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Sparsity regularized optical interferometric imaging

Jasleen Birdi, Audrey Repetti, and Yves Wiaux
Institute of Sensors, Signals and Systems, Heriot-Watt University, Edinburgh EH14 4AS, UK.

Abstract—Optical interferometry involves acquisition of under-sampled

data related to the Fourier coefficients of the intensity image of interest,

with missing phase information. It poses an ill-posed non-linear inverse

problem for image recovery. In this context, for monochromatic imaging,
a tri-linear data model was proposed in [1], leading to a non-negative non-

linear least squares minimization problem, solved using a Gauss-Seidel

method. In the recently submitted paper [2], we have developed a new

robust method to improve upon the previous approach, by introducing a
sparsity prior, imposed either by an ℓ1 or a reweighted ℓ1 regularization

term. The resulting problem is solved using an alternating forward-

backward algorithm, which is applicable to both smooth and non-smooth
functions, and provides convergence guarantees in the non-convex context

of interest. Moreover, our method presenting a general framework, we

have extended it to hyperspectral imaging, where we have promoted a

joint sparsity prior by an ℓ2,1 norm. Here we describe the proposed
method and present simulation results to show its performance.

I. INTRODUCTION

In the context of astronomical Optical Interferometry (OI), the

measurements are performed by an array of antennas, such that each

pair of antennas probes a spatial frequency in the Fourier domain (the

u-v plane) of the image of interest, x ∈ R
N
+ . More precisely, for A

antennas, an interferometer probes A(A − 1)/2 spatial frequencies,

leading to a sparse sampling of the u-v plane. For radio interferome-

try, these measurements correspond to complex visibilities. However,

at optical wavelengths, the random phase fluctuations caused by

the atmospheric turbulence leads to cancellation of the visibility

values. Hence, the OI measurements consist of phase insensitive

observables: power spectrum and bispectrum. On the one hand, MP

power spectrum measurements correspond to the squared moduli of

these visibilities. On the other hand, MB bispectrum measurements

correspond to a triple product of three different complex visibilities,

satisfying phase closure [3]. The loss of most of the phase information

combined with the sparse sampling of the u-v plane poses a highly

challenging task of image recovery in OI [3].

II. PROPOSED APPROACH

Each OI measurement can be represented by a triple product of

the visibilities and the inverse problem can be written as:

y =
[

(T1x) · (T2x) · (T3x)
]

+ η, (1)

where · denotes the Hadamard product, y ∈ C
M , with M = MP +

MB, η ∈ C
M is a realization of an additive i.i.d. Gaussian noise,

and T1, T2, T3 : R
N → C

M , are linear operators performing a

discrete 2D Fourier transform, followed by selection of the Fourier

coefficients to construct the measurements. To bring the linearity in

the data model (1), as proposed in [1], we introduce (u1,u2,u3)
∈ (RN

+ )3 such that u1 = u2 = u3 = x and reformulate the data

model as:

y =
[

(T1u1) · (T2u2) · (T3u3)
]

+ η. (2)

Using a Maximum a Posteriori approach, we estimate (u1,u2,u3)
as a solution to

minimize
(u1,u2,u3)∈(RN )3

1

2

∥

∥y − (T1u1) · (T2u2) · (T3u3)
∥

∥

2

2
+

3
∑

p=1

r(up) ,

(3)

and define the final solution to be the mean over these estima-

tions [2]. While the first term in (3) is the data fidelity term,

r : RN →] − ∞,+∞] is the regularization term incorporating a

priori information on the target image x. In addition to the positivity

constraint considered in [1], we propose to impose sparsity of the

sought image in a dictionary Ψ ∈ R
N×J , with an ℓ1 norm, or a

reweighted ℓ1 norm [4] such that the regularization term is given by:

(∀x ∈ R
N) r(x) = ι

RN

+
(x) + µ‖WΨ

†
x‖1, (4)

where ι
RN

+
is the indicator function enforcing positivity of the sought

image, µ ≥ 0 is the regularization parameter, and W ∈ R
J×J is a

diagonal weighting matrix.

Exploiting the convexity of the sub-problems in (3) with respect

to each of the variables u1,u2,u3, we propose to solve (3) using

a block-coordinate forward-backward algorithm [5]. More precisely,

this algorithm consists in solving sequentially for each of the variables

u1,u2,u3, while keeping the other two fixed. The estimation of each

variable
(

up

)

1≤p≤3
is obtained by alternating between the gradient

and proximity steps. The resulting algorithm is then guaranteed to

converge to a critical point of the objective function in (3) [5].

III. HYPERSPECTRAL IMAGING

Keeping in mind the multi-wavelength imaging capabilities of

modern optical interferometers, we extend our method for hyper-

spectral imaging. In order to reconstruct the image at L differ-

ent wavelengths, we adopt the same methodolgy as developed for

monochromatic case. To this purpose, we concatenate all the L
spectral channels, and replace the variables and the operators in the

monochromatic case with their hyperspectral counter-parts.

Here in addition to positivity, we exploit spatial sparsity of the

sought image while favoring spectral continuity. Thus, we propose

to regularize the problem with the joint sparsity prior using an ℓ2,1
norm [2], defined, for every X ∈ R

N×L, by:

r(X) = ι
R
N×L

+

(X) + µ
J
∑

j=1

( L
∑

l=1

∣

∣[Ψ†
xl]j

∣

∣

2
)1/2

, (5)

where X = [x1, ...,xL] is a concatenation of the image vectors

at each spectral channel, with xl denoting the image vector at l-th
spectral channel.

IV. RESULTS AND CONCLUSION

To assess the performance of the proposed method, we present

simulation results considering the LkHα image [6], of size N = 642,

with the realistic u-v coverage [2], where MP = 72. It leads to only

around 3.5 % sampling of the u-v plane. For each test, we vary MB,

keeping MP fixed, and perform simulations for 10 noise realizations.

In terms of both SNR and visual quality, the results are shown in

Fig. 1 and 2. For this highly undersampled u-v plane, the results

indicate that for monochromatic imaging, promoting sparsity, espe-

cially by reweighted ℓ1 regularization, gives promising results over

positivity constrained case. Similarly, for the hyperspectral imaging,

exploiting the joint sparsity significantly improves the reconstruction

quality in comparison with single-channel reconstruction.
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Fig. 1: Results for monochromatic imaging. First row: SNR graph depicting
the comparison of average SNR values (over 10 simulations), and correspond-
ing 1-standard-deviation error bars, for different regularization terms (input
SNR = 30 dB). Second and third row: Reconstructed images obtained for
MB/N = 0.05, corresponding to median SNR (over 10 simulations) are
shown for different regularization terms - (a) True LkHα image, (b) positivity
constrained recovery, (c) recovery with ℓ1 regularization, and (d) recovery
with reweighted-ℓ1 regularization. For these tests, Ψ is taken to be Daubechies
8 wavelet basis.
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Fig. 2: Results for hyperspectral imaging for L = 8 spectral channels. First
row: SNR graph depicting the comparison of the average SNR values (over
10 simulations) and corresponding 1-standard-deviation error bars, between
single-channel reconstruction with ℓ1 regularization and reconstruction by
considering joint sparsity with ℓ2,1 regularization (input SNR = 30 dB).
Second-fourth row: Left column shows the images corresponding to the first
spectral channel, l = 1, right column shows the images corresponding to
the last spectral channel, l = 8. In each column, original image (second
row), reconstructed image with ℓ1 regularization (third row) and reconstructed
image with ℓ2,1 regularization (fourth row) are shown, respectively for
MB/N = 0.1. For these tests, Ψ is taken to be the Identity matrix.


