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Reconfiguration analysis of multi-mode
single-loop spatial mechanisms using dual

quaternions∗

Xianwen Kong
School of Engineering and Physical Sciences

Heriot-Watt University
Edinburgh, UK, EH14 4AS
email: X.Kong@hw.ac.uk

ABSTRACT
Although kinematic analysis of conventional mechanisms is a well-documented fundamental issue in mecha-

nisms and robotics, the emerging reconfigurable mechanisms and robots pose new challenges in kinematics. One
of the challenges is the reconfiguration analysis of multi-mode mechanisms, which refers to finding all the motion
modes and the transition configurations of the multi-mode mechanisms. Recent advances in mathematics, especially
algebraic geometry and numerical algebraic geometry, make it possible to develop an efficient method for the re-
configuration analysis of reconfigurable mechanisms and robots. This paper first presents a method for formulating
a set of kinematic loop equations for mechanisms using dual quaternions. Using this approach, a set of kinematic
loop equations of spatial mechanisms is composed of six polynomial equations. Then the reconfiguration analysis
of a novel multi-mode 1-DOF (degree-of-freedom) 7R spatial mechanism is dealt with by solving the set of loop
equations using tools from algebraic geometry. It is found that the 7R multi-mode mechanism has three motion
modes, including a planar 4R mode, an orthogonal Bricard 6R mode, and a plane symmetric 6R mode. Three (or
one) R (revolute) joints of the 7R multi-mode mechanism lose their DOF in its 4R (or 6R) motion modes. Unlike
the 7R multi-mode mechanisms in the literature, the 7R multi-mode mechanism presented in this paper does not
have a 7R mode in which all the seven R joints can move simultaneously.

KEY WORDS Kinematic analysis, multi-mode mechanisms, dual quaternions, algebraic geometry, reconfigu-
ration analysis

1 Introduction
Kinematic analysis of conventional mechanisms and robots is a well-documented fundamental issue in mechanisms

and robotics [1–9] . Different mathematical tools [7, 8], such as vector approaches, matrix approaches, quaternion based
approaches and dual quaternion based approaches, have been developed for formulating and solving a set of kinematic
equations. Different methods may lead to equations in different number of variables and each method has its own merits.

During the past two decades, increasing attention has been paid to reconfigurable mechanisms and robots [10–24],
including kinematotropic mechanisms, variable-DOF (degree-of-freedom) mechanisms, mechanisms with bifurcation or
multifurcation, and multi-mode mechanisms, to meet the need for rapid production change. Such mechanisms pose new
challenges in kinematics and control. In order to reconfigure a multi-mode mechanism, one needs to study the reconfiguration
analysis of multi-mode mechanism, i.e. to find all the motion modes and the transition configurations of the mechanism,
which requires solving a set of equations with positive dimensional solutions. Meanwhile, great progresses have been made in
the research on algebraic geometry [25–27] and numerical algebraic geometry [28] as well as computer algebra systems [29],
which provide effective tools to find all the sets of positive dimension solutions to a set of constraint (polynomial) equations
and to solve the above reconfiguration analysis problem [26, 27, 30–38].

Since the publication of reference [2], dual quaternions based approaches have been used in many areas such as computer
animation, kinematics and control [7, 8, 39–45] since this approach may be more elegant and computationally efficient than
the conventional matrix methods [39].

∗The original version of this paper was presented at the ASME 2016 International Design Engineering Technical Conferences & Computers and
Information in Engineering Conference, DETC2016-59194, August 21–24, 2016, Charlotte, North Carolina, USA
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Significant progress has been made in the reconfiguration analysis of multi-mode mechanisms recently [15–24]. For
example, numerical methods have been proposed for the reconfiguration analysis of 1-DOF single-loop spatial mechanisms
[15–18]. No equation has been obtained for each operation mode using these methods. Kinematic mapping methods together
with tools from algebraic geometry have been used for the reconfiguration analysis of single-loop multi-mode mechanisms
[18, 19] and multi-mode parallel mechanisms [26, 27, 30–33]. In [30, 31, 34–37], quaternions have been used to represent
the orientation of the moving platform of parallel mechanisms. This provides an efficient method for the identifying the
motion characteristics in each motion mode of several multi-mode parallel mechanisms including a variable-DOF parallel
mechanism. For the particular parallel mechanism in [34], all the motion modes are obtained without using software. Using
these methods, the kinematic equations are formulated by decomposing a mechanism into two (for single-loop mechanism)
or more (for parallel mechanisms) serial kinematic chains and equations describing each operation mode have been obtained.
However, certain motion modes in the configuration space, such as the 2-DOF motion mode of the single-loop 7R mechanism
in [18], might be missing. In addition, methods involving tan-half-angle substitution suffer from cases in which certain
joint angle reaches π and thus require a tedious procedure for the reconfiguration analysis of multi-mode mechanisms [18].
The reconfiguration analysis in the configuration space is limited to simple mechanisms [38], and even the reconfiguration
analysis of a multi-mode single-loop 7R mechanism has not been solved in the configuration space [21].

This paper is about the reconfiguration analysis of a novel multi-mode 1-DOF 7R mechanism in the configuration space
using dual quaternions and tools from algebraic geometry. As will be shown later, the 7R multi-mode mechanism has
three motion modes, including a planar 4R mode, an orthogonal Bricard 6R mode, and a plane symmetric 6R mode. The
mechanism is different from the 7R multi-mode mechanisms in the literature, which have at least one 7R mode.

This paper is organized as follows. In Section 2, the dual quaternions basics are recalled to facilitate the understanding
of this paper. The set of kinematic loop equations of a spatial loop is set up and then converted into polynomial equations by
using the natural exponential function substitution in Section 3. The reconfiguration analysis of a novel multi-mode 1-DOF
7R spatial mechanism is dealt with in Section 4. Finally, conclusions are drawn.

To avoid ambiguity, the concepts of configuration, motion mode and circuit of a mechanism are defined as follows:
A configuration of a mechanism is a complete specification of the pose (position and orientation) of every link of the
mechanism. A motion mode of a mechanism is all the possible configurations of the mechanism associated with the same
irreducible positive dimensional solution of the constraint equations of the mechanism. A circuit of a mechanism is all the
possible configurations that can be realized without disconnecting any of the joints within the same motion mode.

2 Dual quaternions basics
In this section, we will recall the definition and operation of dual quaternions that are essential for understanding this

paper. For detailed information about dual quaternions, please refer to references such as [7, 8, 45].

2.1 Quaternion
A quaternion, invented by William Rowan Hamilton in 1843, is defined as

q = q0 +q1i+q2j+q3k (1)

The conjugate of q is

q∗ = q0 −q1i−q2j−q3k (2)

The product of two quaternions satisfies the following rules:

i2 = j2 = k2 = ijk =−1
ij = k =−ji
jk = i =−kj
ki = j =−ik

(3)

The Euler parameter quaternion (or unit quaternion), e, is defined as

e = e0 + e1i+ e2j+ e3k =C(θ/2)+uS(θ/2) (4)

where u and θ represent respectively the axis and angle of rotation. S· and C· denote sin · and cos ·.

JMR-16-1273 Copyright c⃝ 2017 by ASME 2



The Euler parameters satisfy

e2
0 + e2

1 + e2
2 + e2

3 −1 = 0 (5)

2.2 Dual quaternion
The displacement of a link can be represented using a unit dual quaternion as

Q = e+ εg (6)

where ε is a dual operator which satisfies ε2 = 0 and ε ̸= 0.
A unit dual quaternion satisfies Eq. (5) and

eg∗+ge∗ = 0 (7)

i.e.

e0g0 + e1g1 + e2g2 + e3g3 = 0 (8)

The displacement associated with a unit dual quaternion Q is a rotation e followed by the translation t = 2ge∗.
For a displacement composed of a rotation represented by e followed by a translation represented by a vector t, we have

g = (1/2)te (9)

The following five specific dual quaternions will be used in the remaining part of this paper.

1. No Motion:

QE = 1 (10)

2. Translation about Xi-axis by Li:

QTranXi = 1+ ε(Li/2)i (11)

3. Translation about Zi-axis by di:

QTranZi = 1+ ε(di/2)k (12)

4. Rotation about Xi-axis by αi:

QRotXi =C(αi/2)+S(αi/2)i (13)

5. Rotation about Zi-axis by θi:

QRotZi =C(θi/2)+S(θi/2)k (14)

The compositional displacement composed of motion Q1 followed by motion Q2 can be represented using the following
unit dual quaternion

Q = Q2Q1 (15)

JMR-16-1273 Copyright c⃝ 2017 by ASME 3



3 Loop equations based on dual quaternions
Kinematic loop equations using dual quaternions were first proposed in [2] and later in [9, 40, 42]. In these references,

different variations and notations of dual quaternions were used.
The coordinate frames are attached to the links and the D-H (Denavit-Hartenberg) link parameters are defined as follows

(Fig. 1):
Zi-axis is along the axis of joint i. Xi-axis is along the common perpendicular between Zi−1- and Zi-axes. Oi is the

intersection of Xi- and Zi-axes. Yi-axis is defined by Xi- and Zi-axes through the right handed rule. The link parameters
of link i are: θi (the angle between Xi- and Xi+1-axes measured from Xi-axis to Xi+1-axis about Zi-axis. di (the distance
between Xi- and Xi+1-axes measured from Xi-axis to Xi+1- axis along Zi-axis), αi (the twist angle between Zi- and Zi+1-axes
measured from Zi-axis to Zi+1-axis about Xi+1-axis), and Li (the distance between Zi- and Zi+1-axes measured from Zi-axis
to Zi+1-axis along Xi+1-axis). The joint variable is θi for a revolute (R) joint or di for a prismatic (P) joint.

Link (i + 1)
Zi�1

Zi Zi+1

Xi+1

Xi
di

�i
Li

�i

Link i
Link (i � 1)

Oi+1

Oi

Fig. 1. Link parameters.

The set of kinematic loop equations of a loop composed of n R joints can be represented as1

n

∏
i=1

(QRotZi QTranZi QTranXi QRotXi) = QE (16)

Equation (16) leads to the following set of eight scalar equations



e0(θ1,θ2, · · ·θn) = 1
e1(θ1,θ2, · · ·θn) = 0
e2(θ1,θ2, · · ·θn) = 0
e3(θ1,θ2, · · ·θn) = 0
g0(θ1,θ2, · · ·θn) = 0
g1(θ1,θ2, · · ·θn) = 0
g2(θ1,θ2, · · ·θn) = 0
g3(θ1,θ2, · · ·θn) = 0

(17)

where

ei =
1

∑
j1, j2,··· jn=0

{vi, j1, j2,··· jn

n

∏
k=1

[S(θk/2)] jk [C(θk/2)]1− jk}

gi =
1

∑
j1, j2,··· jn=0

{wi, j1, j2,··· jn

n

∏
k=1

[S(θk/2)] jk [C(θk/2)]1− jk ]}

and vi, j1, j2,··· jn and wi, j1, j2,··· jn are constants depending on link parameters.

1The kinematic loop equation is also applicable to mechanisms with prismatic joints. P joints are not considered here to make the paper concise.
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A set of six equations is obtained from Eq. (17) by removing the first and fifth equations as



e1(θ1,θ2, · · ·θn) = 0
e2(θ1,θ2, · · ·θn) = 0
e3(θ1,θ2, · · ·θn) = 0
g1(θ1,θ2, · · ·θn) = 0
g2(θ1,θ2, · · ·θn) = 0
g3(θ1,θ2, · · ·θn) = 0

(18)

Using Eqs. (5) and (8), one can readily prove that any real solution to Eq. (18) satisfies the first and fifth equations in
Eq. (17). The solutions to Eq. (17) is a subset of the solutions to Eq. (18). All the solutions to Eq. (18) in which at least one
joint variable satisfies the following equation are extraneous since the first equation in Eq. (17) is not satisfied.

{
S(θi/2) = 0
C(θi/2) = 0 (19)

In fact, there is no real solution of θi to Eq.(19).
The kinematic analysis and reconfiguration analysis of mechanisms can be carried out by first solving Eq. (18) and then

removing the above extraneous solutions.
To solve Eq. (18), one can first turn it into polynomial equations in different ways, such as by using tan-half-angle

approach or natural exponential function approach. The latter, which will be used in this paper, is presented in detail below.
Let ui = eIθi . Substituting the following equation into Eq. (18)


C(θi/2) = (eIθi/2 + e−Iθi/2)/2
= (ui +1)/(2eIθi/2)

S(θi/2) = (eIθi/2 − e−Iθi/2)/(2I)
= (ui −1)/(2IeIθi/2)

(20)

and then multiplying each equation by ∏n
i=1 (2eIθi/2), we obtain a set of 6 equations in ui (i = 1,2, · · ·n).



e1(u1,u2, · · ·un) = 0
e2(u1,u2, · · ·un) = 0
e3(u1,u2, · · ·un) = 0
g1(u1,u2, · · ·un) = 0
g2(u1,u2, · · ·un) = 0
g3(u1,u2, · · ·un) = 0

(21)

Equation (21) will be used in the reconfiguration analysis of multi-mode mechanisms. Using this equation helps elimi-
nate the problem encountered when the tan-half-angle substitution is used.

In fact, Eq. (21) can be obtained by taking the second, third, fourth, sixth, seventh and eighth scalar equations of Eq. (22).

n

∏
i=1

(Q̃RotZi QTranZiQTranXiQRotXi) =
n

∏
i=1

(2eIθi/2)QE (22)

where

Q̃RotZi = (1+ui)+(1−ui)Ik (23)

Since Eq. (19) is equivalent to

ui = 0 (24)

JMR-16-1273 Copyright c⃝ 2017 by ASME 5



all the solutions to Eq. (21) in which at least one joint variable satisfies Eq.(24) are extraneous and should be eliminated.
These extraneous solutions can be excluded either before or after solving Eq. (21). To exclude these extraneous solutions

before solving Eq. (21) [42], the inequality u1u2 · · ·un ̸= 0 should be satisfied. In order to solve this system with the computer
algebra system Maple, one can introduce an extra variable v and add the equation u1u2 · · ·unv−1= 0 to Eq. (21) and compute
an elimination ideal that eliminates v to obtain a new set of equations with the extraneous solutions excluded.

4 Reconfiguration analysis of a multi-mode 7R spatial mechanism
In this section, the loop equation [Eq. (21)] in section 3 will be used for the reconfiguration analysis of a novel multi-

mode 7R mechanism shown in Fig.2. This 7R mechanism was obtained using the construction method [14] by integrating an
orthogonal Bricard mechanism 1-2-3-4-5-6 with a planar 4R mechanism 1-3-5-7 with three joints (1, 3 and 5) in common.
The frame is highlighted in green and the positive direction of the axis of joint 1 is indicated by an arrow.

The link parameters of the 7R mechanism are:
di = 0, i = 1,2, . . .7
Li = 2, i = 1,2, . . .5
L6 = L7 = 1
α1 = α3 = α5 = π/2
α2 = α4 = α6 =−π/2
α7 = 0

123

4

5

6

7

Fig. 2. A multi-mode 7R mechanism.

4.1 Motion mode analysis
Substituting the link parameters of the multi-mode 7R mechanism into Eq.(22), we have

7

∏
i=1

(Q̃RotZi QTranZiQTranXiQRotXi) =
7

∏
i=1

(2eIθi/2)QE (25)

Taking the second, third, fourth, sixth, seventh and eighth scalar equations of Eq. (25) and simplifying these equations by
dividing them with certain constants, we obtain the following set of kinematic loop equations [Eq. (21)].



e1(u1,u2, · · ·u7) = 0
e2(u1,u2, · · ·u7) = 0
e3(u1,u2, · · ·u7) = 0
g1(u1,u2, · · ·u7) = 0
g2(u1,u2, · · ·u7) = 0
g3(u1,u2, · · ·u7) = 0

(26)

where
e1 = u1u2u3u4u5u6−u2u3u4u5u6u7−u1u2u3u4u5+u1u2u3u4u6+u1u2u3u5u6+u1u2u4u5u6+u1u3u4u5u6−u2u3u4u5u7−

u2u3u4u6u7−u2u3u5u6u7−u2u4u5u6u7+u3u4u5u6u7+u1u2u3u4−u1u2u3u5−u1u2u3u6−u1u2u4u5+u1u2u4u6−u1u2u5u6−
u1u3u4u5+u1u3u4u6+u1u3u5u6−u1u4u5u6+u2u3u4u7−u2u3u5u7+u2u3u6u7−u2u4u5u7−u2u4u6u7+u2u5u6u7+u3u4u5u7+
u3u4u6u7 + u3u5u6u7 − u4u5u6u7 − u1u2u3 + u1u2u4 + u1u2u5 + u1u2u6 + u1u3u4 − u1u3u5 − u1u3u6 + u1u4u5 − u1u4u6 +

JMR-16-1273 Copyright c⃝ 2017 by ASME 6



u1u5u6−u2u3u7+u2u4u7+u2u5u7−u2u6u7−u3u4u7+u3u5u7−u3u6u7−u4u5u7−u4u6u7+u5u6u7+u1u2−u1u3−u1u4−
u1u5 −u1u6 +u2u7 +u3u7 +u4u7 +u5u7 −u6u7 −u1 +u7,

· · ·
g3 =−u1u2u3u4u5u6u7+u1u2u3u4u5u6+u1u2u3u4u5u7−u1u2u3u4u6u7−u1u2u3u5u6u7−u1u2u4u5u6u7−u1u3u4u5u6u7+

u2u3u4u5u6u7−u1u2u3u4u5+u1u2u3u4u6+7u1u2u3u4u7+u1u2u3u5u6+u1u2u3u5u7−7u1u2u3u6u7+u1u2u4u5u6+u1u2u4u5u7−
u1u2u4u6u7+9u1u2u5u6u7+u1u3u4u5u6+u1u3u4u5u7−u1u3u4u6u7−u1u3u5u6u7−7u1u4u5u6u7−u2u3u4u5u6+u2u3u4u5u7+
u2u3u4u6u7+u2u3u5u6u7+u2u4u5u6u7−u3u4u5u6u7+u1u2u3u4−u1u2u3u5−u1u2u3u6+u1u2u3u7−u1u2u4u5+u1u2u4u6+
7u1u2u4u7 − u1u2u5u6 + 7u1u2u5u7 − u1u2u6u7 − u1u3u4u5 + u1u3u4u6 + 7u1u3u4u7 + u1u3u5u6 + u1u3u5u7 − 7u1u3u6u7 −
u1u4u5u6 − 9u1u4u5u7 − 7u1u4u6u7 − u1u5u6u7 + 7u2u3u4u5 − u2u3u4u6 − u2u3u4u7 − u2u3u5u6 + u2u3u5u7 − u2u3u6u7 −
u2u4u5u6+u2u4u5u7+u2u4u6u7−u2u5u6u7−7u3u4u5u6−u3u4u5u7−u3u4u6u7−u3u5u6u7+u4u5u6u7−u1u2u3+u1u2u4+
u1u2u5+u1u2u6+7u1u2u7+u1u3u4−u1u3u5−u1u3u6+u1u3u7+u1u4u5−u1u4u6+u1u4u7+u1u5u6+u1u5u7−7u1u6u7+
u2u3u4 + 7u2u3u5 + 9u2u3u6 + u2u3u7 + 7u2u4u5 − u2u4u6 − u2u4u7 − 7u2u5u6 − u2u5u7 + u2u6u7 + u3u4u5 − 7u3u4u6 +
u3u4u7 − 7u3u5u6 − u3u5u7 + u3u6u7 − u4u5u6 + u4u5u7 + u4u6u7 − u5u6u7 + u1u2 − u1u3 − u1u4 − u1u5 − u1u6 + u1u7 +
7u2u3 +u2u4 +u2u5 −u2u6 −u2u7 −9u3u4 +u3u5 −u3u6 −u3u7 +7u4u5 −u4u6 −u4u7 −7u5u6 −u5u7 +u6u7 −u1 +u2 +
u3 +u4 +u5 −u6 −u7 +1.

After removing the extraneous solutions from Eq. (26) using the Maple command EliminationIdeal as described in the
last paragraph of section 3, we have

hi(u1,u2, · · ·u7) = 0 i = 1,2, · · ·48 (27)

where
h1 =−u1u2u5 +u1u4u5 −u2u3 +u3u4,
h2 =−4u1u2 +4u1u6 −u2u7 +u6u7 −15u2 +15u6,
· · ·
h48 =−108u4

3u5 +540u3
3u2

5 −540u2
3u3

5 +108u3u4
5 +288u2

1u2
3 −108u1u2u2

3 −1044u1u3
3 +792u1u2

3u5 −36u1u3
5 −144u4

3 +
108u3

3u4+612u3
3u5+27u3

3u7−180u2
3u2

5−396u3u3
5+108u4

5−3612u1u2u3+1320u1u2u5+1332u1u2
3−1260u1u3u5−2676u2u2

3+
3360u2u3u5−4563u3

3+2688u2
3u4+6408u2

3u5−1080u2
3u6+783u2

3u7−2160u3u2
5+216u3

5−288u2
1+20216u1u2−4620u1u3+

13772u1u4−336u1u5−28916u1u6+34336u2u3−14148u2u5−4440u2u7+1845u2
3+48644u3u4+3588u3u5−28688u3u6−

1197u3u7 −45216u4u5 −972u2
5 +7364u5u7 −14420u1 +48480u2 −74583u3 +14620u4 +82836u5 −58660u6 +9963u7 −

9963.
Let J =< h1,h2, · · ·h48 > denote the ideal2 composed of the 48 polynomials associated with Eq. (27). The Hilbert

dimension of J is 1. Calculating the prime decomposition of J using computer algebra system software, we have

J =
7∩

j=1

J j (28)

where the irreducible components, J j, of J are:
J1 =< u2−1,u4−1,u6−1,u1u3+u1+4u3−u5u7−3u5−3/4u7+7/4,u1u5−u2

5u7−3u2
5−3/4u5u7−9/4u5−3,u1u7+

1/3u1 −1/3u5u7 −u5,u3u5 +4/3u3 −1/3u5u7 −1/4u7 +5/4,u3u7 −1/4u5u2
7 −3/4u5u7 −3/16u2

7 +3/8u7 −3/16,u2
5u2

7 +
3u2

5u7 +3/4u5u2
7 +5/2u5u7 +3/4u5 +3u7 +1 >

J2 =< u2 +1,u4 −1,u6 +1,u1 −1/4u3u7 −15/4u3,u5 −1/4u7 +1/4,u2
7 +14u7 +1 >

J3 =< u3 +1,u6 +1,u1 +1/4u7 +15/4,u2 +u4,u5 −1/4u7 +1/4,u2
7 +14u7 +1 >

J4 =< u2 −1,u4 +1,u6 +1,u1 +1/4u7 +15/4,u3 −1/4u5u7 −15/4u5,u2
7 +14u7 +1 >

J5 =< u2 −1,u5 +1,u1 +1/4u7 +15/4,u3 +1/4u7 +15/4,u4 −u6,u2
7 +14u7 +1 >

J6 =< u7 −1,u1 −u5,u2 −u6,u3 −u5,u4 −u6,u2
5u2

6 +2u2
5u6 +u2

5 +2u5u2
6 +2u5 +u2

6 +2u6 +1 >
J7 =< u1+1,u2−u6,u3−u5,u4u5+1/3u4+u5+u6u7+1/3u6+1/2u7+1/2,u4u6+2u4−2u2

6−u6,u4u7−3/8u6u2
7−

5/4u6u7 −3/8u6 −3/16u2
7 +3/8u7 −3/16,u5u2

6 +u5u6 +u5 +1/2u2
6u7 +1/2u2

6 +5/4u6u7 +3/4u6 +1/2u7 +1/2,u5u7 +
3u5 +3u7 +1,u2

6u2
7 −2u2

6u7 +u2
6 +5/2u6u2

7 +3u6u7 +5/2u6 +u2
7 −2u7 +1 >

The Hilbert dimensions of Ji (i=1, 2, · · ·, 7) are all 1. Then, we obtain three sets of positive-dimension solutions,
each corresponding to one 1-DOF motion mode, from J1, J6 and J7. Since there is no real solution of θ7 to the equation
u2

7 +14u7 +1 = 0, there is no motion mode associated with irreducible components J2, J3, J4 and J5.
It is noted that the number of elements of an irreducible component could be larger than the number of variables minus

the Hilbert dimension of the irreducible component. Sometimes the elements of the same irreducible components obtained

2For the basics from algebraic geometry, please refer to [25, 27].
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using different algorithms, such as the Shimoyama-Yokoyama algorithm and the Gianni-Trager-Zacharias algorithm imple-
mented in computer algebra systems like Maple, SINGULAR and MAGMA, are different. For example, the seven irreducible
components in Eq. (28) were obtained using the MAGMA command RadicalDecomposition. The same irreducible compo-
nents in more complex format were also obtained using the SINGULAR command PrimedecGTZ. However, several extrane-
ous 0-dimensional irreducible components were obtained using the Maple command PrimeDecomposition in [46], together
with the above seven 1-dimensional irreducible components. The computation time for different multi-mode single-loop 7R
spatial mechanisms could also vary significantly. In addition, for a single-loop 7R spatial mechanism with a single-operation
mode [46], the set of polynomial equations obtained using the tan-half-angle substitution can be solved faster than that ob-
tained using the natural exponential function approach. For multi-mode single-loop spatial mechanisms composed of more
than seven joints, numerical algebraic geometry [28] would be more suitable.

In the following, we will reveal the motion characteristics of the three motion modes of the 7R mechanism in detail. As
will be shown later, the 7R mechanism has two circuits in each of its three motion modes. A circuit is defined here as all the
possible configurations of the mechanism without disconnecting any joint and by ignoring link interference in a specified
motion mode.

4.1.1 Motion mode 1: Planar 4R mode
The 1-dimensional vanishing set V (J1) of J1 leads to


u2 −1 = 0
u4 −1 = 0
u6 −1 = 0
· · ·

(29)

i.e., 
θ2 = 0
θ4 = 0
θ6 = 0
· · ·

(30)

Equation (30) shows that the motion mode associated with V (J1) is a 1-DOF planar 4R mode [Figs. 3(a) and 3(b)]. In
this motion mode, joints 2, 4, and 6 lose their DOF and the joint axes of joints 1, 3, 5 and 7 are parallel. The input-output
equation of the mechanism in this motion modes can be represented using the equations that were omitted in Eq. (30).

4.1.2 Motion mode 2: Orthogonal Bricard 6R mode
The 1-dimensional vanishing set of V (J6) of J6 leads to



−1+u7 = 0
u1 −u5 = 0
u2 −u6 = 0
u3 −u5 = 0
u4 −u6 = 0
· · ·

(31)

i.e., 
θ7 = 0
θ1 = θ3 = θ5
θ4 = θ2 = θ6
· · ·

(32)

Equation (32) shows that the motion mode associated with V (J6) is a 1-DOF orthogonal Bricard 6R mode [Figs. 3(c)
and 3(d)]. In this motion mode, joint 7 loses its DOF and the joint axes of joints 1 and 6 are perpendicular to each other. The
input-output equations of the mechanism in this motion modes can be represented using the equations that were omitted in
Eq. (32).
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Fig. 3. Motion modes of the multi-mode 7R mechanism: (a) Motion mode 1: Planar 4R mode in circuit 1, (b) Motion mode 1: Planar 4R
mode in circuit 2, (c) Motion mode 2: Orthogonal Bricard 6R mode in circuit 1, (d) Motion mode 2: Orthogonal Bricard 6R mode in circuit 2,
(e) Motion mode 3: Plane symmetric 6R mode in circuit 1, and (f) Motion mode 3: Plane symmetric 6R mode in circuit 2.

4.1.3 Motion mode 3: Plane symmetric 6R mode
The 1-dimensional vanishing set of V (J7) of J7 leads to


1+u1 = 0
u2 −u6 = 0
u3 −u5 = 0
· · ·

(33)

i.e.,


θ1 = π
θ2 = θ6
θ3 = θ5
· · ·

(34)

Equation (34) shows that the motion mode associated with V (J7) is a 1-DOF plane symmetric 6R mode [Figs. 3(e) and
3(f)]. In this motion mode, joint 1 loses its DOF and the distance between the joint axes of joints 2 and 7 is equal to the link
length of link 6. The input-output equations of the mechanism in this motion mode can be represented using the equations
that were omitted in Eq. (34).
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4.2 Transition configuration analysis
In this section, transition configurations between each pair of motion modes of the multi-mode 7R mechanism will be

identified. The transition configuration between two motion modes can be obtained using the set of the equations composed
of both set of equations associated with these motion modes.

4.2.1 Transition configurations between the planar 4R mode and the orthogonal Bricard 6R mode
Combining the equations associated the planar 4R mode [Eq. (29) or (30)] and the orthogonal Bricard 6R mode [Eq. (31)

or (32)] of the multi-mode 7R mechanism, we have


θ2 = 0
θ4 = 0
θ6 = 0
θ7 = 0
· · ·

(35)

Solving Eq. (35), we obtain the two transition configurations between the planar 4R mode and the orthogonal Bricard
6R mode: Transition configuration 1 between motion modes 1 and 2 in circuit 1 [Eq. (36) and Fig. 4(a)] and transition
configuration 2 between motion modes 1 and 2 in circuit 2 [Eq. (37) and Fig. 4(b)].


θ2 = 0
θ4 = 0
θ6 = 0
θ7 = 0
θ1 = θ3 = θ5 =−2π/3

(36)


θ2 = 0
θ4 = 0
θ6 = 0
θ7 = 0
θ1 = θ3 = θ5 = 2π/3

(37)

123

4

5

6

7

(a)

1
23

4

5

6

7

(b)

Fig. 4. Transition configurations between the planar 4R mode and the orthogonal Bricard 6R mode of the multi-mode 7R mechanism: (a)
Transition configuration 1 between motion modes 1 and 2 in circuit 1, and (b) Transition configuration 2 between motion modes 1 and 2 in
circuit 2.
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4.2.2 Transition configurations between the planar 4R mode and the plane symmetric 6R mode
Combining the equations associated the planar 4R mode [Eq. (29) or (30)] and the plane symmetric 6R mode [Eq. (33)

or (34)] of the multi-mode 7R mechanism, we have 

θ2 = 0
θ4 = 0
θ6 = 0
θ1 = π
θ5 = θ3
· · ·

(38)

Solving Eq. (38), we obtain the two transition configurations between the planar 4R mode and the plane symmetric 6R mode:
Transition configuration 3 between these motion modes in circuit 1 [Eq. (39) and Fig. 5(a)] and transition configuration 4
between these motion modes in circuit 2 [Eq. (40) and Fig. 5(b)]

θ2 = 0
θ4 = 0
θ6 = 0
θ1 = π
θ3 = θ5 =−131.8103◦

θ7 = 83.6206◦

(39)



θ2 = 0
θ4 = 0
θ6 = 0
θ1 = π
θ3 = θ5 = 131.8103◦

θ7 =−83.6206◦

(40)
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Fig. 5. Transition configurations between the planar 4R mode and the plane symmetric 6R mode of the multi-mode 7R mechanism: (a)
Transition configuration 3 between motion modes 1 and 3 in circuit 1, and (b) Transition configuration 4 between motion modes 1 and 3 in
circuit 2.

4.2.3 Transition configurations between the orthogonal Bricard 6R mode and the plane symmetric 6R mode
Similarly, it can be found that there is no transition configuration between the orthogonal Bricard 6R mode and the

plane symmetric 6R mode since there is no solution to the equations obtained by combining the equations associated the
orthogonal Bricard 6R mode [Eq. (31) or (32)] and the plane symmetric 6R mode [Eq. (33) or (34)] of the multi-mode 7R
mechanism. To switch the multi-mode 7R mechanism between the orthogonal Bricard 6R mode and the plane symmetric 6R
mode, the mechanism must be switched from one 6R mode to the planar 4R mode and then to the other 6R mode.

Based on the above transition configuration analysis, one can conclude that the multi-mode 7R mechanism can switch
among its motion modes in theory as shown in Fig. 6. Using the well-documented approach based on screw theory (see
for example [14, 19, 20]), it can be readily proved that in each transition configuration, the multi-mode 7R mechanism has
generally two instantaneous DOF. The above results have been verified using a 3D-printed prototype shown in Fig. 7.
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[Fig. 3(e)]

Transition
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(a)

Motion mode 2: Or-
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mode [Fig. 3(d)]

Motion mode 1:
Planar 4R mode
[Fig.3(b)]

Motion mode 3: Plane
symmetric 6R mode
[Fig. 3(f)]

Transition
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2 [Fig. 4(b)]

Transition
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(b)

Fig. 6. Reconfiguration of the multi-mode 7R mechanism: (a) Motion modes 1, 2 and 3 in circuit 1, and (b) Motion modes 1, 2 and 3 in circuit
2.
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Fig. 7. A 3D printed prototype of the multi-mode 7R mechanism in transition configuration 2.

5 Conclusions
The reconfiguration analysis of a novel multi-mode 7R spatial mechanism has shown that the 7R mechanism has three

motion modes, including a planar 4R mode, an orthogonal Bricard 6R modes, and a plane symmetric 6R modes. Unlike the
multi-mode 7R mechanisms presented in [15,16,21,22], the multi-mode 7R mechanism proposed in this paper does not have
a 7R mode in which all the seven R joints can move simultaneously.

This method proposed in this paper overcomes the drawback of tan-half-angle substitution in the reconfiguration analysis
of multi-mode mechanisms. The work is being extended to the reconfiguration analysis of other multi-mode single-loop and
multi-loop mechanisms and robots in the configuration space.
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List of figure captions
Fig. 1 Link parameters.

Fig. 2 A multi-mode 7R mechanism.

Fig. 3 Motion modes of the multi-mode 7R mechanism: (a) Motion mode 1: Planar 4R mode in circuit 1, (b) Motion mode
1: Planar 4R mode in circuit 2, (c) Motion mode 2: Orthogonal Bricard 6R mode in circuit 1, (d) Motion mode 2: Orthogonal
Bricard 6R mode in circuit 2, (e) Motion mode 3: Plane symmetric 6R mode in circuit 1, and (f) Motion mode 3: Plane
symmetric 6R mode in circuit 2.

Fig. 4 Transition configurations between the planar 4R mode and the orthogonal Bricard 6R mode of the multi-mode 7R
mechanism: (a) Transition configuration 1 between motion modes 1 and 2 in circuit 1, and (b) Transition configuration 2
between motion modes 1 and 2 in circuit 2.

Fig. 5 Transition configurations between the planar 4R mode and the plane symmetric 6R mode of the multi-mode 7R mech-
anism: (a) Transition configuration 3 between motion modes 1 and 3 in circuit 1, and (b) Transition configuration 4 between
motion modes 1 and 3 in circuit 2.

Fig. 6 Reconfiguration of the multi-mode 7R mechanism: (a) Motion modes 1, 2 and 3 in circuit 1, and (b) Motion modes 1,
2 and 3 in circuit 2.

Fig. 7 A 3D printed prototype of the multi-mode 7R mechanism in transition configuration 2.
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