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ABSTRACT
Data dimensionality reduction in radio interferometry can provide savings of computational re-
sources for image reconstruction through reduced memory footprints and lighter computations
per iteration, which is important for the scalability of imaging methods to the big data setting
of the next-generation telescopes. This article sheds new light on dimensionality reduction
from the perspective of the compressed sensing theory and studies its interplay with imaging
algorithms designed in the context of convex optimization. We propose a post-gridding linear
data embedding to the space spanned by the left singular vectors of the measurement operator,
providing a dimensionality reduction below image size. This embedding preserves the null
space of the measurement operator and hence its sampling properties are also preserved in light
of the compressed sensing theory. We show that this can be approximated by first computing
the dirty image and then applying a weighted subsampled discrete Fourier transform to obtain
the final reduced data vector. This Fourier dimensionality reduction model ensures a fast im-
plementation of the full measurement operator, essential for any iterative image reconstruction
method. The proposed reduction also preserves the independent and identically distributed
Gaussian properties of the original measurement noise. For convex optimization-based imag-
ing algorithms, this is key to justify the use of the standard �2-norm as the data fidelity
term. Our simulations confirm that this dimensionality reduction approach can be leveraged
by convex optimization algorithms with no loss in imaging quality relative to reconstructing
the image from the complete visibility data set. Reconstruction results in simulation settings
with no direction dependent effects or calibration errors show promising performance of the
proposed dimensionality reduction. Further tests on real data are planned as an extension of
the current work. MATLAB code implementing the proposed reduction method is available on
GitHub.

Key words: methods: numerical – techniques: image processing – techniques: interferomet-
ric.

1 IN T RO D U C T I O N

Image reconstruction in radio interferometry is intrinsically an ill-
posed inverse problem due to the fact that the visibilities essentially
identify an incomplete Fourier coverage of the image of interest.
The theory of compressed sensing demonstrates that a signal admit-
ting a sparse representation in some adequate basis can be recov-
ered from incomplete sampling (Donoho 2006; Candès, Romberg
& Tao 2006a,b). As a consequence, the development of compressed
sensing-based imaging methods in radio interferometry is an active
research area, and novel work applying compressed sensing theory
was reported soon after its establishment (Wiaux et al. 2009a,b).

� E-mail: vijay.kartik@epfl.ch (SVK); y.wiaux@hw.ac.uk (YW)

More involved work to handle specific problems has also been per-
formed, primarily on wide field-of-view observations (McEwen
& Wiaux 2011) and non-coplanar effects (Wolz et al. 2013).
Approaches implementing sparse reconstruction for radio inter-
ferometry continue to be investigated, and report consistently in-
creasing reconstruction performance, as recent work described in
Li, Cornwell & de Hoog (2011), Carrillo, McEwen & Wiaux
(2012, 2014), Garsden et al. (2015), Dabbech et al. (2015), Fer-
rari et al. (2015) demonstrates.

Large radio telescopes – like the Low Frequency Array
(LOFAR), the upgraded Karl G. Jansky Very Large Array (VLA)
and the future Square Kilometre Array (SKA) – are expected to pro-
duce data at an extremely high rate. For instance, estimates for data
rates in the first phase of SKA operation are around five terabits per
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second (Broekema, Nieuwpoort & Bal 2015). The resulting images
are designed to be in the gigapixels range, and with a high dy-
namic range of six/seven orders of magnitude (Cornwell, Voronkov
& Humphreys 2012; Wijnholds et al. 2014). This high data rate
requirement presents a great signal processing challenge and has
led to new research in the design and development of scalable im-
age recovery and data-handling methods in radio interferometry.
Due to the very demanding requirements for image reconstruction
algorithms, big data methods need to be studied and employed; in
particular, High Performance Computing (HPC)-ready solutions are
needed to scale with the memory and CPU requirements of these
decidedly compute-intensive processing tasks.

From a data acquisition standpoint, radio-interferometric imaging
is strictly a compressed sensing problem only when the amount of
continuous visibility measurements is lower than the image size. In
the big data regime of next-generation telescopes, the data volumes
would actually be much larger than the image size, to reach high
dynamic ranges. However, this does not change the ill-posed nature
of the problem due to the intrinsic incomplete Fourier coverage.
Therefore, from a reconstruction standpoint, the properties that the
measurement operator needs to satisfy to enable accurate recovery
from sparsity promoting convex optimization algorithms are those
prescribed by the compressed sensing theory. The question raised
is thus: ‘can image reconstruction methods scale to the big data
regime?’

One approach to this problem is to study parallelized and dis-
tributed optimization algorithms that can split the data as needed
(Ferrari et al. 2014; Carrillo et al. 2015; Onose et al. 2016). In
this article we contemplate the idea of linearly embedding the data
in a lower-dimensional space before feeding them to the image
reconstruction algorithms. This linear data dimensionality reduc-
tion approach has recently been considered in the numerical linear
algebra literature under the name of ‘sketching’, which, in gen-
eral terms, addresses the question of solving a high-dimensional
optimization problem by embedding it into a lower-dimensional
space (Mahoney 2011; Woodruff 2014). Sketching and similar ran-
dom projection methods for dimensionality reduction of manifold-
modelled data (Baraniuk & Wakin 2007; Hegde, Wakin & Bara-
niuk 2008) were introduced and studied at the same time as the
emergence of compressed sensing theory. Recent work drawing
parallels between dimensionality reduction and compressed sens-
ing (Baraniuk et al. 2008; Krahmer & Ward 2011) can be traced
back to the seminal work on the Johnson–Lindenstrauss lemma
(Johnson & Lindenstrauss 1984).

Assuming an original linear measurement operator � from the
radio interferometry measurement equation, our task is to design
a sketching/dimensionality reduction operator R leading to a full
measurement operator �′ = R� with the same properties as �
as dictated by the compressed sensing theory. In the context of
sketching, dimensionality reduction is performed by random pro-
jections. We do not follow that approach here, but instead leverage
the singular value decomposition (SVD) of the original measure-
ment operator.

This article is organized as follows. Section 2 gives a brief
overview of the ill-posed inverse problem of radio-interferometric
imaging, and discusses convex optimization-based imaging meth-
ods. Additionally, we highlight key properties and guarantees that
the compressed sensing theory requires and provides, respectively,
for signal reconstruction. In Section 3 we study dimensionality re-
duction techniques in the particular setting of using compressed
sensing-based reconstruction algorithms. We present preliminary
studies undertaken in this context, and derive the theoretically

optimal dimensionality reduction operator from a SVD perspec-
tive of the measurement operator. We then introduce a novel post-
gridding dimensionality reduction consisting of first mapping grid-
ded visibilities back to image space, i.e. computing the dirty image,
and then performing a weighted subsampled discrete Fourier trans-
form to obtain the final reduced data vector with dimension below
image size. We advocate that this procedure is optimal in reducing
the dimension of the data vector, while preserving the compressed
sensing properties and fast implementation of the final measurement
operator �′. It also ensures that the independent and identically dis-
tributed (i.i.d.) Gaussian properties of the measurement noise are
preserved, thus setting the image reconstruction problem appropri-
ately for convex optimization-based reconstruction. We highlight
alternative dimensionality reduction methods that lead to gridded
visibilities of dimension above image size, and dirty images of di-
mension equal to image size, and make a comparative study on the
reconstruction quality using these methods.

We show that the image reconstruction quality with visibilities
‘reduced’ using the proposed method is comparable to that using the
complete visibilities set and that with gridded visibilities. The per-
formance associated with the use of the dirty image as reduced data
vector is suboptimal. These results are reported in Section 4 through
simulations with data sets containing up to 26 million continuous
visibilities using SKA-like simulated uv coverages. We present our
conclusions on this proposed dimensionality reduction method in
Section 5, and outline possible directions to extend this work and
combine it with other concurrent approaches in scalable image re-
covery in radio interferometry. MATLAB code containing this work is
available on GitHub1 and is expected to be integrated into ‘PURIFY’,2

a radio-interferometric imaging software proposed and described in
Carrillo et al. (2014).

2 C OMPRESSED SENSI NG PERSPECTI VE O N
RADI O-I NTERFERO METRI C I MAG I NG

2.1 Radio interferometer measurement equation

A radio interferometer contains an array of antennas, and each pair
of antennas constitutes a ‘baseline’. A baseline measures, at each
instant of observation, the correlation of the electric fields coming
from the source under scrutiny. The baseline (measured in units
of the wavelength at the centre frequency of the observation band)
has components u, v and w; (u, v) form the coordinates of the
visibilities ( y) plane, the corresponding coordinates for the source
intensity distribution (x) being l and m. On a small field of view,
and assuming narrow-band intensity incoherent signals (l, m small,
with negligible w-term effects), the general measurement equation
[described and explained in detail in Thompson et al. (2001) and
Smirnov (2011)] boils down – through the van Cittert–Zernike the-
orem – to an incomplete Fourier coverage of sky brightness. The
measurement equation is then given by

y(u, v) =
��

�

A(l, m, u, v) x(l, m)e−2π i(ul+vm) dldm, (1)

where y(u, v) denotes the obtained visibilities from an underlying
source intensity ‘image’ x(l, m), and A(l, m, u, v) represents all
antenna properties including collecting area, beam pattern and other
possible direction-dependent effects and w-term corrections, and the

1 http://basp-group.github.io/fourierdimredn
2 http://basp-group.github.io/purify
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integral is computed over � = {(l, m): l2 + m2 < 1}. The discretized
form of the associated linear measurement model reads in matrix
form as

y = �x + n, (2)

where x ∈ CN is the (vectorized) image to be recovered and y ∈ CM

the visibilities vector, n ∈ CM being the noise in the measure-
ments; the ‘measurement operator’ � ∈ CM×N covers the linear
relation between the signal and the continuous visibilities, and is
given by � = GFDRZB, where B denotes the primary beam, Z the
zero-padding of the image needed to compute the discrete Fourier
transform of x on a finer sampling grid in the Fourier domain, F
the discrete Fourier transform operator in the oversampled case,
G a convolution interpolation operator to map from the discrete
frequency grid to the continuous uv plane (each row containing
the interpolation kernel), and DR a diagonal matrix to implement
the reciprocal of the inverse Fourier transform of the interpolation
kernel used in G, to undo the effects of the convolution by the in-
terpolation kernel in the frequency domain. In the work presented
in this article, we assume B = I, where I is identity. Note that
direction-dependent effects can be accounted for in this approach
by allowing general interpolation kernels in each row of the matrix
G. We define the combined operator Z = DRZ for brevity in further
discussions. With these assumptions and notations we now have the
measurement operator given by

� = GFZ ∈ CM×N . (3)

The superscript ‘�’ is used throughout this article to mean the
adjoint operator/matrix. It may be noted here that G� is the ‘grid-
ding’ operator mapping continuous visibilities to the oversampled

discrete Fourier grid, F�
is the inverse Fourier transform and Z�

is
a (scaled) cropping to image size. More details and motivations for
the components of the measurement operator � listed above can be
found in Rau et al. (2009) and Carrillo et al. (2014). In this article
we assume complete knowledge of � and therefore pre-calibrated
continuous visibilities y.

2.2 Sparse reconstruction methods for imaging

Radio-interferometric image recovery poses an inverse problem
which is ill-posed since � models an incomplete measurement
of the visibility/uv space. The most widely used image recon-
struction method in radio interferometry is the CLEAN algorithm
(Högbom 1974) and its several variants like Cotton-Schwab-CLEAN

(Schwab 1984), Multi-frequency-CLEAN (Sault & Wieringa 1994)
and Multiscale-CLEAN (Cornwell 2008). In its most basic form,
CLEAN forms a ‘model’ of the image through an iterative method
with the following sequential steps: (i) gridding the residual vis-
ibilities as G�( y − �x), (ii) forming the residual dirty image

Z
�
F

�
G�( y − �x) = ��( y − �x), and finally (iii) selecting the

peak of the residual image as a model component. In essence, CLEAN

follows a ‘matching pursuit’-type algorithmic structure (Mallat &
Zhang 1993), using a gradient descent to minimize the residual
norm ‖ y − �x‖2, with the implicit use of the sparsity of the under-
lying signal to regularize the inverse problem. Sparsity is reflected
in the assumption that the sky model contains a few point sources,
selected one at a time with CLEAN.

A signal x ∈ CN has a k-sparse representation if there exists a
basis � so that x = �� where � has at most k non-zero entries. x is
called compressible if the remaining N − k entries are non-zero but
negligible entries. Compressed sensing-based approaches explicitly

leverage the sparsity of the signal, typically using an �1-norm min-
imization scheme. These approaches have been presented as robust
recovery methods for radio interferometry images in the literature,
e.g. Wiaux et al. (2009a), Li et al. (2011). We take a so-called
analysis-based approach to recover the image directly, as opposed
to recovering a sparse representation and subsequently ‘synthesiz-
ing’ the image from that. We apply the sparsity restrictions while
maintaining reasonable fidelity with the initial data, leading to the
solution to the inverse problem of the form

min
x∈RN+

‖��x‖1s.t.‖ y − �x‖2
2 ≤ ε, (4)

where ε is an upper bound on the energy of the noise n in visibility
space, given by ‖n‖2

2 [see Candès et al. (2011) and Carrillo et al.
(2012) for more details on the analysis-based approach]. In equation
(4) the condition imposed on the signal x is that it be sparse in
a dictionary � ∈ CN×D , where D is the number of elements in
the dictionary. The sparsity prior is expressed as a convex �1-norm
approximation of the less tractable non-convex �0-norm that reflects
the actual sparsity. The data fidelity term is expressed as an �2-norm.
In the general case, the data fidelity term is actually a negative log-
likelihood term given by n�Cn

−1n, where Cn is the noise covariance
matrix. This simplifies to ‖n‖2

2/σ
2
n under the assumption of i.i.d.

Gaussian noise. We also note the importance of having a reliable
estimate of the upper bound ε for the data fidelity term and the
physical relevance of limiting this to the total energy in the noise;
in the case of continuous visibilities, this is analytically computed
since the noise energy, given by ‖n‖2

2, has a χ2 distribution if n has
i.i.d. Gaussian entries. For reasonably high degrees of freedom –
corresponding, in this setting, to high dimensional noise vectors – a
χ2 distribution exhibits concentration of measure, thus providing a
sharp upper bound that is directly computable from the mean. In our
simulations for image reconstruction we compute this upper bound
as two standard deviations beyond the mean, which includes a large
percentile of the distribution. If the assumption of i.i.d. Gaussian
entries of the noise fails to hold true, then determining ε is not
a direct analytical computation since the noise energy no longer
follows a χ2 distribution.

Applying a stricter sparsity constraint by using the concept of ‘av-
erage sparsity’ over a concatenation of orthonormal bases �i ∈ CN

to form the dictionary �, the SARA algorithm presented in Car-
rillo et al. (2012) shows improved reconstruction results over other
convex optimization-based imaging methods that use sparse re-
construction. Average sparsity is imposed over a dictionary that
consists of the Dirac basis and the first eight Daubechies wavelets.
This is different from other imaging methods that may impose spar-
sity in a single orthonormal basis. Garsden et al. (2015), Dabbech
et al. (2015), Ferrari et al. (2015) and others have also reported im-
proved signal reconstruction using different sparse regularization
techniques. With the help of proximal splitting methods [see Com-
bettes & Pesquet (2011) for a comprehensive summary of these
methods], a complex minimization problem can be split into multi-
ple tractable subproblems, and this is the approach taken in Carrillo
et al. (2012, 2014) for image reconstruction in radio interferometry.
In the work presented here, we build on these proposed image re-
construction methods; the inverse problem is regularized using SARA

and solved using an Alternating Direction Method of Multipliers
(ADMM)-based proximal splitting algorithm, which was shown to
be potentially scalable to medium/large-sized data in Carrillo et al.
(2015) and Onose et al. (2016).

MNRAS 468, 2382–2400 (2017)
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2.3 Compressed sensing properties and guarantees

Compressed sensing theory provides guarantees on stable signal
reconstruction from ill-posed inverse problems provided the under-
lying signal and the measurement operator satisfy certain proper-
ties. The concepts of sparsity and incoherence, and the availability
of tractable reconstruction methods, are the pillars of compressed
sensing theory. For a more detailed justification of sparsity and inco-
herence in compressed sensing, see Candès & Romberg (2007). In
this article, we focus on two properties of the measurement operator
�, viz., the Null Space Property (NSP) and the Restricted Isometry
Property (RIP). These properties, if satisfied by �, guarantee stable
recovery of the signal x from the measurements y as they appear in
equation (2). A concise explanation follows.

The NSP is essential to guarantee exact signal recovery; � satis-
fies the NSP of order k with constant γ ∈ (0, 1) if

‖�T ‖1 ≤ γ ‖�T c‖1 (5)

for all sets T⊂{1, . . . , N}, |T| ≤ k and for all � ∈ Null(�). Here �T

is obtained by setting entries of � to zero for indices which are not
in T. Tc is the complement of T. Put differently, the NSP means that
no k-sparse signals are contained in the null space of the operator �.
It can then be shown that for a k-sparse signal x the reconstruction
achieved using �1-minimization is exact, and for a more general
x, the reconstruction error is bounded [theorem 1 and its proof in
Fornasier & Rauhut (2011, pp. 199)].

The RIP characterizes stable signal recovery in the presence of
noise, and ensures that two different k-sparse signals remain well
separated even after the application of the measurement operator.
� satisfies the RIP of order k with constant δ ∈ (0, 1) if

(1 − δ)‖x‖2
2 ≤ ‖�x‖2

2 ≤ (1 + δ)‖x‖2
2 (6)

for all k-sparse signals x. The RIP implies the NSP [lemma 2 and
its proof in Fornasier & Rauhut (2011, pp. 200)]. The fact that the
RIP also implies robustness to measurement noise has been proven
(Candès et al. 2006b), and bounds on the reconstruction error have
also been deduced (Foucart & Rauhut 2013). In our case with the
requirement for the measurement operator to satisfy the RIP of
order 2k, it is worth noting that an operator � satisfying the RIP
of order 2k is in fact the Johnson–Lindenstrauss embedding for the
case where x would be the difference between two k-sparse signals
(Krahmer & Ward 2011).

Some examples of � satisfying the RIP and NSP are Gaussian,
Bernoulli and partial random Fourier measurement matrices. Addi-
tionally, a spread-spectrum operator has been studied and applied
to radio-interferometric imaging by Wiaux et al. (2009b), where
its universality relative to the sparsity dictionary � is demon-
strated through comparable image recovery results for simulated
radio interferometry data containing non-negligible w-component.
In theory, they all ensure robust sparse reconstruction. Compressed
sensing-based reconstruction methods lend themselves readily to
radio-interferometric imaging as the measurement operator is al-
ways a modified version of the partial Fourier matrix.

However, since the convex optimization algorithms that are em-
ployed for compressed sensing-based imaging amount to a non-
linear iterative reconstruction involving repeated application of
�,� and their adjoint operators [Carrillo et al. (2014) and Yang &
Zhang (2011) contain more detailed overviews of the convex opti-
mization algorithms used in this work], the image recovery method
that leads to the solution in equation (4) relies on fast implemen-
tations of � and �. In the context of our imaging techniques with
a predefined concatenation of bases � whose dimensionality is

proportional to the image size, we can see that as the data size
increases, so does the memory and computing requirement to ma-
nipulate and perform operations with �, whose dimensionality is
proportional to data size.

Thus, dimensionality reduction of the visibilities while maintain-
ing the desired image size is a much needed step to be able to handle
big data and build scalable imaging algorithms based on convex op-
timization, and more so when viewed in the context of compressed
sensing-based imaging methods with iterative computations directly
dependent on data size.

3 DATA D I M E N S I O NA L I T Y R E D U C T I O N

3.1 Preliminary studies and tests

As mentioned in Section 2.3, a fast and scalable implementation
of the measurement operator � is critical for the viability of con-
vex optimization-based image recovery methods. The complexity
of computing the intermediate step involving � (= GFZ) in the
optimization algorithm can increase rapidly with increasing data
size. Given an image of N pixels, and M visibilities obtained with
non-uniform Fourier transform involving an interpolation kernel of
size k × k, the asymptotic complexity of applying � is seen to be
O(Mk2 + N log N ), since it is the complexity of matrix operations
involving the matrix G with M rows of k2 non-zero entries, added
with the complexity of an N-sized FFT.

As seen from the complexity, this image recovery solution is very
demanding, in terms of both computing time and memory. The de-
sirability of dimension reduction is apparent at this point, to enable
us to (i) reduce the data size, thereby decreasing memory require-
ments, (ii) keep the measurement operator fast, thus reducing the
computing time, (iii) preserve compressed sensing properties (no-
tably the NSP) of the measurement operator to guarantee accurate
signal reconstruction, and (iv) preserve the i.i.d. Gaussian proper-
ties of the original measurement noise, in order to facilitate an easy
computation of the data fidelity term of the objective function in
our convex optimization algorithms through an �2-norm.

We understand dimensionality reduction as the process of lin-
early mapping a higher-dimensional vector y ∈ CM to a lower-
dimensional vector y′ ∈ CM ′

such that M′ � M. This is typically
achieved by applying an ‘embedding’ operator R ∈ CM ′×M , so that
y′ = Ry is of dimension M′. Applying such an embedding oper-
ator to the radio interferometry measurement equation defined in
equation (2), we obtain the full measurement operator

�′ = R�, (7)

and the reduced inverse problem is then given as

y′ = R�x + Rn. (8)

The choice of R is critical as it affects not just the distortion of
y but also the properties of � that originally led to guaranteed
image recovery through compressed sensing-based reconstruction
methods. Additionally, R modifies the original noise vector n. In
our setting for radio-interferometric imaging, n is assumed to be
uncorrelated, having i.i.d. zero-mean Gaussian components. After
applying an embedding operator R, the ‘embedded’ noise n′ = Rn
has a covariance matrix

Cn′ = n′(n′)� = σ 2
n RR�, (9)

which is not necessarily diagonal, i.e. the embedded noise n′ is, in
general, correlated.

MNRAS 468, 2382–2400 (2017)
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As a preliminary step in choosing an appropriate embedding op-
erator, some of the options for R as mentioned in Section 2.3 were
studied. A Gaussian random matrix provides the ideal embedding,
since the full measurement operator �′ = R� would retain any
original NSP of � and thus guarantee signal recovery as per com-
pressed sensing theory. Additionally, on average the ‘embedded’
noise is decorrelated even without the assumptions of i.i.d. Gaus-
sian noise in original measurements. This is also ideal since the
data fidelity term and its upper bound are easily computed, as ex-
plained in Section 2.2. Unfortunately, the Gaussian random matrix
renders the measurement operator very slow, and the asymptotic
complexity of applying �′ can then be seen to be O(M ′N ) since
the Gaussian random matrix is a fully dense matrix of size M′ × N.
As M′ is typically some proportion p of the image size N, the asymp-
totic complexity for the Gaussian random matrix is then O(pN2),
which is clearly much worse than the original asymptotic value
which was dominated by O(Mk2), since M � N2. Recent work
involving small-scale simulations (Kartik, Carrillo & Wiaux 2015)
suggests that Gaussian random embedding could perform better
than other embeddings (see e.g. gridding, in Section 3.3). But the
time and memory required to run these small-scale simulations are
prohibitively high; thus, for lack of a scalable and fast implementa-
tion of the Gaussian random matrix/operator, other dimensionality
reduction schemes need to be chosen.

Another possibility studied for the embedding matrix R was a
‘spread-spectrum’ like operator R = MFD±1, where D±1 is a di-
agonal random sign matrix with entries ±1, F the discrete Fourier
transform operator, and M an M′ × N random selection matrix
which embeds the data vector to the final size M′. We note also that
this embedding is similar to the subsampled randomized Hadamard
transform operator as described in Tropp (2011). Although the indi-
vidual sub-operators in R have fast implementations, the modified
measurement operator R� has several issues which make this em-
bedding unsuitable. First, it can no longer be directly proven that the
measurement operator satisfies the RIP, as required by compressed
sensing theory for exact signal recovery. Secondly, the application of
this measurement operator R� is very slow, since the sub-operators
M, F, D±1 and � need to be combined together and pre-computed
as a dense M′ × N-sized matrix, and the asymptotic complexity in
applying R� in this case would be O(M ′N ), as for the case with a
Gaussian random matrix.

Other embedding matrices, including random projection matri-
ces either used within or without sketching techniques (Bingham &
Mannila 2001; Li, Hastie & Church 2006; Woodruff 2014), provide
dimensionality reduction, and may also have fast implementations
of R. But since most suffer from a lack of sparsity, the modi-
fied measurement operator R� is not sparse – which precludes a
fast implementation (especially for matrix–vector multiplications)
and causes a large memory footprint. They are thus unsuitable for
repeated application in the iterative methods used for image recon-
struction in our case.

Our attempts at approaching dimensionality reduction from a
compressed sensing perspective lead us to consider the NSP and the
RIP of the full measurement operator. With the exception of random
matrices, constructing fast matrices satisfying the RIP is known to
be non-trivial – although recent attempts towards addressing this
are presented in Nelson, Price & Wootters (2014). Also, verifying
the RIP for deterministic matrices is NP-hard, as shown in Bandeira
et al. (2013). So the idea is to devise an embedding operator that
reduces the dimensionality of the measurements while preserving
the NSP of the original measurement operator, thus maintaining

the same compressed sensing-based guarantees on recovering the
image.

We note that many state-of-the-art imaging techniques in radio
interferometry include a ‘gridding’-like subroutine, mapping con-
tinuous visibilities to the discrete Fourier grid with an operator
similar to R = �� (Li et al. 2011; Dabbech et al. 2015). Typically,
this is a gridding to the discrete Fourier grid through G�, or a map-
ping back to image space through ��. Gridding has been studied
and developed further by Sullivan et al. (2012) with the introduction
of the ‘Fast Holographic Deconvolution’ technique; this technique
leverages the lossless information property (Tegmark 1997) that is
being used to reduce cosmic microwave background data, and in-
troduces the Holographic Mapping function H = G�G. H models
the mapping between a continuous visibility and the correspond-
ing equivalent in the gridded, ‘holographic’ map without having
to go through separate interpolation and gridding steps – which
are the most time-consuming parts of standard imaging techniques.
A pre-computed holographic matrix H is stored before image re-
construction starts, and therefore provides a way to quicken the
imaging process. Additionally, the compact support of the interpo-
lation kernel present in each row of the matrix G ensures that H
remains sparse, so its repeated application is also not a hindrance
to the imaging technique. We see that gridding is an appropriate
technique to reduce data dimensionality while maintaining infor-
mation content, and with the use of a holographic mapping it can be
incorporated in imaging techniques without incurring a large cost in
terms of image reconstruction time. In the next section we present
a post-gridding dimensionality reduction technique that introduces
an additional step to achieve reducing dimensionality.

3.2 Singular vector space embedding

3.2.1 Optimal dimensionality reduction model

An ideal dimensionality reduction method would result in a final
data dimension as small as possible while simultaneously guaran-
teeing accurate image reconstruction by retaining the NSP of the
original measurement operator �. The null space of � arises from
the incomplete Fourier coverage that forms all visibilities. Observ-
ing the SVD of � given by

� = U�V�, (10)

where U ∈ CM×M , V ∈ CN×N are unitary matrices and � ∈ CM×N

is a rectangular diagonal matrix containing the singular values of �,
we note that the existence of the null space of � implies that some
singular values are necessarily zero-valued. In fact, the singular
values �i occupy a continuous spectrum of values, with large values
corresponding to Fourier grid points with contribution to multiple
interpolation kernels present in G, and gradually decreasing to the
minimum value of zero corresponding to Fourier grid points with
no such contribution, thus leading to an incomplete uv coverage. We
can see that retaining the non-zero singular values of � effectively
retains the null space of �. Following this, we rewrite the SVD as

� = U0�0V0
�, (11)

where U0 ∈ CM×N0 , �0 ∈ CN0×N0 and V0 ∈ CN×N0 are truncated
versions of U, � by only retaining columns (rows for V) corre-
sponding to non-zero singular values of �. Clearly, the number of
non-zero singular values is N0 ≤ min(N,M) since � ∈ CM×N .

An optimal dimensionality reduction operator on� would then be
a projection on its left singular vectors that correspond to non-zero
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singular values, since the null space of � is retained through these
left singular vectors and thus no information is lost. The projection
is given by:

Rsing−o = U0
�

= �0
−1V0

���. (12)

The full measurement operator therefore reads as a weighted sub-
sampling in the right singular vector basis:

�′
sing−o = �0V0

�. (13)

The corresponding ‘embedded’ noise U0
�n has a covariance ma-

trix

Cn′ = σ 2
n U0

�U0

= σ 2
n I. (14)

This follows from equation (9), since columns of U are orthonormal
by definition. The noise thus remains fully decorrelated after dimen-
sionality reduction, which allows us to continue using an �2-norm
as the data fidelity term in the minimization algorithm, as explained
in Section 2.2.

Put differently, the ideal dimensionality reduction involves a
gridding-like operation performed in radio interferometry to ob-
tain the dirty image (shown here by ��), followed by a projection
on the right singular vectors of � corresponding to non-zero singu-
lar values, and finally followed by a weighting operation with the
inverse of the non-zero singular values of �.

In theory, therefore, the ideal dimensionality reduction Rsing−o

reduces data to a dimension N0 ≤ N . It ensures that the full mea-
surement operator �′

sing−o preserves the null space of �, therefore
retaining any original NSP of �. It also induces a decorrelated noise
in the reduced dimension, thus enabling the minimization algorithm
to use an �2-norm of the noise for the data fidelity term. In reality,
however, this operator R is difficult to implement since the SVD
is computationally expensive, with an asymptotic complexity of
O(N3) (Golub & van Loan 1996). Additionally, since Rsing−o may
not have a guaranteed fast implementation, applying it iteratively in
our minimization algorithms would also be prohibitively expensive.
This renders the optimal reduction method impractical. We propose
to get around this limitation by building an approximate version
Rsing of Rsing−o that can be readily computed and applied.

3.2.2 Approximate Fourier reduction model

In finding a valid approximation of the ideal dimensionality reduc-
tion given by equation (12), we attempt to approximate the unitary
matrix V. We can note that V is in fact the eigenbasis of ���, since
it contains the right singular vectors of � as defined in Section 3.2.
To understand the eigenbasis of ���, we probe its structure, ex-
panding it to its constituent operators as defined in equation (3).
This gives us

��� = (GFZ)�(GFZ)

= (Z�F�
)(G�G)(FZ). (15)

The central term in equation (15) is the holographic map
H = G�G, comprising individual elements (G�G)ij that denote the
simultaneous contributions of different interpolation kernels that
would map continuous visibilities on to the pixel (i, j) on the dis-
crete Fourier grid. Since each visibility is obtained by integrating a
small region of the uv plane, the interpolation kernels have compact
support (e.g. the 8 × 8 Kaiser–Bessel kernels used to calculate the

Figure 1. (shown here in log10 scale) illustrating correlation of noise in the
reduced dimension through varying degrees of ‘diagonality’ of the initial
noise covariance matrix. Left: G�G, for reduction through Rgrid; centre:
���, for reduction through Rdirt; right: F���F�, for reduction through
Rsing. Top row: Gaussian random coverage. Bottom row: SKA-like coverage.

non-uniform Fourier transform in our simulations). Thus, the simul-
taneous contributions of different interpolation kernels are largely
limited to small areas of overlapping support, and consequently lim-
ited to having significant contribution only for pixels (i, j) where i,
j are of similar value. In other words, the largest values of G�G are
on and immediately around its diagonal. This is also seen through
numerical results as shown in Fig. 1, whereNumerical results the
illustrations for G�G can be seen to be extremely close to a diagonal
matrix. It should be noted that here we implicitly assume that there
are no DDEs and that the antenna array is coplanar (w = 0). If
these assumptions become invalid, the interpolation kernels present
as rows of G can no longer be simply represented with compact
support, and G�G no longer remains overwhelmingly diagonal.

Now we prepend and append F�F to equation (15) – the crucial
observation being that F is an image-sized Fourier transform as
opposed to the oversampled Fourier transform F. F can then be
expressed as F = Z�FZ. Equation (15) can then be rewritten as

��� = F�[(FZ�F�
)(G�G)(FZF�)]F. (16)

We note that the term FZ�F� = Z�FZZ�F�
as a whole performs a

convolution with the inverse Fourier transform of ZZ
�
. Since ZZ

�
is

– within limits of the scaling introduced in Z by DR (see Section 2.1)
– a partially distorted version of a two-dimensional pulse function
of width equal to half of the field of view of the observations, its
inverse Fourier transform is given by a sinc function with non-
zero values at integer-indices, and a two-pixel wide main lobe. The
convolution with such a sinc function, when performed on G�G,
results in a ‘smearing’ of its diagonal character, with more non-zero
values now appearing at off-diagonal locations. This smearing effect

is compounded since FZ�F�
occurs as a pre- and post-operation on

G�G. However, the smearing does not radically affect the diagonal
character since the main lobe of the sinc function has a small width.
Numerical results seen in Fig. 1 show that F���F� indeed regains
much of the diagonal character from G�G, remaining close to a fully
diagonal matrix. The ringing effect observed around the diagonal
may be attributed to the side lobes of the sinc function.

As a quantitative measure of the diagonal character of the
matrices shown in Fig. 1, we define, for a matrix C, the ratio
βC = ‖Diagband(C)‖F/‖C‖F, where Diagband(C) is a band diagonal
matrix formed from a thin band around the main diagonal of C given
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Table 1. Summary of the different dimensionality reduction methods with their advantages and disadvantages with respect to compressed sensing-based
imaging.

Properties of �′ = R� (Full meas. operator) R = Rsing−o R = Rsing R = Rdirt R = Rgrid

Approximate null space preservation Yes Yes Yes Yes
Fast implementation No Yes Yes Yes
Largely diagonal noise covariance matrix Yes Yes No Yes
Final dimension N0 ≤ N N0 ≤ N N N ≤ 4N

by Diag(C), and ‖ · ‖F is the Frobenius norm. Numerical results us-
ing test uv coverages included in this work show the following
typical values: βG�G ≈ 0.95, β��� ≈ 0.50 and βF���F� ≈ 0.90, il-
lustrating that the overwhelming majority of significant elements of
the matrix F���F� are on and around the diagonal – in a thin band
corresponding to 2% of the matrix size.

We thus see that ��� ≈ F�[Diag(F���F�)]F, which is very
close to the eigendecomposition of ��� given by ��� = V�2V�.
This motivates the approximation of

V� ≈ F and �2 ≈ Diag(F���F�). (17)

The approximation of the eigenbasis of ��� by the orthogonal
columns of the discrete Fourier transform operator immediately
renders our ideal dimensionality reduction operator feasible. The
computationally expensive SVD of � no longer needs to be explic-
itly calculated, as the discrete Fourier transform operator is known
without any knowledge of �. Moreover, fast implementations of F
exist in the form of the FFT algorithm. V0 is then given by SF, S be-
ing a subsampling matrix to select the dimensions corresponding to
the N0 ≤ N non-zero singular values present in �, thus producing a
dimensionality reduction below image size. The diagonal matrix �
is obtained by simply computing the square root of Diag(F���F�).
A similar selection of N0 dimensions leads to �0 = S�, thus giving
the approximation

V0
� ≈ SF and �0

2 ≈ S Diag(F���F�). (18)

This leads us to propose a Fourier model of the dimensionality
reduction operator consisting of mapping gridded visibilities back
to image space, i.e. computing a dirty image, and then performing
a weighted subsampled discrete Fourier transform, given by

Rsing = �0
−1SF�� ∈ CN0×M. (19)

The full measurement operator is then given by

�′
sing = �0

−1SF��� ∈ CN0×N, (20)

where � is given by equation (3). Finally, the full measurement
operator is tangible, and is suitably fast for repeated application in
minimization algorithms.

Here, we review the properties of our Fourier dimensionality re-
duction. �′

sing being an approximation of �′
sing−o, we assume that it

approximately preserves the null space of �. We have also seen that
F���F� is largely diagonal – this diagonal character is maintained
as long as the interpolation/de-gridding kernels used to compute the
continuous visibilities have compact support. This in turn implies
that the covariance matrix σ 2

n RsingRsing
� of the embedded noise is

largely diagonal as well. The weighting by �0
−1 explicitly nor-

malizes all the diagonal values of the noise covariance matrix to
the original noise variance σ 2

n . �′
sing also achieves the same dimen-

sionality reduction to N0 as �′
sing−o. Crucially, it exhibits a fast

implementation since its constituent operators are diagonal, sparse
and Fourier matrices. A summary of properties of �′

sing−o and �′
sing

is shown in Table 1.

We extend the idea of approximating the initial noise co-
variance matrix to a further degree by assuming F���F� ∝ I
without explicit computation of F���F�, thus leading to R =
F��. This variant of our approach is also investigated in our
simulations.

3.3 Standard gridding-based dimensionality reductions

3.3.1 Embedding visibilities to the dirty image

Embedding visibilities to the dirty image is a standard way to re-
duce dimensionality, and is performed in many image reconstruction
methods in radio interferometry, essentially through an image-based
deconvolution with appropriate weighting. Setting it in the termi-
nology presented here, it amounts to using an embedding operator
R = ��, as previously explained in Section 2.2. The corresponding
noise is highly correlated, and this can be seen from the covariance
matrix ��� shown in Fig. 1, which contains significant off-diagonal
elements.

In order to be able to use this dimensionality reduction in our
minimization problem formulation (equation (4)), the embedded
noise would need to have i.i.d. Gaussian entries. This is achieved
by assuming, as done previously, an approximation of the noise
covariance matrix by its diagonal

W2 = Diag(���). (21)

W is invertible since ��� is the dirty beam and hence typically
non-zero along its main diagonal – this also implies that there is no
potential for further subsampling based on zero values. We subse-
quently apply a weighting W−1 to obtain the dimension embedding
operator

Rdirt = W−1�� ∈ CN×M. (22)

The full measurement operator is therefore given as

�′
dirt = W−1��� ∈ CN×N . (23)

It preserves the null space of �, thus retaining any original
NSP. Indeed, the SVD or eigendecomposition of ��� reads as
��� = V�2V�. Applying Rdirt is also fast as the individual sub-
operators in � have fast implementations. However, the embedded
noise covariance matrix σ 2

n RdirtRdirt
� is far from diagonal, as seen

in Fig. 1, though with diagonal entries all equal to the original
noise variance σ 2

n . For completeness in our comparison of results,
we extend our approximation of the initial noise covariance matrix
by nevertheless assuming ��� ∝ I, resulting in the variant of Rdirt

given by R = ��.

3.3.2 Gridding visibilities

Gridding continuous visibilities to discrete Fourier points reduces
the data dimension to the size of the oversampled discrete Fourier
grid, and is routinely performed in radio-interferometric imaging
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as a first step. Gridding can be seen as applying the embedding
R = G� to continuous visibilities. As noted earlier in Section 3.2.2,
in the general case with DDEs and non-coplanar antenna arrays, the
corresponding noise covariance matrix σ 2

n G�G is non-diagonal, but
under our initial assumptions of the absence of DDEs and w = 0,
we note that the noise covariance matrix is largely diagonal. This
is also seen in Fig. 1 in the form of a highly diagonal structure of
G�G.

For the benefit of the minimization problem as posed in equation
(4), an approximate i.i.d. Gaussian nature of the embedded noise is

ensured by weighting the embedding operator with W
−1

, where

W2 = Diag(G�G). (24)

More precisely, this weighting W−1
simply normalizes all the di-

agonal values of the noise covariance matrix to the original noise
variance σ 2

n .
Here, we note a natural further dimensionality reduction by dis-

carding those discrete Fourier grid points that are not covered by any
interpolation kernel support over the uv plane. As contributions of
the different interpolation kernels over a given discrete Fourier grid
point correspond to individual columns of the matrix G, discrete
grid points that are not thus covered manifest as all-zero columns
of G and, consequently, zeros on the diagonal of G�G. A subsam-
pling operator S can then be applied to the embedding operator to
only select dimensions corresponding to non-zero diagonal values
of G�G. A similar selection of dimensions on W gives W0 of size
N below the dimension of the oversampled discrete Fourier grid,
thus leading to the dimensionality reduction operator

Rgrid = W−1
0 SG� ∈ CN×M. (25)

We see that the full measurement operator

�′
grid = W−1

0 SG�� ∈ CN×N (26)

preserves the null space of �, following from Null(�) ⊆
Null(G��) ⊆ Null(���), thus retaining any original NSP. The di-
agonal dominated nature of σ 2

n RgridRgrid
� has already been shown,

which leads to an appropriate modelling of the noise. Also, applying
Rgrid is fast owing to the sparsity of G�.

Note that in the context of this dimensionality reduction with

Rgrid, the weighting matrix W−1
0 , in fact designed for optimal

weighting of the embedded visibilities, also operates as uniform
weighting. Indeed, the diagonal values of G�G are a measure of the
density of continuous visibilities at each discrete grid point.

As with Rsing, we also approximate the initial noise covariance
matrix in this case by assuming G�G ∝ I, leading to the dimension-
ality reduction R = G�. This variant is included in comparisons of
reconstruction quality.

3.4 Feature comparison

A comparison of the different dimensionality reduction methods
Rsing, Rdirt and Rgrid is shown in Table 1. We note in the listing that
Rsing provides a good combination of the desired final dimension,
the guarantees for compressed sensing-based imaging to recon-
struct images and a largely diagonal noise covariance matrix that
enables us to embed this technique in the convex optimization al-
gorithm we employ for imaging. Rdirt embeds the data to image
size while maintaining any original NSP of �, and has a fast im-
plementation; however, it fails to appropriately model the noise and
is therefore less suitable for the minimization problem which re-
quires i.i.d. Gaussian embedded noise to enable a simple �2-norm

data fidelity term. Rgrid continues to maintain the NSP of � and the
i.i.d. Gaussian properties of the noise, which are essential for image
reconstruction using our convex optimization algorithms. However,
the data reduction is limited to a size N ≤ 4N .

As mentioned in Sections 3.2 and 3.3, for each of Rsing, Rdirt

and Rgrid, an attempt is also made to further approximate the initial
noise covariance matrix by the identity matrix in order to render the
application of the respective dimensionality reduction methods even
faster. Equations (19), (22) and (25) are then simplified to R = F��,
R = �� and R = G�, respectively. However, this approximation is
seen to be inappropriate, leading to poorer modelling of the noise
and consequently lowering image reconstruction quality. Rsing, Rdirt,
Rgrid and their respective variants are used to reduce dimensionality
before performing image reconstruction in different settings and
with varying data sizes.

3.5 Further reduction by thresholding

As a conservative dimensionality reduction method, Rsing would
embed to a final data size N0 ≈ N under the assumption that there
are very few zero-valued singular values of �, within limits of nu-
merical precision, and all corresponding singular vectors are thus
necessary to retain the information content of �. Similarly, Rgrid

embeds to a size N ≈ 4N under the assumption of having contribu-
tions to the continuous visibilities from most discrete Fourier grid
points. However, further dimensionality reduction may be obtained
in both cases by a thresholding strategy.

We first consider the Fourier dimensionality reduction model
based on Rsing. The approach described below to further reduce the
final embedding dimension consists of discarding the data dimen-
sions associated with singular values �i below a threshold, rather
than conservatively discarding those equal to zero only – this is
made possible due to the fact that the singular values occupy a
range of values going down to zero, as discussed in Section 3.2. In
other words, through such a thresholding operation, we will attempt
a low-rank approximation of the original singular value matrix �,
and consequently reduce our final data dimension to the correspond-
ing low-rank. For the sake of the simplicity of this argument, we
consider Rsing to be equal to Rsing−o. From equation (13), we see
that the full measurement operator �′

sing−o reads as a weighted sub-

sampling in the orthonormal basis V�, with the weights given by
the singular values of �. From equation (14), the noise covariance
matrix reads as σ 2

n I. In order to safely discard a given singular value
�i for the dimension i without losing information, its effect on the
corresponding embedded visibility y′

i would need to be negligible
relative to the embedded noise level σ n:

| y′
i | < γσn, withγ = O(1). (27)

In general, one has | y′
i | ≤ �i‖x‖2, which is saturated only in the

case where x is fully aligned with the right singular vector Vi . This
means that the condition

�i‖x‖2 < γσn (28)

is sufficient to ensure the requirement imposed by equation (27)
to disregard dimension i. In other words, the data dimension i can
be discarded with no adverse effect on signal reconstruction if the
corresponding singular value, computed as given in equation (18),
is below a noise-based threshold:

�i <
γ σn

‖x‖2
. (29)
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Secondly, we consider the gridding-based dimensionality reduc-
tion Rgrid. The approach to further reducing the final embedding
dimension will again consist of discarding the data dimensions
associated with the weights Wi below a threshold, rather than con-
servatively discarding those equal to zero only. A similar bound
as equation (29) can be deduced as follows for thresholding out
data dimensions. Again, for the sake of this very argument only, the
full measurement operator �′

grid in equation (26) can be approxi-
mated as weighted subsampling in the Fourier basis, with weights
W computed from equation (24). The noise covariance matrix ex-
hibits diagonal values all equal to the original noise variance σ 2

n .
The same reasoning as for Rsing now applies and the data dimension
i can be discarded with no adverse effect on signal reconstruction
if the corresponding weight is below the following noise-based
threshold:

Wi <
γ σn

‖x‖2
. (30)

The threshold computation in equations (29) and (30) needs
knowledge of ‖x‖2, which is a priori not available from interfero-
metric data. One would naturally want to estimate ‖x‖2 from the
dirty image. This is supported by recent work showing that x can
be bounded by the dirty image (Wijnholds & van der Veen 2011;
Sardarabadi, Leshem & van der Veen 2016).

3.6 Reduced computational requirements

Current radio-interferometric imaging techniques involve process-
ing in the data space (of dimension M) and a lower dimensional
sparsity space (of dimension N or N ). For CLEAN-based algorithms
this can be seen in the move between ‘major’ cycles in the data
dimension M, ‘minor’ cycles with gridded visibilities of dimension
N , and the image space of dimension N with an implicit sparsity
assumption. For convex optimization-based algorithms like the one
used in this work, this is typically seen in the concurrent compu-
tation of a data fidelity term with vectors of dimension M, and a
sparsity prior of lower dimension N.

The goal of dimensionality reduction as described here is to
reduce the computational load of imaging methods for next-
generation radio interferometers where M is very large, of the order
of 1010. The proposed dimensionality reduction method using Rsing

reduces data size by significant amounts to N0 ≤ N � M , and
these lower-dimensional data cause a smaller memory footprint in
imaging pipelines. The existence of fast sub-operator implementa-
tions and a low-sized full measurement operator translate to faster
computations per iteration of the convex optimization algorithms.
The properties of the full measurement operator �′ as listed in
Table 1 are a good indicator of the computational savings af-
forded by Rsing as compared to other reduction methods. The ap-
plicability of the proposed dimensionality reduction method using
Rsing has the advantage of resulting in a reduced data dimension
that is independent of the initial data size (this is also true for
Rdirt and Rgrid, which result in reduced data sizes of N and N ,
respectively.).

The initial set-up of the imagers shall indeed be affected by an
increase in the initial dimension – in particular, the pre-computation
of the holographic matrix and the appropriate weights to be used
in the imaging algorithm. However, these pre-computations have
a one-time cost, and subsequent imaging is unaffected, depending
only on the embedded data and thus using fewer resources in terms
of memory and computing time.

Figure 2. The test images in log10 scale, clockwise from top left: M31
(256 × 256 pixels), a simulated galaxy cluster (512 × 512 pixels) and
Cygnus A (477 × 1025 pixels).

4 SI M U L AT I O N S A N D R E S U LT S

4.1 Simulation settings

The effectiveness of the proposed dimensionality reduction method
was demonstrated through simulations. Image quality comparisons
were made between reconstructions through the dimensionality
reduction methods Rsing, Rdirt and Rgrid, and their respective vari-
ants R = F��, R = �� and R = G�. In a first setting, a conserva-
tive dimensionality reduction was performed for each case – Rsing

accounting for dimensions corresponding to all non-zero singular
values of �, and Rgrid accounting for dimensions corresponding to
all discrete Fourier grid points that have non-zero contribution to the
continuous visibilities through interpolation kernels. The final data
dimension after reduction in this setting was seen to be N0 ≈ N for
Rsing, N0 = N for Rdirt, and N ≈ 4N for Rgrid.

Simulations were performed on different test images chosen
for their varied characteristics: (i) the classic ‘M31’ image has
a compact structure showing an HII region of the M31 galaxy
(256 × 256 pixels); (ii) an image of a galaxy cluster (512 × 512 pix-
els) simulated using the ‘FARADAY’ tool (Murgia et al. 2004) has high
dynamic range by design; (iii) a partial image of the Cygnus A ra-
dio galaxy (477 × 1025 pixels) includes a strong central core, two
strong jets and lobes of diffuse structure with bright hotspots. These
test images are shown in Fig. 2.

Two categories of uv coverages were used to simulate telescope
measurements. One with synthetic coverages with a random Gaus-
sian sampling profile with missing frequency regions, and another
with more realistic SKA-like coverages generated with a simu-
lated telescope configuration of 254 antennas (Fig. 3), using the
‘LWIMAGER’ tool made available as part of the ‘CASACORE’ software
suite.3 The SKA-like coverages correspond to observation times

3 The LWIMAGER implementation is available in the ‘casarest’ package in
CASACORE at https://github.com/casacore/casarest
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Figure 3. Illustration of simulated uv coverages over normalized frequency
axes [−π , π ]. Left: random Gaussian density profile with the uv plane in-
creasingly sparsely covered at higher frequencies (approximately 3 000 000
uv points). Right: profile generated with SKA-like baselines, with partial el-
lipses simulating dense coverage at lower frequencies and sparser coverage
at higher frequencies. A telescope configuration of 254 antennas was used
to obtain approximately 650 000 uv points.

ranging from 30 min to 8 h, depending on the image and the initial
data dimension. The frequencies were normalized to lie in the inter-
val [−π , π ]. The (0, 0) component of the uv plane was not included
in generating visibilities, reflecting the real situation of the absence
of zero-length baselines.

For each coverage, complex visibilities were generated over the
continuous uv plane using the measurement model described in
equation (2), and these were perturbed with complex additive white
Gaussian noise to give an input signal-to-noise ratio (SNR) of 30 dB.
The input SNR was defined as SNRi = 20 log10(‖�x‖2/‖n‖2). The
continuous visibilities dimension was varied over a wide range, in
multiples of image size, from 10 to 100. This corresponds to an
approximate range of 650 000 to 26 million visibilities over dif-
ferent test images. Continuous visibilities were generated with a
non-uniform oversampled Fourier transform (2 × oversampling in
each image dimension) using 8 × 8 Kaiser-Bessel interpolation
kernels as described and implemented by Fessler & Sutton (2003).
�1-minimization was performed using the SARA algorithm imple-
mented in PURIFY. SARA regularizes the inverse problem by imposing
‘average sparsity’ of the signal over a set of bases, as explained in
Section 2.2. The resulting minimization problem was solved using
an ADMM-based proximal splitting method – see Carrillo et al.
(2012, 2014) for further details on SARA and Carrillo et al. (2015);
Onose et al. (2016) for implementation details of the ADMM-based
minimizer.

Additionally, a more aggressive dimensionality reduction was
performed for Rsing and Rgrid by only retaining dimensions corre-
sponding to significant values of embedded data, as described in
Section 3.5. This led to a final data dimension size of N0 � N

and N � 4N , respectively. Image reconstruction was performed
for SKA-like coverages using these further reduced data.

As a comparison baseline, images were also recovered using the
complete visibilities set. This corresponds to the trivial ‘embed-
ding’ R = I. Finally, the reconstruction was compared with model
images obtained using the Multiscale CLEAN (MS-CLEAN) algorithm
(Cornwell 2008) as provided in the ‘WSCLEAN’ program (Offringa
et al. 2014). MS-CLEAN was run on continuous visibilities simulated
from SKA-like uv coverages. The synthetic Gaussian-profile uv
coverages were generated on the fly during simulations, and since
WSCLEAN takes measurement sets as input, MS-CLEAN was not run on
data simulated using these coverages.

We used SNR and dynamic range (DR) of the reconstructed image
as measures of image quality, and compared these values across

different methods in our simulations. We define ‘Reconstruction
SNR’ as

SNRx̂ = 20 log10

� ‖x‖2

‖x − x̂‖2

�
, (31)

and ‘Reconstruction DR’ as

DRx̂ =
√

N‖�‖2 max(x̂)

‖��( y − �x̂)‖2
, (32)

where x is the underlying test image measured through the operator
� (with spectral norm ‖�‖) to give visibilities y, and x̂ is the
reconstructed image. For the methods Rsing, Rdirt, Rgrid and their
respective variants, the DR was computed using the corresponding
measurement operators as given in equations (20), (23) and (26),
along with the respective embedded visibilities.

Since reconstruction results from MS-CLEAN are either in the form
of a restored image containing added residual, or a model image
containing extended components, direct SNR and DR computations
are not readily apparent and no longer remain a valid way to com-
pare reconstruction performance between CLEAN and the proposed
compressed sensing-based imaging methods. Therefore, the MS-
CLEAN reconstructions are presented here as model images (without
being convolved with the beam and adding the residual) for visual
comparison with the other methods described in this work.

4.2 Image reconstruction results

4.2.1 Accounting for all non-zero singular values

Image reconstruction performance of the different methods over
varying simulation settings is discussed here for each test image.
Graphs showing SNR and DR comparisons over the two types of
coverage are shown in Figs 4 and 5, respectively. For the SKA-like
coverages, a visual comparison is also made between the methods
R = I, Rsing, Rdirt, Rgrid, and MS-CLEAN by showing the reconstructed,
error and residual images in log10 scale. These visual comparisons
for the three test images are shown in Figs 6–8. The reconstructed
images shown for MS-CLEAN are obtained by cropping from a three
to four times larger model image output by WSCLEAN. For all test
images, MS-CLEAN was run with a uniform weighting scheme, set to
iterate down to an automatically calculated threshold of two stan-
dard deviations of the noise, and with a major loop gain of 0.8. The
model image in each case was renormalized to have a maximum
pixel value matching that of the MS-CLEAN model. It may be noted
that this does not change the overall visual appearance of the recon-
struction and error images as shown in Figs 6–8. The log10 scale was
used to highlight the smallest variations and structures, which in-
advertently emphasizes the low-valued artefacts in MS-CLEAN output
models; a linear scale would render these artefacts visually indistin-
guishable from the background. Uniformly weighted dirty residual
images were generated using WSCLEAN for each output model from
the different image recovery methods. Absolute Jy/beam residual
values were plotted on a log10 scale, highlighting small variations
in structure. The comparatively significant structure seen in the
residual images for R = I, Rsing, Rdirt and Rgrid may be due to the
absence of negative-valued model components, which are present
in the model generated by MS-CLEAN and are compensated for during
the computation of the dirty image by WSCLEAN.

The M31 test image is reconstructed accurately for all the imaging
methods. Reconstruction with the complete visibilities set reaches
40 dB for Gaussian random coverages and 28 dB for SKA-like
coverages at data sizes of 100N. Fig. 4(a) shows that Rsing and Rgrid

perform equally well over Gaussian random coverages, reaching
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