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Trapped Bose-Einstein condensates in the presence of a current nonlinearity
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2Department of Mathematics and Physics Engineering, Alexandria University, Alexandria, Egypt

We investigate the e�ect of a current nonlinearity on the evolution of a trapped atomic Bose-
Einstein condensate. We have implemented techniques from the �eld of nonlinear optics to provide
new insights into the irregular dynamics associated with chiral superuids. We have found that
the current nonlinearity can be treated as a Kerr-like nonlinearity modulated by a spatiotemporal
function that can lead to a number of processes such as broadening and compression of the wave
function. In the long time scale limit, the wave function is drastically deformed and delocalised
compared to its initial state. However, localised modes which oscillate with the period of the inverse
trap frequency can still be observed.

I. INTRODUCTION

At su�ciently low temperatures a gas of bosonic atoms
may form a Bose-Einstein condensate (BEC). This state
of matter has provided a testbed for a plethora of exotic
phenomena at the quantum level. Prominent examples
include phenomena related to many-body physics such
as, for instance, the superuid to Mott insulator transi-
tion [1], nonlinear dynamics including solitons [2, 3] and
quantised vortices [4, 5], and recently also the creation of
synthetic magnetic �elds for neutral atoms [6{9], which
in turn o�ers the possibility to emulate gauge theories.

The advent of synthetic magnetic �elds and orbital
magnetism in Bose-Einstein condensates has opened up
new avenues of research. The neutral gas can now be used
for emulating magnetic solid state phenomena, but also
more exotic scenarios where the gauge potential in ques-
tion is non-Abelian, which consequently provides links
with high energy physics and the Standard Model [9].
The synthetic magnetic �eld can be created using many
di�erent techniques, ranging from rotating the system
[4, 5], laser-induced tunneling [7], Floquet-type dynami-
cal variations of the lattice parameters in optical lattices
[10], or inducing a gauge potential from light-matter cou-
pling [6]. These arti�cial gauge potentials or magnetic
�elds are, however, static. They are given by external
parameters such as the laser intensity or phase gradients
of the incident laser �eld. The resulting gauge �eld is
therefore not dynamical in the sense that it is not pos-
sible to emulate completely the Maxwell’s equations, for
instance. In other words, any dynamics of the conden-
sate will not a�ect the shape of the gauge potential. For
this to be the case we need some kind of back-action be-
tween the matter �eld and the gauge potential. This can
be achieved using carefully tuned interactions in optical
lattices [11{14], atoms in cavities with strong coupling
between the cavity �eld and the atoms [15{17], or colli-
sionally induced detunings for geometric potentials which
gives rise to nonlinear gauge potentials and current non-
linearities [18, 19].

In this paper we will consider collisionally induced de-
tunings and the resulting gauge potentials [18, 19]. With

this technique we do not emulate a fully dynamical gauge
theory, but rather, a nonlinear, interacting gauge theory,
with unconventional superuid dynamics. Our goal is
to investigate the nonlinear dynamics of a harmonically
trapped Bose-Einstein condensate which is subject to a
current nonlinearity. We will in particular draw analogies
with phenomena and models from nonlinear optics, where
similar governing equations are used. The motivation for
this is two-fold. Firstly, we want to shed some light on the
irregular type of dynamics that occurs in the presence of
a current nonlinearity. The analogies between nonlinear
optics of ultrashort pulses, and superuid dynamics in
ultracold gases, may well provide important new insight
into the onset of chaos in such atomic systems. Secondly,
we are interested in novel type of soliton dynamics in a
con�ned setting, where the underlying dynamics is chiral
in nature due to the current nonlinearity.

The paper is organised as follows. In Sec. II we
briey introduce the physical model and the correspond-
ing equation which describes the dynamics of the Bose-
Einstein condensate. Sec. III discusses the nonlinear
dynamics from a nonlinear optics point of view. Possible
experimental realisations of the investigated system have
been discussed in Sec. IV. Finally, our conclusions are
summarised in Sec. V.

II. THE MODEL

In a series of recent papers [18{21], it has been shown
that a nonlinear gauge potential can be created for charge
neutral ultracold atoms. This is an example of how to
emulate an interacting gauge theory with cold atomic
gases such as a Bose-Einstein condensate. There are
many ways to create synthetic gauge potential for atoms.
For an extensive review of the various techniques for this
we refer the reader to [8, 9]. In this paper we are inter-
ested in the nonlinear dynamics of the Bose-Einstein con-
densate stemming from quasi-dynamical gauge potentials
which are density-dependent, where a strong interaction
between the matter �eld and the gauge potential takes
place. Such a density-dependent gauge potential can be
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created if we allow for energy shifts of the internal elec-
tron levels due to the collisions between the atoms.

Perhaps the simplest illustration of how a density de-
pendent gauge potential can be created is based on two-
level atoms whose levels are coupled by an incident laser
beam, which may have a space-dependent amplitude and
phase. If the corresponding Rabi frequency is the domi-
nating energy scale, a perturbative treatment of the col-
lisional energies gives rise to a density dependent gauge
potential in the equation of motion for the atoms of the
form

A(r) = A0(r) +r’ (g11 � g22)%0(r)

8

(1)

where A0 is the static gauge potential [9], ’ is the
phase of the laser which couples the two levels, g11 =
4�~2a11=m and g22 = 4�~2a22=m describe the strength
of the collisions and include the corresponding scattering
lengths a11 and a22 for collisions between atoms in state
1 and 2 respectively, m is the mass of the atom, 
 is
the Rabi frequency, and %0 is the density of the cloud.
If we assume that the coupled two-level atom remains in
one of the resulting eigenstates of the light-matter cou-
pled system, and in addition allow the atom to move in
space, we obtain the mean�eld equation of motion for the
pseudo-spin [18]

i~
@

@t
	 = [

(p�A)2

2m
+ a1 � j(	;	�) +W + gj	j2]	 (2)

where 	 is the associated centre of mass wave function for
the Bose-Einstein condensate, a1 = r’(g11 � g22)=(8
),
W = jA(0)j2=2m+V is a scalar potential which includes
any external trapping potential V , and g = (g11 + g22 +
2g12)=4 is the e�ective scattering length in the dressed
state picture. The current j(	;	�) is given by

j(	;	�) =
~

2mi
[	(r+

i

~
A)	� �	�(r� i

~
A)	] (3)

For a more detailed derivation of the synthetic gauge po-
tential and the resulting equation of motion for the atoms
we refer the reader to the work by Edmonds et al. [18].

In this paper, we consider a tightly con�ned quasi one-
dimensional BEC where the transversal con�nement is
strong enough to dynamically freeze all the motion in this
direction, but such that the collisional dynamics is still
three-dimensional. In the longitudal direction the BEC
is weakly con�ned by a harmonic trap. In this situation
the transversal degrees of freedoms can be integrated out
and we are left with an e�ective one-dimensional Gross-
Pitaevskii equation. In 1D we can make the gauge trans-
formation

	(x; t) = e�ikx=2+i
a1
~

R x
�1 dx0%0(x0;t)�iWt=~ (x; t) (4)

where k is the wave vector for the incident plane wave
laser which is chosen to be in the x-direction. This results
in a simpli�ed equation

i~
@ 

@t
=

�
�~2

2m

@2

@x2
+
m!2

2
x2 + g j j2 � 2�I (x)

�
 ; (5)

where ! is the trap frequency, � = k(g11�g22)=(8
) is the
current-nonlinearity strength, and I (x) = ~

m Im ( �@� ).
The di�raction, parabolic potential, the intensity- and
the current-nonlinearities are represented by the �rst four
terms on the RHS of Eq. (5), respectively. Introduc-
ing the dimensionless variables � = t=t0, � = x=x0,

� = �gt0=~, � = 4�=
p

~m!, with t0 = 2=!, and

x0 =
p

~=m!, we obtain

@ 

@�
=

�
i
@2

@�2
� i�2 + i� j j2 +

�

2
I (�)

�
 ; (6)

and I (�) =  �@� �  @� �.

III. CURRENT NONLINEARITY

Expressing the wavefunction as  = fei� where f the
magnitude and � the phase are spatial dependent, we
obtain I (�) = 2if2@��. Hence, the current-nonlinearity
has an impact on the wavefunction evolution only when
the phase is space-dependent. The spatial frequency,
@��, is said to be chirped, if the phase has a nonlin-
ear dependence on �. Even for a wavefunction with an
initial constant phase, this nonlinearity still plays a sig-
ni�cant role on the dynamics because of the other terms
in the RHS of Eq. (6) that lead to the evolution of the
phase. An exception is a spatial soliton, which results
from a balance between the di�raction-induced broaden-
ing and self-focusing e�ects due to the positive intensity-
nonlinearity, settled at the minimum of the parabolic
potential. For a soliton with an initial spatial pro�le,
 (�; 0) = Nsech

�
N�=
p

2
�
, where N is an arbitrary pa-

rameter which controls the soliton amplitude and spa-
tial width, the chirp induced via the di�raction and the
intensity-nonlinearity are canceled by each other, while
the inuence of the parabolic potential is zero since the
soliton remains at the potential minimum during the evo-
lution. Other initial conditions will lead to a spatially-
dependent of the wavefunction phase which will conse-
quently a�ect the evolution dynamics induced by the cur-
rent nonlinearity term. For initial bright soliton states
with sech-pro�les and � = 1, the parabolic potential is
the only source for this dependency if the wavefunction is
displaced from the potential minimum. Di�raction and
nonlinear e�ects will also start to a�ect the dynamics as
soon as � deviates from unity.

Alternatively, I (�) can also be written as 2i j j2 @��.
Hence, the current-nonlinearity can be viewed as addi-
tional Kerr-like nonlinearity modulated by a spatiotem-
poral function @��. If this function has positive (nega-
tive) values, the wavefunction is localised or compressed
(broadened or dispersed) via a focusing (defocusing)
Kerr-like nonlinearity.

When the wavefunction is displaced from the minimum
of the potential, it will start to oscillate with a period
equal to �. The e�ect of the current-nonlinearity on the
oscillation of a wavefunction with an input Sech-pro�le
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FIG. 1: Spatial evolution of a wavefunction in the form of
 (�) = Nsech

�
N (� � �0) =

p
2
�

in a parabolic potential with
N = 5, �0 = �15, and � = 1, when (a) � = 0 and (b) � = 0:4.
Contour plots are given in a logarithmic scale and truncated
at -40 dB.

is depicted in Fig. 1 after simulating Eq. (6) using the
split-step Fourier method [22], when � = 1. This tech-
nique has been adopted in all the simulations presented in
this paper. In this case, the di�raction e�ects are coun-
teracted by those of the intensity nonlinearity. Panels
(a,b) represent the cases when � = 0 and � = 0:4, respec-
tively. In the absence of the current-nonlinearity, the
wavefunction shows a periodic harmonic oscillation in-
side the potential. Contrarily, switching on the current-
nonlinearity results in an asymmetric oscillation. The
wavefunction is compressed while traveling from left to
right, and broadened when moving in the other direction.
This is because the wavefunction experiences a positive
phase gradient @�� during the �rst half of the period and
a negative @�� in the second half as shown in Fig. 2. The
regular revival of the dynamics of the wavefunction with
a period � is therefore broken which can result in a dra-
matic deformation of the wavefunction compared to the
case with no current nonlinearity. This process continues
until a pseudo steady state solution is reached which can
be characterised by a centre of mass oscillation period
which is longer than �.

Interestingly, an emission of a localised harmonic solu-
tion that can maintain the ��period during propagation
is obtained in the simulations presented in Fig. 1. This
soliton-like behaviour is obtained in the regime when the
current nonlinearity is described as a perturbation term
in Eq. (6), and when the wavefunction is launched in
the negative half of the parabolic potential. In this case,
the wavefunction is initially prepared with the correct
spatial distribution that can overcome the chirp induced
by the various sources involved in the dynamics. How-
ever, launching the wavefunction on the positive half of
the parabolic potential, the wavefunction expands and

FIG. 2: Amplitude j j and spatial frequency @�� of the wave-
function at (a) � = �=4, and (b) � = 3�=4 in the presence of
the current nonlinearity � = 0:4.

deforms quickly before it can excite the localised state.
To better visualise the temporal evolution of the wave-

function inside the parabolic potential in the presence of
the current-nonlinearity, we adopt the cross-frequency-
resolved-optical-gating (XFROG) spectrogram at di�er-
ent times during evolution, which is given by [23]

S (�; �) =

����Z 1
�1

 (�0)G (� � �0) e�i��
0
d�0
����2 ; (7)

where � is the spatial frequency, andG (�) = exp
�
��2=9

�
acts as a reference gating pulse. XFROG is a common
method to measure ultrashort pulses. In this technique,
the space � is discretised into small segments. A sliding
window or gate selects a certain segment and obtains
the Fourier transform of the wavefunction within this
segment. This process is repeated for all the segments,
and the resultant is a 2D function called the short-time
Fourier transform. Its squared magnitude is known as
spectrogram that displays the spatial distribution and
the corresponding wavevector components on the hori-
zontal and vertical axes, respectively. Using the spectro-
gram, one could identify the wavevectors that associated
with a certain part of the wavefuntion.

Panel (a) in Fig. 3 shows the XFROG spectrogram
for an input wavefunction in the form of a sech-pulse.
Because of the current nonlinearity during the �rst-half
of the period, the wavefunction is spatially well localised
and the spectrum is broadened, see panel (b). On the
other hand, the wavefunction is broadened in space and
localised in spectrum in the second half, as depicted in
panel (c). A localised ‘soliton’ solution that preserves
its spatial shape during the wavefunction evolution in
both directions is also emitted. During the �rst few peri-
ods, the main wavefunction is continuously distorted via
spreading in the spatial and spectral domains, as por-
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FIG. 3: XFROG spectrograms of the wavefunction used in
Fig. 1 with � = 1 and � = 0:4 at: (a) � = 0, (b) � = 1:2, (c)
� = 3:0, (d) � = 17:1, (e) � = 18:6, (f) � = 30:1. Contour
plots are given in a logarithmic scale and truncated at -30 dB.

trayed in panels (d,e). The �nal deformed pattern of the
input wavefunction is shown in panel (f). It is worth to
note that in the absence of the current nonlinearity, the
input wavefunction shown in panel (a) will maintain its
shape and follow the trajectory of an ellipse during the
time evolution.

In the following, we will investigate how the wave-
function is a�ected when varying the free parameters,
in particular, the wavefunction amplitude N , the nonlin-
ear strength �, and the current nonlinearity �. Figure
4 depicts the XFROG spectrograms for di�erent input
amplitudes of the wavefunction at a relatively long evo-
lution time with speci�c values of � and �. It is clear that
the wavefunction distortion and expansion scales with N .
The XFROG spectrograms shown in Fig. 5 picture the
e�ect of changing the sign of the intensity nonlinearity �
on the wavefunction after a certain evolution time. The
major e�ect is the generation of a localised state when
� is positive. The deformation of the wavefunction is
weakly-dependent on the sign and the magnitude of �.

The evolution of the XFROG spectrograms for di�er-
ent current nonlinearity strengths � is depicted in Fig. 6.
The spectrograms vary dramatically as � is scanned from
negative to positive values. At large negative values, the
wavefunction di�uses over the spatial and spectral do-
main. For instance, when � = �2 the wavefunction is
linearly negatively-chirped, as shown in panel (a). As �
approaches zero, the width of the wavefunction starts to
shrink, see panels (b,c). On the other hand, the regime
characterised by positive values of � is distinguished by
the emission of the localised modes, portrayed in Fig.
6(d{f). The wavefunction disintegrates into multiple lo-
calised states when � increases. We have found that the
wavefunction reaches quickly its steady state solution as

FIG. 4: XFROG spectrograms of a wavefunction inside the
parabolic potential in the presence of the current-nonlinearity
with �0 = �15, � = 12, � = 1 and � = 0:4, when (a) N = 1,
(b) N = 2, (c) N = 3, (d) N = 4, (e) N = 5, (f) N = 26.
Contour plots are given in a logarithmic scale and truncated
at -30 dB.

FIG. 5: XFROG spectrograms of a wavefunction inside the
parabolic potential in the presence of the current-nonlinearity
with N = 5, �0 = �15, � = 12, and � = 0:4, when (a) � = �1,
(b) � = �0:5, (c) � = 0, (d) � = 0:5, (e) � = 1, (f) � = 2.
Contour plots are given in a logarithmic scale and truncated
at -30 dB.

j�j grows. This demonstrates that the current nonlinear-
ity plays a signi�cant role in the dynamics of the evolu-
tion of the Bose-Einstein condensate.
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FIG. 6: XFROG spectrograms of a wavefunction inside the
parabolic potential in the presence of the current-nonlinearity
with N = 5, �0 = �15, � = 12, and � = 1, when (a) � = �2,
(b) � = �1, (c) � = �0:5, (d) � = 0:5, (e) � = 1, (f) � = 2.
Contour plots are given in a logarithmic scale and truncated
at -30 dB.

IV. EXPERIMENTAL REALISATION

A number of criteria need to be ful�lled in order to
realise a current nonlinearity in the Bose-Einstein con-
densate. Firstly the density-dependent gauge potential
relies on the Rabi frequency and the corresponding en-
ergy scale to dominate over any collisional interaction
energies. In practice this means ~
 must be larger than
the chemical potential � of the Bose-Einstein condensate.
Secondly, we need to use suitable atomic states and scat-
tering lengths, such that a non-zero current nonlinear-
ity can be obtained. For this one needs the scattering
lengths g11 6= g22 which, if not readily available, can be
achieved using Feshbach resonances. Also, we need to be
in the adiabatic regime, where the dressed states aris-
ing from the light-matter interaction are not coupled.
This not only requires that ~
 � �, but the atomic
states must also be long lived. Promising candidates
could for instance be Ytterbium and Strontium which
have extremely long lived states of the order of seconds
[8]. An alternative route in order to avoid spontaneous

emission and heating is to use dark states and three-level
atoms [8, 24]. In the one-dimensional situation discussed
in this paper we have chosen a particularly simple form
of the phase of the incident laser which is represented by
a plane wave. This results in a gauge potential which
is proportional to the density of the Bose-Einstein con-
densate. The phase of the laser can however be shaped
quite freely using, for instance, Spatial Light Modulator
technology [25], which consequently would also allow for
a space dependent �-parameter controlling the strength
of the current-nonlinearity.

V. CONCLUSIONS

In conclusion, we have studied the evolution of a
trapped Bose-Einstein condensate which is subject to
a current nonlinearity. We have adopted the cross-
frequency-resolved-optical-gating (XFROG) technique
which displays the spatial and spectral components of
the wavefunction at a certain time. We have found that
this kind of nonlinearity plays a signi�cant role in the as-
sociated dynamics when the wave vector or the phase of
the wavefunction becomes space dependent. This leads
to various processes of compression and expansion of
the wavefunction during its evolution due to successive
changing of the sign of the current nonlinearity which
results in focusing and defocusing e�ects. The wavefunc-
tion reaches a steady-state solution after having com-
pletely deformed and with signi�cant deviations from the
�-period. Under certain conditions, a localised state that
maintains its shape during time evolution is observed in
simulations with a �-period for small values of current
nonlinearities. Multiple localised states have also been
obtained by increasing the strength of the current nonlin-
earity. These rich mechanisms demonstrate the complex-
ity associated with the dynamics of density-dependent
gauge potentials, and open new links between ultracold
gases and nonlinear optics.
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