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A second-order PHD filter with mean and variance
in target number

Isabel Schlangen�, Emmanuel Delande�, Jérémie Houssineau� and Daniel E. Clark�

Abstract—The Probability Hypothesis Density (PHD) and
Cardinalized PHD (CPHD) filters are popular solutions to the
multi-target tracking problem due to their low complexity and
ability to estimate the number and states of targets in cluttered
environments. The PHD filter propagates the first-order moment
(i.e. mean) of the number of targets while the CPHD propagates
the cardinality distribution in the number of targets, albeit
for a greater computational cost. Introducing the Panjer point
process, this paper proposes a Second-Order PHD (SO-PHD)
filter, propagating the second-order moment (i.e. variance) of the
number of targets alongside its mean. The resulting algorithm
is more versatile in the modelling choices than the PHD filter,
and its computational cost is significantly lower compared to the
CPHD filter. The paper compares the three filters in statistical
simulations which demonstrate that the proposed filter reacts
more quickly to changes in the number of targets, i.e., target
births and target deaths, than the CPHD filter. In addition, a
new statistic for multi-object filters is introduced in order to
study the correlation between the estimated number of targets
in different regions of the state space, and propose a quantitative
analysis of the spooky effect for the three filters.

I. INTRODUCTION

In the context of multi-target detection and tracking prob-
lems, methods based on the Random Finite Set (RFS) frame-
work have recently attracted a lot of attention due to the devel-
opment of low-complexity algorithms within this methodology
[1]. The best-known algorithm is perhaps the Probability
Hypothesis Density (PHD) filter that jointly estimates the
number of targets and their states by propagating the first-
order moment of a RFS [2]; a Gaussian Mixture (GM) and
a Sequential Monte Carlo (SMC) implementation have been
presented in [3] and [4].

Erdinc and Willett [5] suggested that only propagating the
first-order moment did not provide sufficient information for
applications where a high confidence in the target number was
needed. Consequently, Mahler derived the Cardinalized PHD
(CPHD) filter which propagates the cardinality distribution of
the target point process alongside its first-order moment [6].
It thus provides higher-order information on the number of
targets, but to the expense of a higher computational cost.
Around the same time, he also proposed a filter restricted to
the first two moments using a binomial approximation [7].
However, due to the binomial approximation it was suggested
that restrictions were required on the relative number of false
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alarms and targets. In 2007, Vo et al. showed that the CPHD
filter can be overconfident in some cases [8], and in 2009,
Fränken et al. identified a counter-intuitive property of the
CPHD filter that occurs with the weights of the targets when
they are miss-detected which they called the spooky effect
[9]. An alternative approach for extending the PHD filter to a
second-order filter was proposed by Singh et al. using a Gauss-
Poisson prior [10], though this was designed specifically for
tracking correlated pairs of targets.

Other developments in the Finite Set Statistics (FISST)
framework have focussed on more advanced filtering solutions
with higher complexity. The Multi-Bernoulli (MeMBer) filter
[1] is based on a fully Bayesian approach where the system
assumes that each target is modelled by a state estimate and a
probability of existence. The bias in the number of targets in
the original MeMBer filter was addressed in [11], and further
developments around Bernoulli RFSs were introduced in [12],
[13]. Various methods propagating information on individual
targets within the FISST framework have been developed since
[14]–[16].

This paper focuses on a filtering solution with low complex-
ity. We introduce a second-order filter in which the predicted
target process is assumed Panjer instead of Poisson. The
Panjer distribution [17] is specified by two parameters and
encompasses the binomial, Poisson and negative binomial
distributions; unlike a Poisson distribution, it can describe a
population of targets whose estimated size has a higher or
lower variance than its mean. The proposed Second-Order
PHD (SO-PHD) filter thus complements the original PHD
filter with the variance in the estimated number of targets; it
also propagates less information than the CPHD filter but has a
lower computational cost. The Panjer distribution was studied
for the analysis of the CPHD update in [9], though it was
not used to develop a new filter. The proposed filter can also
be seen as a generalisation of the PHD filter with a negative
binomial-distributed false alarms [18], which was designed for
scenarios with high variability in background noise.1 We also
introduce the correlation for point processes in disjoint regions
of the state space, in order to analyse quantitatively the spooky
effect [9] for the considered filters.

Sec. II introduces some background material on point pro-
cesses. Sec. III presents four relevant point processes, then
used in Sec. IV to construct the proposed SO-PHD filter.
The regional correlation for the PHD, SO-PHD, and CPHD
filters are introduced in Sec. V. A comparison of the GM

1A follow-on work based on the results in the current paper has been
developed for joint parameter estimation and multi-target tracking [19].



This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSP.2017.2757905, IEEE
Transactions on Signal Processing

2

implementations of the three filters is given in Sec. VI, and
Sec. VII concludes. Pseudo-code for the proposed algorithms
and detailed proofs are given in appendices.

II. BACKGROUND

Many recent works in multi-object filtering exploit Mahler’s
FISST framework [1], in which multi-target state configura-
tions are described by RFSs. The FISST framework allows for
the production of the densities of various statistical quantities
describing a RFS (multi-object density, Probability Hypothesis
Density, etc.) through the set derivative operator.

This paper considers higher-order statistical quantities
whose expression arises naturally from probability measures
rather than densities, such as the regional covariance, or does
not admit a density altogether, such as the regional variance or
correlation (see Sec. II-C). Hence we shall favour the measure-
theoretical formulation originating from the point process the-
ory, for which a specific methodology has been developed to
construct higher-order statistical moment measures or densities
through the chain derivative operator [20]. Let us furthermore
assume that the theorem of Radon and Nikodým [21] holds
for all measures studied in this article, i.e. that they admit
densities.

In the section, we provide the necessary background mate-
rial on point processes, and highlight the connections with the
FISST framework when appropriate. For the rest of the paper,
(
;F ;P) denotes a probability space with sample space 
, �-
algebra F , and probability measure P. Throughout the paper,
all random variables are defined on (
;F ;P) and we denote
by E the expectation with respect to (w.r.t.) P.

A. Point processes

We denote by X � Rdx the dx-dimensional state space
describing the state of an individual object (position, velocity,
etc.). A point process � on X is a random variable on
the process space X =

S
n�0 Xn, i.e., the space of finite

sequences of points in X . A realisation of � is a sequence
’ = (x1; : : : ; xn) 2 Xn, representing a population of n ob-
jects with states xi 2 X . Point processes can be described
using their probability distribution P� on the measurable space
(X;B(X)), where B(X) denotes the Borel �-algebra of the
process space X [22].

The projection measure P (n)
� of the probability distribution

P� on Xn, n � 0, describes the realisations of � with n ele-
ments; the projection measures of a point process are always
defined as symmetrical functions, so that the permutations
of a realisation ’ are equally probable. Furthermore, a point
process is called simple if ’ does not contain repetitions, i.e. its
elements are pairwise distinct almost surely. For the rest of the
paper, all point processes are assumed simple. In that case,
it is assumed that the probability distribution P� of a point
process admits a density p� w.r.t. some reference measure
�. The densities of the projection measures P (n)

� are denoted
by p(n)

� , and both quantities will be exploited throughout the
paper.

In the literature originating from Mahler’s FISST framework
[2], [3], an alternative construction of simple point processes

is a RFS, a random object whose realizations are sets of
points fx1; : : : ; xng, in which the elements are by construction
unordered.

B. Multi-target Bayesian filtering
In the context of multi-target tracking, we make use of

a target point process �k to describe the information about
the target population at time k. The scene is observed by
a sensor system, providing sets of measurements at discrete
times (indexed by k 2 N in the following). The dz-dimensional
observation space describing the individual measurements
produced by the sensor (range, azimuth, etc.) is denoted by
Z � Rdz . The set of measurements collected at time k is
denoted by Zk.

Point processes can be cast into a Bayesian framework in
order to propagate �k over time [1]. Bayesian filtering consists
of a prediction or time update step which is concerned with
the motion model, birth and death of targets, and a data update
step which models the observation process, missed detections
and false alarms and exploits the current measurement set Zk.

The full multi-target Bayesian recursion propagates the law
Pk of the target process �k. The time prediction and data
update equations at time k are given by [1]

Pkjk�1(d�) =

Z
Tkjk�1(d�j’)Pk�1(d’); (1)

Pk(d�jZk) =
Lk(Zkj�)Pkjk�1(d�)R
Lk(Zkj’)Pkjk�1(d’)

; (2)

where Tkjk�1 is the multi-target Markov transition kernel from
time k� 1 to time k, and Lk is the multi-measurement/multi-
target likelihood at time step k.2 Note that the formulation of
the multi-target Bayesian recursion with measure-theoretical
integrals (1), (2) is drawn from its original RFS-based formu-
lation in [1] with set integrals.

C. Statistical moments
Similar to real-valued random variables, statistical moments

can be defined for a point process � in order to provide an
alternative description to its probability distribution P� (or,
equivalently, to its projection measures P (n)

� for any n 2 N).
Statistical moments will play an important role in this paper,
for the construction of the SO-PHD filter in Sec. IV as well as
for the study of the correlation in the estimated target number
in distinct regions of the state space in Sec. V.

The n-th order moment measure �(n)
� of a point process �

is the measure on Xn such that, for any bounded measurable
function fn on Xn, it holds that [22]Z

fn(x1:n)�
(n)
� (d(x1:n)) = E

� X
x1;:::;xn2�

fn(x1:n)

�
(3)

where we use the shorter notation x1:n to denote the sequence
(x1; : : : ; xn).3 In addition, the n-th order factorial moment

2When �, �0 are two measures on some space X , we use the notation
�(dx) = �0(dx), where x 2 X , to indicate that

R
f(x)�(dx) =R

f(x)�0(dx) for any bounded measurable function f on X .
3When ’ 2 Xn, n � 0, is a sequence of elements on some space X , the

abuse of notation “x 2 ’” is used to denote that the element x 2 X appears
in the sequence ’.
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measure �(n)
� of a point process � is the measure on Xn such

that, for any bounded measurable function fn on Xn, it holds
that [22]Z

fn(x1:n)�
(n)
� (d(x1:n)) = E

� X6=

x1;:::;xn2�

fn(x1:n)

�
(4)

where �6= indicates that the selected points x1; : : : ; xn are
all pairwise distinct. The last result is known as Campbell’s
theorem [22].

Setting fn(x1:n) =
Qn
i=1 1Bi

(xi) in Eqs (3), (4), yields

�
(n)
� (B1� � � � �Bn) = E

� X
x1;:::;xn2�

1B1(x1) : : :1Bn(xn)

�
; (5)

�
(n)
� (B1� � � � �Bn) = E

� X6=

x1;:::;xn2�

1B1
(x1) : : :1Bn

(xn)

�
; (6)

for any regions Bi 2 B(X ), 1 � i � n.4 Eqs (5) and (6)
provide some insight on the moment measures. The scalar
�

(n)
� (B1�� � ��Bn) estimates the joint localisation of sequence

points within the regions Bi, while �(n)
� (B1�� � ��Bn) further

imposes the sequence points to be pairwise distinct.
Note that the first-order moment measure �

(1)
� coincides

with the first-order factorial moment measure �(1)
� ; it is known

as the intensity measure of the point process and simply
denoted by ��. Its associated density, also denoted by ��, is
called the intensity of the point process �, more usually called
Probability Hypothesis Density in the context of RFSs [2].
In this paper we shall also exploit the second-order moment
measures; similarly to real-valued random variables we can
define the covariance, variance, and correlation of a point
process � as [22], [23]

cov�(B;B0) := �
(2)
� (B �B0)� ��(B)��(B0); (7)

var�(B) := �
(2)
� (B �B)� [��(B)]

2
; (8)

corr�(B;B0) :=
cov�(B;B0)p

var�(B)
p

var�(B0)
; (9)

for any regions B;B0 2 B(X ). The scalar ��(B) yields the
expected (or mean) number of objects within B, while the
scalar var�(B) quantifies the spread of the estimated number
of objects within B around its mean value ��(B) [24]. Finally,
the scalar corr�(B;B0) quantifies the correlation between the
estimated number of targets within B and B0; it will be
exploited in this paper to assess the so-called “spooky effect”
of multi-object filters, coined in [9] for the CPHD filter.

Note that in the general case the variance var� is a non-
additive function, and does not admit a density. Note also that
the second-order moment measure can be decomposed into
the sum

�
(2)
� (B �B0) = ��(B \B0) + �

(2)
� (B �B0); (10)

for any regions B;B0 2 B(X ).

4The notation 1B denotes the indicator function, i.e., 1B(x) = 1 if x 2 B,
and zero otherwise.

D. Point processes and functionals
Similar to the Fourier transform for signals or the prob-

ability generating function for discrete real-valued random
variables, convenient tools exist to handle operations on point
processes. The Laplace functional L� and the Probability
Generating Functional (PGFL) G� of a point process � are
defined by

L�(f) :=
X
n�0

Z
exp

 
�

nX
i=1

f(xi)

!
P

(n)
� (dx1:n); (11)

G�(h) :=
X
n�0

Z " nY
i=1

h(xi)

#
P

(n)
� (dx1:n); (12)

respectively for two test functions f : X ! R+ and h : X !
[0; 1]. Note that from (11) and (12) it holds that

G�(h) = L�(� lnh): (13)

Depending on the nature of the point process �, the expression
of the functionals may reduce to simpler expressions that do
not involve infinite sums (see examples in Sec. III).

E. Point processes and differentiation
In this paper we shall exploit the chain differential [20],

a convenient operator that allows for the evaluation of both
the statistical moments of a point process � and their corre-
sponding densities through the differentiation of its Laplace
functional L� or its PGFL G� [25]–[27].

Given a functional G and two functions h; � : X ! R+,
the (chain) differential of G w.r.t. h in the direction of � is
defined as [20]

�G(h; �) := lim
n!1

G(h+ "n�n)�G(h)

"n
; (14)

when the limit exists and is identical for any sequence of
real numbers ("n)n2N converging to 0 and any sequence of
functions (�n : X ! R+)n2N converging pointwise to �.

The statistical quantities described in Sec. II-A and Sec. II-C
can then be extracted through the following differentiations:

P
(n)
� (B1� � � � �Bn) =

1

n!
�nG�(h; 1B1

; : : : ;1Bn
)jh=0;

(15)

�
(n)
� (B1� � � � �Bn) = (�1)n�nL�(f ; 1B1

; : : : ;1Bn
)jf=0;

(16)

�
(n)
� (B1� � � � �Bn) = �nG�(h; 1B1

; : : : ;1Bn
)jh=1; (17)

for any regions Bi 2 B(X ), 1 � i � n [22]. The chain
differential has convenient properties and leads to rules similar
to the classical derivative: namely, a product rule [20]

�(F �G)(h; �) = �F (h; �)G(h) + F (h)�G(h; �); (18)

and a chain rule [20]

�(F �G)(h; �) = �F (G(h); �G(h; �)): (19)

They can be generalised to the n-fold product rule [27]

�n(F �G)(h; �1; : : : ; �n)

=
X

!�f1;:::;ng

�j!jF
�
h; (�i)i2!

�
�j!

cjG
�
h; (�j)j2!c

�
; (20)
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where !c = f1; : : : ; ng n ! is the complement of !, and
the n-fold chain rule or Faà di Bruno’s formula for chain
differentials [26], [27]

�n(F �G)(h; �1; : : : ; �n)

=
X
�2�n

�j�jF

�
G(h);

�
�j!jG(h; (�i)i2!)

�
!2�

�
;

(21)

where �n is the set of partitions of the index set f1; : : : ; ng.
The equivalent of the n-fold product rule (20) in the FISST
framework is called the generalised product rule for set deriva-
tives [1, p. 389]. Faà di Bruno’s formula (21) has recently been
applied for spatial cluster modelling [28], Volterra series [29],
multi-target spawning [30], and for negative binomial clutter
modelling [18].

When the chain differential (14) is linear and continuous
w.r.t. its argument, it is also called the chain derivative
operator. For the rest of the paper, chain differentials will
always assumed to be chain derivatives and called as such.
Also, when a functional G is defined as an integral with
respect to a measure � on X which is absolutely continuous
with respect to the reference measure �, the term �G(f; �x)
will be understood as the Radon-Nikodým derivative of the
measure �0 : B 7! �G(f;1B) evaluated at point x, i.e.

�G(f; �x) :=
d�0

d�
(x), for any appropriate function f on X

and any point x 2 X . In the context of this paper, this property
holds for the PGFL G� of any point process � since its
probability distribution P� admits a density w.r.t. the reference
measure �. In particular,

p
(n)
� (x1; : : : ; xn) =

1

n!
�nG�(h; �x1 ; : : : ; �xn)jh=0; (22)

for any points xi 2 X , 1 � i � n. This result is similar to the
extraction rule (52) in [2], allowing for the evaluation of the
multitarget density of a RFS in the set fx1; : : : ; xng.

III. FOUR RELEVANT EXAMPLES OF POINT PROCESSES

This section presents three well-established point processes
in the context of multi-object estimation, namely, the indepen-
dent and identically distributed (i.i.d.), Bernoulli, and Poisson
point processes. It then introduces the Panjer point process and
its fundamental properties.

A. i.i.d. cluster process

An i.i.d. cluster process with cardinality distribution � on N
and spatial distribution s on X describes a population whose
size is described by �, and whose objects’ states are i.i.d.
according to s. Its PGFL is given by

Gi:i:d:(h) =
X
n�0

�(n)

�Z
h(x)s(dx)

�n
: (23)

In the construction of the CPHD filter, the predicted target
process �kjk�1 is assumed i.i.d. cluster [6].

B. Bernoulli process

A Bernoulli point process with parameter 0 � p � 1 and
spatial distribution s is an i.i.d. cluster process with spatial
distribution s, whose size is 1 with probability p and 0 with
probability q = (1� p). Its PGFL is given by

GBernoulli(h) = q + p

Z
h(x)s(dx): (24)

In the context of target tracking, Bernoulli processes are
commonly used to describe binary events such as the detection
or survival of individual targets.

C. Poisson process

A Poisson process with parameter � and spatial distribution
s is an i.i.d. cluster process with spatial distribution s, whose
size is Poisson distributed with rate �. Its PGFL is given by

GPoisson(h) = exp

�Z
[h(x)� 1]�(dx)

�
; (25)

where the intensity measure � of the process is such that
�(dx) = �s(dx). Due to its simple form and its prevalence
in many natural phenomena, the Poisson point process is a
common and well-studied modelling choice. It can be shown
that the intensity (5) and the variance (8) of a Poisson process
are equal when evaluated in any region B 2 B(X ), i.e.,
��(B) = var�(B). In other words, the random variable
describing the number of objects within B has equal mean
and variance. This property holds in particular for B = X . In
the construction of the PHD filter, the predicted target process
�kjk�1 is assumed Poisson [2].

D. Panjer process

A Panjer point process with parameters � and � and spatial
distribution s is an i.i.d. cluster process with spatial distribution
s, whose size is Panjer distributed with parameters � and �
[17], i.e., whose cardinality distribution is given by

�(n) :=

�
��
n

��
1 +

1

�

���� �1

� + 1

�n
; (26)

for any n 2 N, where either �; � 2 R>0 or � 2 Z<0

and � 2 R<0.5 The particular nature of the Panjer process is
determined by the values � and �:
� For finite and positive � and �, (26) describes a negative

binomial distribution.
� For finite and negative � and � we obtain a binomial

distribution.6

� The limit case �; � ! 1 with constant ratio � := �
�

yields a Poisson process with parameter � [18], [31].
The PGFL of a negative binomial process is given in [32], and
it can be extended to the Panjer point process as follows:

5Note that negative, non-integer values of � yield complex values, and are
thus discarded.

6In [17], the binomial and negative binomial distributions are given in
different forms but are equivalent to (26).
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Proposition III.1. The PGFL of a Panjer process with pa-
rameters �, � is given by

GPanjer(h) =

�
1 +

1

�

Z
[1� h(x)]s(dx)

���
: (27)

The proof is given in appendix. The parameters of a Panjer
point process are linked to the first- and second-order moment
of its cardinality distribution as follows:

Proposition III.2. The parameters ��; �� of a Panjer process
� are such that

�� =
��(X )2

var�(X )� ��(X )
; (28)

�� =
��(X )

var�(X )� ��(X )
: (29)

The proof is given in appendix. It can be seen from
Eqs. (28), (29) that binomial and negative binomial point
processes have a size with larger and smaller variance than
mean, respectively. In particular, a negative binomial point
process can model a population whose size is highly uncertain,
such as the clutter process in the PHD filter with negative
binomial clutter [18].

IV. THE SO-PHD FILTER WITH VARIANCE IN TARGET
NUMBER

The intensity measure of the target process �� (or its
density) plays an important role in the construction of multi-
object filters; it is propagated by both the PHD [2] and
CPHD filters [6], and the quantity ��(X ) yiels the expected
number of targets in the scene. The CPHD also propagates the
cardinality distribution of the target process ��, describing the
number of targets in the scene. As an intermediate solution,
the SO-PHD filter propagates the variance in the number of
targets var�(X ). In order to do so, the Poisson or i.i.d. cluster
assumption on the predicted target process and clutter process
is replaced by a Panjer assumption. The data flow of the
SO-PHD filter is depicted in Fig. 1.

A. Time prediction step (time k)

In the time prediction step, the posterior target process
�k�1 is predicted to �kjk�1 based on prior knowledge on
the dynamical behaviour of the targets. The assumptions of
the time prediction step can be stated as follows:

Assumptions IV.1. .
(a) The targets evolve independently from each other;
(b) A target with state x 2 X at time k � 1 survived to

the current time k with probability ps;k(x); if it did so,
its state evolved according to a Markov transition kernel
tkjk�1(�jx);

(c) New targets entered the scene between time k� 1 and k,
independently of the existing targets and described by a
newborn point process �b;k with PGFL Gb;k.

Assumptions IV.2. .
(a) The probability of survival is uniform over the state space,

i.e., ps;k(x) := ps;k for any x 2 X .

: : : : : :

�k�1

�
�k�1(�); vark�1(X )

�

�kjk�1

�
�kjk�1(�); varkjk�1(X )

�
�
�kjk�1(�); �kjk�1; �kjk�1

�

�k

�
�k(�); vark(X )

�
: : : : : :

prediction (30;32)

update

(28;29)

(41;42)

Fig. 1: Data flow of the SO-PHD filter at time k. In addition
to the intensity function � it propagates the scalar var(X ),
describing the variance in the estimated number of targets in
the whole state space.

Note that Assumptions IV.1 are those of the original PHD
filter; in particular, the SO-PHD filter does not require a
specific form for the posterior process �k�1 or the birth
process �b;k.

Theorem IV.3 (Intensity prediction [2]). Under Assumptions
IV.1, the intensity measure �kjk�1 of the predicted target
process �kjk�1 is given by

�kjk�1(B) = �b;k(B) + �s;k(B); (30)

in any B 2 B(X ), where �s;k is the intensity measure of the
process describing the surviving targets

�s;k(B) :=

Z
ps;k(x)tkjk�1(Bjx)�k�1(dx); (31)

and �b;k is the intensity measure of the newborn process �b;k.

Theorem IV.4 (Variance prediction). Under Assumptions IV.1,
the variance varkjk�1 of the predicted target process �kjk�1

is given by

varkjk�1(B) = varb;k(B) + vars;k(B); (32)

in any B 2 B(X ), where vars;k is the variance of the process
describing the surviving targets

vars;k(B) := �s;k(B)
h
1� �s;k(B)

i
+

Z
ps;k(x)ps;k(x0)tkjk�1(Bjx)tkjk�1(Bjx0)�(2)

k�1(d(x; x0));

(33)

and varb;k is the variance of the newborn process �b;k.

The proof is given in appendix. Note that the propagation of
the regional variance (32) – i.e., the variance varkjk�1(B) in
any B 2 B(X ) – requires the posterior second-order factorial
moment �(2)

k�1, which is not available from the posterior infor-
mation �k�1(�); vark�1(X ) (see data flow in Fig. 1). However,
considering the additional Assumption IV.2, the variance of the
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predicted target process �kjk�1 evaluated in the whole state
space becomes as follows.

Corollary IV.5 (Variance prediction, uniform ps;k). Under
Assumptions IV.1 and IV.2, the variance varkjk�1 of the
predicted target process �kjk�1 evaluated in the whole state
space X is given by

varkjk�1(X ) = varb;k(X ) + vars;k(X ); (34)

where vars;k is the variance of the process describing the
surviving targets

vars;k(X ) = p2
s;kvark�1(X ) + ps;k[1� ps;k]�k�1(X ); (35)

and varb;k is the variance of the newborn process �b;k.

The proof is given in appendix. The results in Thm. IV.3
and Cor. IV.5 produce the predicted quantities �kjk�1,
varkjk�1(X ) from their posterior values �k�1, vark�1(X ).

B. Data update step (time k)

In the data update step, the predicted process �kjk�1 is
updated to �k given the current measurement set Zk, collected
from the sensor. The date update step relies on the following
assumptions:

Assumptions IV.6. .

(a) The predicted target process �kjk�1 is Panjer, with pa-
rameters �kjk�1, �kjk�1 and spatial distribution skjk�1.

(b) The measurements originating from target detections are
generated independently from each other.

(c) A target with state x 2 X is detected with probability
pd;k(x); if so, it produces a measurement whose state is
distributed according to a likelihood lk(�jx).

(d) The clutter process, describing the false alarms produced
by the sensor, is Panjer with parameters �c;k, �c;k and
spatial distribution sc;k.

Before stating the data update equations for the SO-PHD
filter, recall the Pochhammer symbol or rising factorial (�)n
for any � 2 R and n 2 N:

(�)n := �(� + 1) � � � (� + n� 1); (�)0 := 1: (36)

Following the notations used in [24] and introduced in [8], we
define the corrective terms

‘u(z) :=
�u(Zknfzg)

�0(Zk)
; ‘u(�) :=

�u(Zk)

�0(Zk)
; (37)

for any u 2 N and any z 2 Zk, where

�u(Z) :=

jZjX
j=0

(�kjk�1)j+u

(�kjk�1)j+u
(�c;k)jZj�j

(�c;k + 1)jZj�j
F�j�ud ej(Z);

(38)

for any Z � Zk, where Fd is the scalar given by

Fd :=

Z �
1 +

pd;k(x)

�kjk�1

�
�kjk�1(dx); (39)

and ej is the j-th elementary symmetric function

ej(Z) :=
X
Z0�Z
jZ0j=j

Y
z2Z0

�zk(X )

sc;k(z)
; (40)

with �zk(B) :=
R
B
pd;k(x)lk(zjx)�kjk�1(dx), for any B 2

B(X ).7

Theorem IV.7 (Intensity update). Under Assumptions IV.6,
the intensity measure �k of the updated target process �k is
given by

�k(B) = ��k(B)‘1(�) +
X
z2Zk

�zk(B)

sc;k(z)
‘1(z); (41)

in any B 2 B(X ), where the missed detection term ��k is given
by ��k(B) :=

R
B

(1� pd;k(x))�kjk�1(dx).

Theorem IV.8 (Variance update). Under Assumptions IV.6, the
variance vark of the updated target process �k is given by

vark(B) = �k(B) + ��k(B)2
�
‘2(�)� ‘1(�)2

�
+ 2��k(B)

X
z2Zk

�zk(B)

sc;k(z)
[‘2(z)� ‘1(�)‘1(z)]

+
X

z;z02Zk

�zk(B)

sc;k(z)

�z
0

k (B)

sc;k(z0)

h
‘6=2 (z; z0)� ‘1(z)‘1(z0)

i
;

(42)

in any B 2 B(X ), with

‘6=2 (z; z0) :=

8<:
�2(Zknfz; z0g)

�0(Zk)
; z 6= z0;

0; otherwise:

(43)

The proofs of Thms IV.7 and IV.8 are given in appendix.
Together with Eqs (28), (29), the results in Thms IV.7,
IV.8 produce the updated quantities �k, vark(X ) from their
predicted values �kjk�1, varkjk�1(X ).

As mentioned earlier in Sec. III-D, a Panjer distribution
converges to a Poisson distribution for suitable parameters �,
�. An interesting consequence for the intensity update of the
SO-PHD filter (41) follows.

Corollary IV.9 (Intensity update: limit cases). If, in addition
to Assumptions IV.6, the predicted point process �kjk�1 is as-
sumed Poisson, i.e., �kjk�1; �kjk�1 !1 with constant ratio
�kjk�1 :=

�kjk�1

�kjk�1
, then the intensity update (41) converges to

the intensity update of the PHD filter with Panjer clutter given
in [18].

Furthermore, if the clutter process is assumed Poisson as
well, i.e., �c;k; �c;k ! 1 with constant ratio �c;k :=

�c;k

�c;k
,

then the intensity update given in [18] converges to the
intensity update of the original PHD filter [2].

With Cor. IV.9, the SO-PHD filter presented in this paper
can be seen as a generalisation of the original PHD filter8.
Note that the expression of the intensity (41) and variance
(42) of the updated target process are remarkably similar to

7In these definitions, the time subscripts on the ‘u, �u, Fd, and ej terms
are omitted for the sake of simplicity.

8Under the proviso that the additional assumption IV.2 is met, i.e., the
probability of survival ps;k is uniform over the state space.
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their counterpart in the CPHD filter, and only differ on the
expressions of the corrective terms ‘u [24]. Both filters involve
the computation of elementary symmetric functions ej(Z) on
subsets Z of the measurement set Zk. Each function has a
computational cost of O(jZj log2 jZj) [8]; the CPHD requires
the computation for sets of the form Zk, and Zk n fzg, for a
total cost of O(jZkj2 log2 jZkj), while the proposed solution
requires the computation for sets of the form Zk, Zk n fzg,
Zk n fz; z0g, for a total cost of O(jZkj3 log2 jZkj). However,
while the CPHD filter requires the computation of the �u(n)
terms [8, Eq. (14)] for each possible target number n (to a
maximum number Nmax set as a parameter), the proposed
filter requires the computation of the �u terms (38) only once.
The complexity of the proposed filter is thus significantly
lower than for the CPHD filter, as it will be illustrated in the
simulation results in Sec. VI, and the difference in complexity
increases with the value Nmax.

V. REGIONAL CORRELATIONS FOR PHD FILTERS

In order to assess the mutual influence of the estimated
number of targets in two regions B;B0 2 B(X ), we compute
in this section the statistical correlation (9) of the updated
target process �k for the PHD, SO-PHD and CPHD filters.

Proposition V.1 (Covariance of the PHD filters). .
Let B;B0 2 B(X ) be two arbitrary regions in the state space.

(a) PHD filter:
Let �c;k be the Poisson clutter rate at time k. The covariance
of the updated target process �k in B, B0 is

covk(B �B0) = �k(B \B0)

�
X
z2Zk

�zk(B)�zk(B0)�
�zk(X ) + �c;ksc;k(z)

�2 : (44)

(b) Second-order PHD filter:
The covariance of the updated target process �k in B, B0 is

covk(B �B0)
= �k(B \B0) + ��k(B)��k(B0)[‘2(�)� ‘1(�)2]

+
X
z2Zk

�
��k(B)

�zk(B0)

sc;k(z)
+ ��k(B0)

�zk(B)

sc;k(z)

�
[‘2(z)� ‘1(z)‘1(�)]

+
X

z;z02Zk

"
�zk(B)

sc;k(z)

�z
0

k (B0)

sc;k(z0)

# h
‘6=2 (z; z0)� ‘1(z)‘1(z0)

i
: (45)

(c) CPHD filter:
The covariance of the updated target process �k in B, B0 is
given by (45), where the corrective terms ‘1, ‘2 and ‘6=2 are
replaced by the values in Eqns (20), (30) of [24].

The proof is given in appendix. The correlations
corr�(B;B0) are a direct consequence of Eq. (9), using the
regional variance stated in Eqns (35), (33) [24] for the PHD
and CPHD filters and the regional variance (42) for the
SO-PHD filter.

VI. EXPERIMENTS

A GM implementation [3], [8] was used for all algorithms
to make them comparable. For the CPHD filter, the maximum

number of targets Nmax is set to 150 for all experiments. The
Optimal Sub-Pattern Assignment (OSPA) metric per time step
[33] is used with the Euclidean distance (i.e. p = 2) and the
cutoff c = 100.

A. Scenario 1

This scenario examines the robustness of the PHD, CPHD,
and SO-PHD filters to large variations in the number of targets
and focuses on a single time step when the change in target
number occurs.

The size of the surveillance scene is 50 m�50 m. The gen-
eration of new objects is restricted to the centre of the image
to prevent the objects from leaving the scene before the last
time step. Their movement is generated using a nearly constant
velocity model where the standard deviation of the acceleration
noise is 0:3 m s�2 and the initial velocity is Gaussian normal
distributed with mean 0 and standard deviation 0:5 m s�1

along each dimension of the state space. False alarms are
generated according to a Poisson point process with uniform
spatial distribution and clutter rate �c = 5 for experiments
1.1, 1.2 and �c = 20 for experiment 1.3. The probabilities of
detection and survival are constant and set to 0:9 and 0:99,
respectively.
1.1 50 targets are created in the first time step and propagated

until time step 15 to give the algorithms time to settle. At
time 15, the number of targets suddenly changes, either
by removing some or all of the current targets without
creating new objects or by creating up to 50 births while
maintaining the old targets. The birth model is Poisson
with uniform spatial distribution and birth rate �b = 25,
for the three filters.

1.2 The parameters are identical to experiment 1.1, except
that the birth model is negative binomial with �b = 25
and varb = 100 for the SO-PHD and CPHD filter.

1.3 Here, only one target is created in the beginning and
maintained up to time 15. At this time, from 0 to 100
targets are spontaneously created in the scene. The birth
model is a negative binomial point process with uniform
spatial distribution, mean �b = 1 and varb = 100 for
the three filters, though the PHD filter cannot exploit the
information on the variance.

Fig. 2 depicts the results of this scenario. In experiment 1.1 and
1.2, the three filters estimate target birth more accurately than
target death since the high survival probability, together with a
high birth rate, does not account for severe drops in the number
of targets. In particular, the CPHD filter lacks flexibility
and fails at recognising unexpected drops in the number of
targets. Choosing negative binomial birth model allows for
larger uncertainty in the number of targets and improves the
quality of the estimate for the CPHD and SO-PHD filters.
Furthermore, the variance of the SO-PHD filter is lower than
that of the PHD filter. Experiment 1.3 highlights a limitation
of the PHD filter, which reduces the prior information on the
number of newborn targets to its mean value. The CPHD and
SO-PHD filters, on the other hand, can exploit a birth process
with high variability in target number – i.e., through a negative
binomial process with large variance in target number – in
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(a) Experiment 1.1.
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(b) Experiment 1.2.
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(c) Experiment 1.3.

Fig. 2: Results for Scenario 1, averaged over 20 MC runs. The
lines depict the mean of the estimated number of targets, the
coloured areas show the 2� confidence region (estimated by
the filter).

order to cope with a burst of target births. Fig. 2c suggests
that the birth and false alarm processes are competing in the
CPHD and SO-PHD filters when there is a significant influx
in the number of newborn targets, resulting in an offset linked
to the mean number of false alarms (recall that �c = 20 in
this case). The PHD filter, on the other hand, is unable to cope
with an influx that is well beyond the Poisson model.

Average run times are omitted for this scenario as they
change greatly with the different changes in target number and
are therefore not very meaningful. The following scenarios
will provide a more valuable insight in the computational
performance.

B. Scenario 2

This scenario examines the behaviours of the PHD, CPHD
and SO-PHD filters with increasing amounts of target birth
and death.

The size of the surveillance scene is 50 m � 50 m. The
number of targets is designed to follow a stair pattern starting

with 5 initial targets, and increasing the cardinality by 10, 15,
20 and 25 targets every ten time steps until time 40. From time
50 onwards up to time 90, the number of targets is decreased
in reverse order, i.e. every ten time steps, the target population
is reduced by 25, 20, 15, and 10 targets. The generation
of new objects is restricted to the centre of the image to
prevent the objects from leaving the scene before the last time
step. Their movement is generated using a nearly constant
velocity model where the standard deviation of the acceleration
noise is 0:1 m s�2 and the initial velocity is Gaussian normal
distributed with mean 0 and standard deviation 0:3 m s�1

along each dimension of the state space.
From the ground truth obtained as above, measurements

are created with a constant probability of detection. For
comparison, two different values are chosen, i.e. pd = 0:95 in
the first experiment and pd = 0:6 in the second. Each detection
is corrupted with white noise with standard deviation 0:2 m
in each dimension. Additionally, false alarms are generated
according to a Poisson point process with uniform spatial
distribution and clutter rate �c = 15.

The three filters are parametrised with the simulation pa-
rameters above. In addition, the probability of survival is
set to ps = 0:98, and target birth is modelled using a
negative binomial process with uniform spatial distribution,
mean �b(X ) = 1 and variance varb(X ) = 100 to account for
the big changes in the number of objects. Each experiment is
averaged on 100 MC runs.

In Fig. 3, an example run of the first experiment is depicted.
Fig. 4 shows the estimated means and variances for all filters
and all experiments over time (left column), along with the
mean and standard deviation of the respective OSPA distances
over time (right column). The first experiment (Fig. 4a-
4b) demonstrates that the three filters show a delay in the
adjustment of the cardinality estimate when the population is
growing, resulting in spikes of OSPA error. In general, the
CPHD filter is closest to the true target number, however in
case of target death, the PHD and SO-PHD filters prove to be
more reactive despite setting the survival rate to 98%. In the
second experiment (cf. Fig. 4c-4d), all three filters show a sig-
nificant increase in the estimated variance in cardinality since
target death and missed detections are hard to distinguish and
therefore more missed detections lead to increased uncertainty
in the number of targets. In terms of the estimated mean, on the
other hand, the proposed method shows the highest reactivity
to target birth and especially to target death, estimated poorly
with the CPHD filter. Table I shows the averaged run time for
both cases of this scenario. The prediction runs approximately
100 times slower for the CPHD than for the first- and second-
order PHD filters; this is to be expected since the complexity
of the former grows proportional to the range of cardinalities
for which the cardinality distribution is estimated. The update
performance, on the other hand, varies greatly for different
probabilities of detection: if pd is low, the weight for miss-
detected objects does not plummet directly and therefore the
information about dead tracks is kept and propagated for
longer.
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Fig. 3: The setup of experiment 2.1, plotted separately for x and y over time (shown for one MC run). The ground truth is
plotted in red, the measurements in grey.

0 20 40 60 80
0

20

40

60

80

100

time

nu
m

be
r

of
ta

rg
et

s ground truth
PHD
SO-PHD
CPHD

(a) Estimated target number, experiment 2.1.
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(b) OSPA results, experiment 2.1.
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(c) Estimated target number, experiment 2.2.
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(d) OSPA results, experiment 2.2.

Fig. 4: Results for Scenario 2, averaged over 100 MC runs. Fig. 4a and 4c show the estimated means and variances of the
number of targets, Fig. 4b and 4d displays the mean and standard deviation of the respective OSPA results. The rows depict
the results of experiments 2.1 (pd = 0:95) and 2.2 (pd = 0:6), respectively.

Exp. PHD SO-PHD CPHD

Pr
ed

. 2.1 0.0143 0.0150 (�1:05) 0.9761 (�68:26)
2.2 0.0266 0.0285 (�1:07) 1.0901 (�40:98)
3 0.0121 0.0143 (�1:18) 0.6734 (�55:65)

U
pd

at
e 2.1 3.9233 6.2693 (�1:60) 23.0930 (�5:89)

2.2 36.6506 40.9254 (�1:12) 46.9830 (�1:28)
3 2.1956 2.3640 (�1:08) 10.3355 (�4:71)

TABLE I: Runtimes for experiments 2 and 3, averaged over
all time steps and Monte Carlo runs, with relative time with
respect to the PHD filter in brackets. The times are given in
seconds.

C. Scenario 3

This scenario assesses the spooky effect of the PHD, CPHD,
and SO-PHD filters through the regional covariance introduced
in this paper. Two completely separate regions of interest,
henceforth called A and B, are depicted in Fig. 5. Both
regions are of size 50 m � 50 m, and they are 100 m apart
horizontally. In each region, 10 targets are initialised in the
first time step and they survive throughout 100 time steps.
Again, the generation of new objects is restricted to the centre
of each region to prevent the objects from leaving the scene
before the last time step. Their movement is generated using
a nearly constant velocity model where the standard deviation
of the acceleration noise is 0:1 m s�2 and the initial velocity
is Gaussian normal distributed with mean 0 and standard
deviation 0:3 m s�1 along each dimension of the state space.
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Measurements are created with the (constant) probability of
detection pd = 0:9. Each detection is corrupted with white
noise with standard deviation 0:2 m in each dimension. Addi-
tionally, false alarms are generated in each region according
to a Poisson point process with uniform spatial distribution (in
the region) and clutter rate �c(A) = �c(B) = 20.

The three filters are parametrised with the simulation pa-
rameters above. In addition, the probability of survival is set
to ps = 0:98, and target birth is modelled using a negative
binomial point process with uniform spatial distribution (in the
region) with mean �b(X ) = 1 and variance varb(X ) = 100
to account for sudden changes in the number of objects.

In order to analyse the spooky effect on this scenario, all
objects in region B are forced to be miss-detected every
10 time steps, additionally to the modelled natural missed
detections in the scene. Fig. 6b-6d show the estimated regional
means and regional variances for the three filters in both
regions. In case of the PHD filter (cf. Fig. 6b), the intensity in
region A is unaffected by the sudden drop in the intensity in
region B. The proposed filter, in contrast, reacts with a slight
drop in the intensity of region A when the targets in B are
missed, and it compensates sightly in each subsequent time
step (Fig. 6c). The biggest effect by far is noticed with the
CPHD filter, as seen in Fig. 6d. Every time the objects in B
stay undetected, the intensity in that region does not drop as
low as for the other two filters, but the intensity in region A
increases notably to approximately 12 targets.

The observed behaviour can be further illustrated by looking
at the correlation of A and B under the PHD, SO-PHD and
CPHD filters, exploiting the covariance of the three filters
given in Sec. V. Eq. (44) shows that the covariance of the PHD
filter is 0 if the two regions are disjoint and the region of origin
of each measurement is unambiguous; this is clearly seen in
the correlation depicted in Fig. 6a. The same figure shows a
strongly negative correlation in the case of the CPHD filter,
which highlights the spooky effect: the filter compensates for
the lost intensity mass in region B by introducing it in region
A. The SO-PHD filter shows a milder but positive correlation,
as the sudden drop/increase in intensity mass in region B goes
along with a smaller drop/increase in region A. These results
suggest that, on these experiments, the SO-PHD filter exhibits
a milder spooky effect than the CPHD filter.

Table I shows the averaged run time for this scenario,
showing a coherent image with the findings above.
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Fig. 5: Tracking scenario, with region A on the left and region
B on the right.
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(b) Mean and standard deviation of the estimated target number, PHD
filter.
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(c) Mean and standard deviation of the estimated target number,
SO-PHD filter.
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(d) Mean and standard deviation of the estimated target number,
CPHD filter.

Fig. 6: Results for Scenario 3, averaged over 100 MC runs.
Fig. 6a shows the correlation in A and B for all filters. Fig. 6b,
6c and 6d depict the mean and standard deviation of the
estimated number of targets per region for the three filters.
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VII. CONCLUSION

A new SO-PHD filter has been introduced, propagating the
variance in the estimated number of targets alongside the first-
order moment of the target process. The Panjer point process
is introduced in order to approximate the multi-target predicted
process and to model the false alarm process. Described with
two parameters, a Panjer distribution encompasses the bino-
mial, Poisson, and negative binomial distribution; the resulting
SO-PHD filter provides more flexibility in the modelling phase
than the PHD filter. The proposed filter is implemented with
a Gaussian mixture algorithm, and compared to the PHD and
CPHD filters on simulated data where it proved to be more
robust to changes in the number of targets of unusually large
extent. In a more usual scenario, the three filters showed
similar performance; the proposed filter proved more reactive
to the disappearance of targets than the CPHD filter, while
having a significantly lower computational complexity.

The regional covariance of a point process is introduced in
order to analyse the correlation between the estimated number
of targets in disjoint regions of the state space, and to assess
quantitatively the well-known spooky effect of the three filters
on a simulated scenario. The results showed that the estimated
targets in the two regions were uncorrelated with the PHD
filter, strongly negatively correlated with the CPHD filter, and
midlly positively correlated with the proposed SO-PHD filter.

APPENDIX A
PROOFS

The appendix provides the proofs for the results in Sec. III
and IV. We first introduce the following differentiation rules,
whose proofs are given in [18].

Lemma A.1 (Differentiation rules). Let G be a linear func-
tional.

(a) The nth order derivative of the composition exp(G(h))
can be written as

�n(exp �G)(h; �1; : : : ; �n) = exp(G(h))
nY
i=1

�G(h; �i):

(46)
(b) The nth order derivative of the composition (G(h))�� is

derived to be

�n(G��)(h; �1; : : : ; �n)

= (�1)n(�)n G(h)���n
nY
i=1

�G(h; �i)
(47)

with (�)n being the Pochhammer symbol (36).

Proof of Prop. III.1. Since a Panjer point process is an i.i.d.
point process, let us start with equation (23), inserting (26) for
�:

GPanjer(h)

(23)
=
X
n�0

�
��
n

��
1 +

1

�

���� �1

� + 1

�n �Z
h(x)s(dx)

�n
(48a)

=

�
1 +

1

�

���X
n�0

�
��
n

��
�1

� + 1

Z
h(x)s(dx)

�n
(48b)

=

�
1 +

1

�

��� �
1� 1

� + 1

Z
h(x)s(dx)

���
(48c)

=

�
1 +

1

�

Z
[1� h(x)]s(dx)

���
(48d)

Equality (48c) follows from the binomial series.

Proof of Prop. III.2. Let us derive the mean and variance of
a Panjer process with parameters �; � and spatial distribution
s, for arbitrary regions B;B0 2 B(X ):

�(B)
(16)
= �GPanjer(h; 1B)

����
h=1

(49a)

(27)
= �

 �
1 +

1

�

Z
[1� h(x)]s(dx)

���
; 1B

!����
h=1

(49b)

(47)
= ��

�
1 +

1

�

Z
[1� 1]s(dx)

����1�
� 1

�

Z
B

s(dx)

�
(49c)

=
�

�

Z
B

s(dx): (49d)

�(2)(B �B0) = �2GPanjer(e
�f ; 1B ;1B0)

����
f=0

(50a)

=
(�)2

�2

�
1 +

1

�

Z
[1� e0]s(dx)

����2 Z
B

e0s(dx)

Z
B0
e0s(dx)

+
�

�

�
1 +

1

�

Z
[1� e0]s(dx)

����1 Z
B\B0

s(dx) (50b)

=
(�)2

�2

Z
B

s(dx)

Z
B0
s(dx) +

�

�

Z
B\B0

s(dx): (50c)

Therefore,

var(B)
(8)
= �(2)(B �B)� [�(B)]

2 (51a)

= �(B)

�
1 +

1

�

Z
B

s(dx)

�
: (51b)

From (49) and (51) we get8>><>>:
�(X ) =

�

�

var(X ) = �(X )

�
1 +

1

�

�
;

(52)

which yields the desired result when solved for � and �.

Proof of Thm. IV.4. Let us denote by Gs;k the PGFL of the
point process describing the evolution of a target from the
previous time step. For the sake of simplicity, we shall omit
the time subscripts on the quantities related to the survival and
birth process.
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The PGFL Gkjk�1 of the predicted target process takes
the form Gkjk�1(h) = Gb(h)Gk�1(Gs(hj�)): Here, the mul-
tiplicative structure stems from the independence between the
newborn targets and those surviving from the previous time
step; the composition appears because the survival process ap-
plies to each preexisting target described by the updated target
process �k�1 from the previous time step [32, Eq. 5.5.18].

In order to produce the variance varkjk�1 of the pre-
dicted process via (8) we first build the second-order moment
�

(2)
kjk�1(B�B0) in arbitrary regions B;B0 2 B(X ). From (16)

we have

�
(2)
kjk�1(B �B0) = �2Lkjk�1(f ; 1B ;1B0)

��
f=0

(53a)

= �2Gkjk�1(e�f ; 1B ;1B0)
��
f=0

: (53b)

The product rule (18) gives

�
(2)
kjk�1(B �B0) = �2Gb(e�f ; 1B ; 1B0)

��
f=0
Gk�1(Gs(1j�))

+ �Gb(e�f ; 1B)
��
f=0

�(Gk�1(Gs(e
�f j�)); 1B0)

��
f=0

+ �Gb(e�f ; 1B0)
��
f=0

�(Gk�1(Gs(e
�f j�)); 1B)

��
f=0

+ Gb(1)�2(Gk�1(Gs(e
�f j�)); 1B ;1B0)

��
f=0

; (53c)
(16)
= �

(2)
b (B �B0)� �b(B)�(Gk�1(Gs(e

�f j�)); 1B0)
��
f=0

� �b(B0)�(Gk�1(Gs(e
�f j�)); 1B)

��
f=0

+ �2(Gk�1(Gs(e
�f j�)); 1B ;1B0)jf=0; (53d)

where �b and �
(2)
b are the first- and second-order moment

measures of the birth process, respectively. Let us first focus
on the term �(Gk�1(Gs(e

�f j�)); 1B)
��
f=0

in (53d). Using the
definition of the PGFL (12) we can write

�(Gk�1(Gs(e
�f j�)); 1B)

��
f=0

=
X
n�0

Z
Xn

�

 "
nY
i=1

Gs(e
�f jxi)

#
; 1B

!�����
f=0

P
(n)
k�1(dx1:n) (54a)

(18)
=
X
n�0

Z
Xn

nX
i=1

�(Gs(e
�f jxi); 1B)

��
f=0

P
(n)
k�1(dx1:n) (54b)

(4)
=

Z
�(Gs(e

�f jx); 1B)
��
f=0

�k�1(dx): (54c)

The survival process for a target with state x at the previous
time step can be described with a Bernoulli point process with
parameter ps(x) and spatial distribution t(�jx), and thus (24)
gives

Gs(e
�f jx) = 1� ps(x) + ps(x)

Z
e�f(y)t(dyjx): (55)

It follows that

�(Gs(e
�f jx); 1B) = ps(x)

Z
�(e�f(y); 1B)t(dyjx) (56a)

= �ps(x)

Z
1B(y)e�f(y)t(dyjx); (56b)

which leads to

�(Gs(e
�f jx); 1B)

��
f=0

= �ps(x)t(Bjx): (57)

Substituting (57) in (54c) yields

�(Gk�1(Gs(e
�f j�)); 1B)

��
f=0

= �
Z
ps(x)t(Bjx)�k�1(dx):

(58)
Let us write the last term �2(Gk�1(Gs(e

�f j�)); 1B ;1B0)jf=0

in (53d) in a similar manner as above. From the definition of
the PGFL (12) we can write

�2(Gk�1(Gs(e
�f j�)); 1B ;1B0)jf=0 (59a)

(18)
=
X
n�0

Z
Xn

nX
i=1

�2(Gs(e
�f jxi); 1B ;1B0)

��
f=0

P
(n)
k�1(dx1:n)

+
X
n�0

Z
Xn

X
1�i;j�n
i6=j

�(Gs(e
�f jxi); 1B)

��
f=0

� �(Gs(e
�f jxj); 1B0)

��
f=0

P
(n)
k�1(dx1:n) (59b)

(4)
=

Z
�2(Gs(e

�f jx); 1B ;1B0)
��
f=0

�k�1(dx)

+

Z
�(Gs(e

�f jx); 1B)
��
f=0

� �(Gs(e
�f jx0); 1B0)

��
f=0

�
(2)
k�1(d(x; x0)): (59c)

From (56), the value of �2(Gs(e
�f jx); 1B ;1B0)

��
f=0

is found
to be

�2(Gs(e
�f jx); 1B ;1B0)

��
f=0

= ps(x)t(B \B0jx); (60)

so that (59c) becomes

�2(Gk�1(Gs(e
�f j�)); 1B ;1B0)jf=0 = �s(B \B0)

+

Z
ps(x)t(Bjx)ps(x

0)t(B0jx0)�(2)
k�1(d(x; x0)): (61)

Substituting (58) and (61) in (53d) and setting B = B0 yields

�
(2)
kjk�1(B �B) = �

(2)
b (B �B) + 2�b(B)�s(B) + �s(B)

+

Z
ps(x)t(Bjx)ps(x

0)t(Bjx0)�(2)
k�1(d(x; x0)): (62)

Using the definition of the variance (8) then yields

varkjk�1(B) = varb(B) + [�b(B)]2 � [�kjk�1(B)]2

+ 2�b(B)�s(B) + �s(B)

+

Z
ps(x)t(Bjx)ps(x

0)t(Bjx0)�(2)
k�1(d(x; x0)); (63)

and substituting the expression of the predicted intensity (30)
to �kjk�1(B) in (63) yields the desired result.

Proof of Cor. IV.5. Let us assume that the probability of sur-
vival ps;k is uniform over the state space. First of all, Eq. (31)
with B = X simplifies to

�s;k(X ) = ps;k

Z
tkjk�1(Xjx)| {z }

=1

�k�1(dx) (64a)

= ps;k�k�1(X ): (64b)
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From Eq. (32) we can then compute the variance of the
survival process vars;k in the whole state space, i.e.

vars;k(X ) = �s;k(X )[1� �s;k(X )] (65a)

+ p2
s;k

Z
tkjk�1(Xjx)| {z }

=1

tkjk�1(Xjx0)| {z }
=1

�
(2)
k�1(d(x; x0)) (65b)

(64)
= ps;k�k�1(X )

h
1� ps;k�k�1(X )

i
+ p2

s;k�
(2)
k�1(X � X )

(65c)
(10)
= ps;k�k�1(X )

h
1� ps;k�k�1(X )

i
+ p2

s;k

h
�

(2)
k�1(X � X )� �k�1(X )

i
(65d)

(8)
= ps;k�k�1(X )

h
1� ps;k�k�1(X )

i
+ p2

s;k

�
vark�1(X ) + [�k�1(X )]2 � �k�1(X )

�
(65e)

so vars;k(X ) = p2
s;kvark�1(X ) + ps;k[1� ps;k]�k�1(X ).

Proof of Thm. IV.7. For the sake of simplicity, time subscripts
will be omitted when there is no ambiguity. In addition,
qd(x) := 1 � pd(x) will denote the probability of missed
detection for a target with state x 2 X , and Gc;k and Gd;k will
denote the PGFLs of the clutter and target detection process,
respectively.

From Assumptions IV.6 we can write the joint PGFL
describing the predicted targets and the observations [2]:

GJ;k(g; h) = Gkjk�1 (hGd(gj�))Gc(g); (66)

where the multiplicative form stems from the independence
between the target-generated and the clutter measurements;
the composition appears because the detection process applies
to each target described by �kjk�1. Since both the predicted
target and the clutter process are assumed Panjer, (66) takes
the more specific form

GJ;k(g; h) = �(X )�
�
Fd(g; h)

����
Fc(g)

���c

; (67)

where

Fd(g; h) := �(X )

�
1 +

1

�

Z
(1� h(x)Gd(gjx))s(dx)

�
(68)

=

Z �
1 +

1� h(x)Gd(gjx)

�

�
�(dx); (69)

and Fc(g) := 1 + 1
�c

R
(1�g(z))sc(z)dz. Note that the clutter

term Fc follows directly from the definition of a Panjer process
(27); the detection term (67) stems from (27) as well but is
then scaled by the predicted mean number of targets �(X ), so
that the final result of the theorem exploits similar notations
as the CPHD filter in [8], [24]. The detection process in
state x can be described with a Bernoulli point process with
parameter pd(x) and spatial distribution density l(�jx), and
thus (24) gives Gd(gjx) = qd(x) + pd(x)

R
Z g(z)l(zjx)dz.

Note that both Fd and Fc are linear w.r.t. to the argument g,
and thus only their first-order derivatives are non-zero; given
an arbitrary measurement z 2 Zk, we can write

�Fd(g; h; �z) = �
Z
h(x)pd(x)l(zjx)

�
�(dx); (70)

and �Fc(g; �z) = �sc(z)=�c. Similar to the PHD filter update
[2], the PGFL of the updated target process �k is obtained
from the differentiation of the joint PGFL (67) using Bayes’
rule:

Gk(h) =
�jZkjGJ;k(g; h; (�z)z2Zk

)jg=0

�jZkjGJ;k(g; 1; (�z)z2Zk
))jg=0

: (71)

Using the higher-order product (20) and chain (21) rules,
the jZkj-th derivative of the joint PGFL (67) in directions
(�z)z2Zk

yields

�jZkjGJ;k(g; h; (�z)z2Zk
) /

jZkjX
j=0

(�)j
�j

(�c)jZkj�j

�
jZkj�j
c

Fd(g; h)�j

� Fc(g)�jZkj+j
X
Z�Zk

jZj=j

0@Y
z2Z

F zd (h)
Y

z02ZknZ

sc(z0)

1A (72a)

/
jZkjX
j=0

(�)j
�j

(�c)jZkj�j

(�cFc(g))jZkj�j
Fd(g; h)�j

X
Z�Zk

jZj=j

Y
z2Z

F zd (h)

sc(z)
;

(72b)

where F zd (h) :=
R
h(x)pd(x)l(zjx)�(dx). The

proportional constant in (72) is the quantity
�(X )�Fd(g; h)��Fc(g)��c

Q
z2Zk

sc(z); since it is discarded
in the ratio (71), it will be omitted from now on. Details of
the developments leading to (72) can be found in Lem. VI.6
in [18], where a similar result is produced.

Similar to [2], we can finally compute the intensity of the
updated target process �k in any region B 2 B(X ) from the
first-order derivative of its PGFL (71), i.e.

�k(B) =
�jZkj+1GJ;k(g; h; (�z)z2Zk

;1B)jg=0;h=1

�jZkjGJ;k(g; 1; (�z)z2Zk
))jg=0

: (73)

We first need to differentiate (72) in direction 1B through the
product rule (18) and get

�jZkj+1GJ;k(g; h; (�z)z2Zk
;1B) / (���Fd(g; h; 1B))

�
jZkjX
j=0

(�)j+1

�j+1

(�c)jZkj�j

(�cFc(g))jZkj�j
Fd(g; h)�j�1

X
Z�Zk

jZj=j

Y
z2Z

F zd (h)

+
X
z2Zk

F zd (1B)

jZkj�1X
j=0

(�)j+1

�j+1

(�c)(jZkj�1)�j

(�cFc(g))(jZkj�1)�j

� Fd(g; h)�j�1
X

Z�Zknfzg
jZj=j

Y
z02Zk

F z
0

d (h); (74)

where

�Fd(g; h; 1B)

= � 1

�

Z
B

�
qd(x) + pd(x)

Z
Z
g(z)‘(zjx)dz

�
�(dx):

(75)

Substituting (72) and (74) into (73) yields the result.

Proof of Thm. IV.8. From (16), we can compute the second-
order moment measure �

(2)
k in any regions B;B0 2 B(X )

from the second-order derivative of the Laplace functional Lk
of the updated target process �k. Substituting exp(�f) to h in
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the PGFL (71) yields the expression of the Laplace functional
Lk, and from (16) it follows that [24]

�
(2)
k (B�B0) =

�jZkj+2GJ;k(g; e�f ; (�z)z2Zk
;1B ;1B0)jg=0;f=0

�jZkjGJ;k(g; 1; (�z)z2Zk
))jg=0

:

(76)
The denominator in (76) has already been computed in (72);
we shall thus focus here on the derivation in directions 1B ;1B0
of the numerator

�jZkjGJ;k(0; e�f ; (�z)z2Zk
) /

jZkjX
j=0

(�)j
�j

(�c)jZkj�j

(1 + �c)jZkj�j

� Fd(0; e�f )�j
X
Z�Zk

jZj=j

Y
z2Z

F zd (e�f )

sc(z)
: (77)

The first-order derivative of (77) in direction 1B is

�jZkj+1GJ;k(0; e�f ; (�z)z2Zk
;1B)

/ �
jZkjX
j=0

(�)j+1

�j+1

(�c)jZkj�j

(�c + 1)jZkj�j
Fd(0; e�f )�j�1

� Fmd(e�f1B)
X
Z�Zk

jZj=j

Y
z2Z

F zd (e�f )

�
jZkjX
j=1

(�)j
�j

(�c)jZkj�j

(�c + 1)jZkj�j
Fd(0; e�f )�j

�
X
z2Zk

F zd (e�f1B)

sc(z)

X
Z�Zknfzg

Y
z02Z

F z
0

d (e�f )

sc(z)
;

(78)

where Fmd(h) :=
R
h(x)qd(x)�(dx). In a similar manner,

(78) can be differentiated another time in the direction of
1B0 to yield the second-order derivative of (77) in directions
1B ;1B0 . Substituting this second-order derivative and Eq. (72)
into (76) yields

�
(2)
k (B �B0) = �k(B \B0) + ��k(B)��k(B0)‘2(�)

+ ��k(B)
X
z2Z

�zk(B0)

sc(z)
‘2(z) + ��k(B0)

X
z2Z

�zk(B)

sc(z)
‘2(z)

+
X

z;z02Zk

�zk(B)

sc(z)

sz
0

k (B0)

sc(z0)
‘6=2 (z; z0): (79)

Following (8), the intensity (41) is then squared and subtracted
from the second-order moment (79) evaluated with B0 = B
in order to yield the desired quantity vark(B).

Proof of Cor. IV.9. Let us assume that the predicted tar-
get process �kjk�1 is Poisson with rate �kjk�1, i.e.,
�kjk�1; �kjk�1 ! 1, with constant ratio �kjk�1 =
�
� . For the same of simplicity, the time subscripts on
�kjk�1; �kjk�1; �kjk�1 are omitted for the rest of the proof.
Note first that, since �(dx) = �s(dx), we have

lim
�;�!1

Fd = lim
�;�!1

Z �
1 +

pd;k(x)

�| {z }
!0

�
�s(dx) = �: (80)

In order to check the convergence of the intensity update
equation (41), we only need to check the convergence of the

term �u(Z) in (38) as it is the only term that contains � or
�. We can write:

lim
�;�!1

jZjX
j=0

(�)j+u
(�)j+u

(�c)jZj�j

(�c + 1)jZj�j
F�j�ud ej(Z) (81)

(36)
= lim

�;�!1

jZkjX
j=0

j+u�1Y
i=0

�
�+

i

�

�
| {z }
!�

(�c)jZj�j

(�c + 1)jZj�j
F�j�ud| {z }
!��j�u

ej(Z)

(82)

=

jZjX
j=0

(�c)jZj�j

(�c + 1)jZj�j
ej(Z): (83)

Note in particular that the limit of �u(Z) is independent of
the value of u; the corrective terms (37) thus converge to8>>><>>>:

lim
�;�!1

‘1(�) = 1

lim
�;�!1

‘1(z) =

PjZkj�1
j=0

(�c)jZkj�j�1

(�c+1)jZkj�j�1 ej(Zk n fzg)PjZkj
j=0

(�c)jZkj�j

(�c+1)jZj�j ej(Zk)
;

(84)
which coincides with the results of Thm III.2 in [18].

If we further assume that the clutter process is Poisson,
the intensity update equation (41) further converges to the
intensity update equation of the original PHD filter [18].

Proof of Prop. V.1. The covariance is found with Eq. (7).
For the SO-PHD filter, the first- and second-order moment
measures are given by Eqns (41) and (79). For the PHD filter,
they are given by (28) and (31) in [24], and for the CPHD
filter by (19) and (29) ibid.

APPENDIX B
SECOND-ORDER GM-PHD FILTER

Algorithm 1: Prediction (time k).

Input
Posterior: fw(i)

k�1;m
(i)
k�1; P

(i)
k�1g

Nk�1

i=1 ; vark�1(X )

Birth: fw(i)
b;k�1;m

(i)
b;k�1; P

(i)
b;k�1g

Nb;k�1

i=1 ; varb;k(X )

Survival process
�k�1(X ) :=

PNk�1

i=1 w
(i)
k�1

for 1 � i � nk�1 do
w

(i)
kjk�1 := ps;kw

(i)
k�1

m
(i)
kjk�1 := Fk�1m

(i)
k�1

P
(i)
kjk�1 := Fk�1P

(i)
k�1F

T
k�1 +Qk�1

end for
vars;k(X ) := p2

s;kvark�1(X ) + ps;k[1� ps;k]�k�1(X )

Newborn process
for 1 � j � Nb;k�1 do
fw;m;Pg(Nk�1+j)

kjk�1 := fw;m;Pg(j)b;k�1

end for
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Nkjk�1 := Nk�1 +Nb;k�1

varkjk�1(X ) := varb;k(X ) + vars;k(X )

Output
Prediction: fw(i)

kjk�1;m
(i)
kjk�1; P

(i)
kjk�1g

Nkjk�1

i=1 ; varkjk�1(X )

Algorithm 2: Elementary symmetric functions.

Input
Collection of terms: f�zk(X )gz2Zk

Vieta’s theorem
Expand: p(x) =

Q
z2Zk

(x� �zk(X )) =
Pmk

j=0 pjx
j

Set ej(Zk) = pj for all 0 � j � mk

Output
fej(Zk)g0�j�mk

Algorithm 3: Data update (time k).

Input
Prediction: fw(i)

kjk�1;m
(i)
kjk�1; P

(i)
kjk�1g

Nkjk�1

i=1 ; varkjk�1(X )

Current measurements: Zk = fzjgMk
j=1

Panjer parameters
�kjk�1(X ) :=

PNkjk�1

i=1 w
(i)
kjk�1

�kjk�1 := �kjk�1(X )2=(varkjk�1(X )� �kjk�1(X ))
�kjk�1 := �kjk�1(X )=(varkjk�1(X )� �kjk�1(X ))

Missed detection and measurement terms
for 1 � i � Nkjk�1 do

w
(i)
�;k := (1� pd;k)w

(i)
kjk�1

m
(i)
�;k := m

(i)
kjk�1

P
(i)
�;k := P

(i)
kjk�1

end for
��k(X ) := (1� pd;k)�kjk�1(X )
for 1 � j �Mk do

for 1 � i � Nkjk�1 do
y

(i;j)
k := zj �Hkm

(i)
kjk�1

S
(i)
k := HkP

(i)
kjk�1H

T
k +Rk

K
(i)
k := P

(i)
kjk�1H

T
k [S

(i)
k ]�1

w
(i;j)
d;k := pd;kw

(i;j)
d;kjk�1N (z; y

(i;j)
k ; S

(i)
k )=sc;k

m
(i;j)
d;k := m

(i)
kjk�1 +K

(i)
k y

(i;j)
k

P
(i;j)
d;k := (I �K(i)

k Hk)P
(i)
kjk�1

end for
�
zj

k (X ) :=
PNkjk�1

i=1 w
(i;j)
d;k

end for

Corrective terms
Fd := (1 +

pd;k

�kjk�1
)
P
z2Zk

�
zj

k (X )

Compute fed(Zk)g0�d�Mk
using Alg. 1

for 0 � u � 2 do
�u(Zk) :=

PMk

j=0
(�kjk�1)j+u

(�kjk�1)j+u

(�c;k)mk�j

(�c;k+1)mk�j F
�j�u
d ej(Zk)

end for

‘1(�) := �1(Zk)=�0(Zk); ‘2(�) := �2(Zk)=�0(Zk)
for 1 � i �Mk do

Compute fed(Zk n zi)g0�d�Mk�1 using Alg. 1
for 1 � u � 2 do

�u(Zk n zi) :=
PMk�1
d=0

(�kjk�1)d+u

(�kjk�1)d+u

� (�c;k)mk�1�d

(�c;k+1)mk�1�dF
�d�u
d ed(Zk n zi)

end for
‘1(zi) := �1(Zk n zi)=�0(Zk)
‘2(zi) := �2(Zk n zi)=�0(Zk)
for 1 � i < j �Mk do

Compute fed(Zknfzi; zjg)g0�d�Mk�2 using Alg. 1
�2(Zk n fzi; zjg) :=

PMk�2
d=0

(�kjk�1)d+2

(�kjk�1)d+2

� (�c;k)mk�2�d

(�c;k+1)mk�2�dF
�d�2
d ed(Zk n fzi; zjg)

‘6=2 (zi; zj) := �2(Zk n fzi; zjg)=�0(Zk)
end for

end for

Missed detection terms
for 1 � i � Nkjk�1 do

w
(i)
k := ‘1(�)w

(i)
�;k

m
(i)
k := m

(i)
�;k

P
(i)
k := P

(i)
�;k

Association terms
for 1 � j �Mk do

w
(i�nkjk�1+j)

k := ‘1(zj)w
(i;j)
d;k

m
(i�nkjk�1+j)

k := m
(i;j)
d;k

P
(i�nkjk�1+j)

k := P
(i;j)
d;k

end for
end for
Nk := Nkjk�1 +Nkjk�1Mk

�k(X ) :=
PNk

i=1 w
(i)
k

Variance update
vark(X ) := �k(X ) + ��k(X )2

�
‘2(�)� ‘1(�)2

�
+2��k(X )

P
z2Zk

�z
k(X )

sc;k(z) [‘2(z)� ‘1(�)‘1(z)]

+
P
z 6=z02Zk

�z
k(X )

sc;k(z)
�z0

k (X )
sc;k(z0)

h
‘6=2 (z; z0)� ‘1(z)‘1(z0)

i
Output
Posterior: fw(i)

k ;m
(i)
k ; P

(i)
k g

Nk
i=1; vark(X )
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[29] ——, “Faà Di Bruno’s formula and Volterra series,” in 2014 IEEE
Workshop on Statistical Signal Processing (SSP). IEEE, 2014, pp.
217–219.

[30] D. S. Bryant, E. D. Delande, S. Gehly, J. Houssineau, D. E. Clark,
and B. A. Jones, “The CPHD Filter with Target Spawning,” Signal
Processing, IEEE Transactions on, vol. 65, no. 5, pp. 13 124–13 138,
2017.

[31] S. A. Klugman, H. H. Panjer, and G. Willmot, Loss Models: From Data
to Decisions, ser. Wiley Series in Probability and Statistics. Wiley,
2012.

[32] D. J. Daley and D. Vere-Jones, An introduction to the theory of point
processes. vol. I. , Elementary theory and methods, ser. Probability and
its applications. New York, Berlin, Paris: Springer, 2003.

[33] D. Schuhmacher, B.-T. Vo, and B.-N. Vo, “A Consistent Metric for
Performance Evaluation of Multi-Object Filters,” Signal Processing,
IEEE Transactions on, vol. 56, no. 8, pp. 3447–3457, Aug. 2008.

Isabel Schlangen is a current Ph.D. studentship
holder at the Edinburgh Super-Resolution Imaging
Consortium, UK. She received a German diploma
in Mathematics from the University of Bonn (Ger-
many) in 2012 and a joint MSc degree in Vision
and Robotics from the Universities of Burgundy
(France), Girona (Spain), and Heriot-Watt (Edin-
burgh, UK) in 2014. Her current research interests
are multi-target estimation, probability theory and
image analysis in a mainly biomedical context.

Emmanuel D. Delande received an Eng. degree
from the Ecole Centrale de Lille, Lille, and a M.Sc.
degree in automatic control and signal processing
from the University of Science & Technology, Lille,
both in 2008. He was awarded his Ph.D. in 2012
from the Ecole Centrale de Lille. He is a research
associate at Heriot-Watt University in Edinburgh.
His research interests are in the design and the
implementation of multi-object filtering solutions
for multiple target tracking and sensor management
problems.

Jérémie Houssineau received an Eng. degree in
mathematical and mechanical modelling from MAT-
MECA, Bordeaux, and a M.Sc. degree in mathe-
matical modelling and statistics from the University
of Bordeaux, both in 2009. From 2009 to 2011,
he was a Research Engineer with DCNS, Toulon.
He received his Ph.D. degree in statistical signal
processing from Heriot-Watt University, Edinburgh,
in 2015. He is currently a Research Fellow in the
department of Statistics and Applied Probability of
the National University of Singapore.

Daniel Clark is in the Departement CITI in Telecom
SudParis in France. From 2007-2017 he was in
the School of Engineering and Physical Sciences at
Heriot-Watt University. His research interests are in
the development of the theory and applications of
multi-object estimation algorithms for sensor fusion
problems. He has led a range of projects spanning
theoretical algorithm development to practical de-
ployment. He was awarded his Ph.D. in 2006 from
Heriot-Watt University.


