G(n)g can be updated as:

fY(n);G(n)g =

8>><>>:fy(n); 1g; transition;

fY(n � 1) + y(n);G(n � 1) + 1g; remaining:
(26)

3) PU state Detection: Once the channel gain has been
updated, the estimated S NRps can be updated as 
̂(n) =

â(n)2�2
x=�

2
w. Then, the real-time threshold �(n) is:

�(n) = �2
w

h p
M(n)(2
̂(n) + 1)Q�1( p̄d) + M(n)(
̂(n) + 1)

i
:

(27)

The detection result is derived via the Neyman-Pearson (N-

P) rule, i.e. y(n)
H0
Q
H1

�(n): It’s clear from (27) that the detection

threshold is real-time and specified in every frame based on
the current sampling size and estimated S NRps. Therefore,
the detection result is accurate enough to guarantee the target
detection probability p̄d.

C. Implementation

Based on the elaborations above, the schematic implemen-
tation of the new adaptive schedule is illustrated by Fig.2. The
sampling size M(n) in the sensing duration of current frame
is adjusted firstly according to the predictive S NRps and the
proposed reconfiguration relation �. Then, the observation sig-
nal y(n) will be obtained and used for both channel estimation
and PU state detection. The channel gain is estimated relying
on di�erent mechanisms. Then the real-time threshold can be
updated for making the final decision on the PU state.

Fig. 2. Schematic implementation of the proposed adaptive sensing algorithm

V. Numerical Results and Discussions

In this section, computer simulation results and discussions
are presented to evaluate the sensing-throughput tradeo� per-
formance of proposed schedule. We choose �0 = �1, and
hence, p(H1) = 0:5. p̄d = 0:9, T f = 0:1ms, N = 10000,
fDT f = 0:01, and K = 8. S NRss = 20dB, and hence,
C0 = 6:6582. The PU emitted signal is assumed to be QPSK
modulated with bandwidth of 6MHz [3] and the additive noise
is a zero-mean CSCG process.

We first show the joint impact of the sampling size M
and the channel gain a on the SU’s achievable normalized
throughput which is defined as Uy = U=(NC0). Fig.3 shows
that Uy(M; a) dramatically changes with both sensing time and
channel gain. Fig.4 shows that the partial derivative of through-
put, i.e., D(M; a) = @u(M; a)=@M, is a function of M and a as
well. Given that the achievable throughput u(M; a) is convex
which has been proven in Section IV.A, the intersection line
of its partial derivative surface with the zero-flat indicates the
optimal sampling size maximizing u(M; a). The results of Fig.3
and Fig.4 indicate that the optimal sampling size maximizing
the achievable throughput is unique for one channel gain but
varies with di�erent channel gains. Therefore, the simulated
results match to the theoretical results of Theorem 1 very well.

In Fig. 5, we then compared the maximum throughput of
di�erent configurations of the sensing duration in time-varying
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Fig. 3. SU’s throughput versus the sampling size and fading channel gain

Fig. 4. Partial derivative of throughput versus the sampling size and fading
channel gain

channels. It is seen that the throughput performance of our
adaptive sensing schedule, with the jointly estimated channels,
may approach the ideal performance with the known channels,
which also validate our designed joint channel estimation algo-
rithm. From Fig. 5, its performance significantly outperforms
the static sensing schedule schemes.

Fig. 5. Throughput performance comparison

Finally, we investigate the estimation mean square error
(MSE) performance of TVF channel under di�erent fD =

100Hz; 200Hz. Moreover, the e�ects of channel estimation
error on the detection performance as well as system through-
put performance are further studied. It’s clear from Fig.6 that
the decrease of channel estimation error enhances the system
throughput. Since accurate channel estimation can help to
reduce the probability of false alarm while still guarantee the
target detection probability, as shown in Fig.7.

VI. Conclusions

In this correspondence, we consider the sensing-throughput
tradeo� problem in dynamic environments and design an
adaptive sensing schedule scheme. Particularly, we show the
optimal sensing duration is closely related with dynamic
channel gains. A joint sensing algorithm with adaptive sensing
duration is then proposed. Simulation results are provided

-6 -4 -2 0 2 4 6 8 10

SNRps(dB)

10-6

10-5

M
SE

 o
f c

ha
nn

el
 e

st
im

at
io

n

0.45

0.5

0.55

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

MSE when fD=200Hz

MSE when fD=100Hz

throughput when fD=200Hz

throughput when fD=100Hz

Fig. 6. Comparison of channel estimation MSE and normalized throughput
under di�erent maximize Doppler shift
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Fig. 7. Comparison of detection and false alarm probability under di�erent
maximize Doppler shift

to validate the designed scheme, with which the significant
improvement in throughput can be attained.
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