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Although qubits are the leading candidate for the basic elements in a quantum computer, there are also a
range of reasons to consider using higher-dimensional qudits or quantum continuous variables (QCVs). In this
paper, we use a general “quantum variable” formalism to propose a method of quantum computation in which
ancillas are used to mediate gates on a well-isolated “quantum memory” register and which may be applied to the
setting of qubits, qudits (for d > 2), or QCVs. More specifically, we present a model in which universal quantum
computation may be implemented on a register using only repeated applications of a single fixed two-body
ancilla-register interaction gate, ancillas prepared in a single state, and local measurements of these ancillas.
In order to maintain determinism in the computation, adaptive measurements via a classical feed forward of
measurement outcomes are used, with the method similar to that in measurement-based quantum computation
(MBQC). We show that our model has the same hybrid quantum-classical processing advantages as MBQC,
including the power to implement any Clifford circuit in essentially one layer of quantum computation. In some
physical settings, high-quality measurements of the ancillas may be highly challenging or not possible, and hence
we also present a globally unitary model which replaces the need for measurements of the ancillas with the
requirement for ancillas to be prepared in states from a fixed orthonormal basis. Finally, we discuss settings in
which these models may be of practical interest.

DOI: 10.1103/PhysRevA.95.052317

I. INTRODUCTION

There are some compelling reasons to consider implement-
ing a quantum computer with higher-dimensional qudits (d-
level systems, d > 2) or systems with a continuous degree of
freedom: quantum continuous variables (QCVs). Particularly
interesting recent results show that fault-tolerance thresholds
for d-dimensional qudits are improved by increasing d

[1–6] and it is also known that increasing the dimension of
the qudits can improve the robustness of some algorithms
[7–9] and provide a logarithmic decrease in the number of
subsystems required for a computation [10,11]. Furthermore,
high-quality quantum controls over d > 2 qudits have now
been experimentally demonstrated in a variety of physical
settings [12–19], providing additional motivation for research
into qudit-based quantum computers. Turning to QCVs, in the
optical settings these are some of the easiest quantum systems
to entangle and manipulate, as demonstrated by a range of
impressive experiments [20–23], including the creation of
entangled states of 10 000 individually addressable QCVs
[23]. Moreover, although QCVs may seem to be particularly
prone to uncorrectable errors due to their continuum nature,
error-correction techniques have been developed for QCVs
[24–28], and it is known that fault-tolerant computation is
possible via a logical encoding of qudits or qubits inside a
universal QCV quantum computer [28,29]. Hence, in addition

*Now at Sandia National Laboratories, Livermore, CA 94550, USA.
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to qubits, higher-dimensional qudits and QCVs also potentially
provide a viable route towards a universal, scalable quantum
computer. We will now use the term quantum variable (QV),
as introduced in [30] to refer simultaneously to qubits, higher-
dimensional qudits, or QCVs.

Decoherence is the major obstacle to realizing a useful
quantum computer, and in order to minimize its destructive
effects it is essential that each QV in the “register” of a quantum
computer is isolated as effectively as possible. One method for
doing this is to require no direct interactions between register
QVs and to mediate the necessary entangling gates on the
register via some ancillary systems, which are potentially of a
different physical type, that are optimized for this purpose.
Such “ancilla-based” quantum computation schemes have
been extensively developed, e.g., see [31–40]. However, the
literature to date largely considers a qubit-based quantum
computer (see [41] for an important exception), and as we have
outlined above it is not yet clear whether qubits will, or should,
be the preferred basic building block of any future quantum
computer. In this paper, we present ancilla-based gate methods
for quantum computation with general QVs, meaning that the
models herein can be applied to qubits, higher-dimensional
qudits, and QCVs.

Ancilla-based computational models explicitly allow for a
physical implementation in which each element in the register
is a “quantum memory” that is well isolated and tailored
towards long coherence times, with more easily manipulated
ancillary systems providing the control. Continuing in this
line of thought, it is well motivated to consider ways in
which the access needed to the register, in order to implement
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universal quantum computation on it, can be further reduced
to a minimum. The minimum access needed is the ability
to perform a single fixed ancilla-register interaction gate
(between ancilla-register pairs). It is furthermore natural to
minimize the number of interactions required between an
ancilla and register elements to implement an entangling gate.
The minimum is obviously a single interaction of the ancilla
with each register QV, and this is only possible with the aid
of measurements of the ancillas to disentangle the ancilla and
the register. These controls, along with ancillas prepared in a
fixed state, will be all that is required for universal quantum
computation in the main model we present herein, which we
introduce in Sec. III. To be clear, the model will be able
to implement universal quantum computation using only the
following:

(1) a fixed ancilla-register interaction gate;
(2) local measurements of ancillas;
(3) ancillas prepared in a fixed state.
This model can be understood as an extension, to the setting

of general QVs, of the qubit-based ancilla-driven quantum
computation (ADQC) model proposed in [34,35]. For this
reason, the same name will be used for the more general
model developed here. Furthermore, we note that the basic
gate methods used in our general QV ADQC model are closely
related to those proposed by Roncaglia et al. [41], although
Ref. [41] only explicitly considers QCVs and qubits.

Arbitrary local measurements of the ancillas may well be
challenging in practice, particularly in the case of QCVs.
Hence, we will discuss sets of measurements which are
sufficient to guarantee that the model may implement universal
quantum computation. In particular, it will be shown that
for the QCV-based model, with ancillas realized as optical
states, homodyne detection and photon-number counting
on these ancillas is sufficient for universality. However, in
some physical settings, implementing more than one type of
measurement (or indeed any measurements) on the ancillas
may be challenging. For example, if high-fidelity unitary
control of the ancillas is not possible and only one observable
may be measured. Hence, in Sec. IV we propose a globally
unitary model based on a swaplike gate that requires only
this fixed interaction, along with ancillas prepared in states
from a fixed orthonormal basis, for universality. We begin in
Sec. II with a review of the necessary details of the “quantum
variable” formalism [30].

II. GENERAL QUANTUM VARIABLES

In this section, the general quantum variable (QV) for-
malism used throughout this paper is introduced and the
relevant quantum computation material needed herein is
reviewed. The QV formalism is a method for considering
qudits of arbitrary dimension (including qubits) and quantum
continuous variables (QCVs) simultaneously. This is presented
in greater detail by one of these authors in [30], and only the
essential material for what follows is covered here.

A qudit is a quantum system with a Hilbert space of finite
dimension d ∈ Z (with d � 2). The integers modulo d play a
crucial role for qudits, i.e., the set {0,1, . . . ,d − 1} along with
modular arithmetic [42]: we denote this ring Z(d). A QCV is
a quantum system with a continuous degree of freedom taking

values in R, i.e., one-dimensional wave mechanics, described
by the x̂ and p̂ operators obeying [x̂,p̂] = i. We define the
dimensionality constant d for QCVs to be d = 2π . It is useful
to define the ring Sd , for a general QV, by

Sd :=
{
Z(d) for a d-dimensional qudit,
R for a QCV.

(1)

For qudits, the group of all the n-qudit unitaries, U (dn),
is important in quantum computation, but for QCVs it is
conventional to only consider the subset of n-QCV unitaries
containing all operators of the form U = exp[i poly(x̂k,p̂k)]
where poly(x̂k,p̂k) is an arbitrary finite-degree polynomial
(over R) of the position and momentum operators of all n

QCVs [30,43]. For notational simplicity, denote this set by
U ((2π )n), so that in all cases the relevant set of unitaries for
quantum computation is U (dn).

A. Pauli operators

For all types of QVs, a computational basis may be chosen
for the relevant Hilbert space B := {|q〉 | q ∈ Sd}, with basis
states obeying 〈q|q ′〉 = δ(q − q ′) where δ(q − q ′) is the Dirac
delta function for QCVs and the Kronecker delta for qudits
(e.g., for QCVs this basis may be defined as the generalized
eigenstates of x̂). Using this basis we may define the Fourier
gate F by

F |q〉 := 1√
d

∑
q ′∈Sd

ωqq ′ |q ′〉, (2)

with ω := exp(2πi/d) [30]. The
∑

q ′∈Sd
notation denotes that

the summation of q ′ is over all values in Sd , e.g., it is an
integral over R for QCVs. It is easily shown that F 4 = I. For
a qubit, the Fourier gate is the well-known Hadamard operator
(normally denoted H ).

A conjugate basis B+ may be defined to contain the or-
thornormal states |+q〉 := F |q〉 for q ∈ Sd , with this notation
borrowed from that in common usage for qubits. It is simple
to confirm that

〈q|+q ′ 〉 = ωqq ′

√
d

∀ q,q ′ ∈ Sd . (3)

The (generalized) Pauli operators are the q ′ ∈ Sd

parametrized unitaries defined by

Z(q ′)|q〉 := ωqq ′ |q〉, X(q ′)|q〉 := |q + q ′〉, (4)

for all q,q ′ ∈ Sd , where the arithmetic is as appropriate for
Sd , as should be assumed for all arithmetic in the following
unless otherwise stated [30]. For qubits these unitaries reduce
to (powers of) two of the ordinary Pauli operators. It will be
notationally convenient to let X ≡ X(1) and similarly for all
other parametrized unitaries [e.g., Z ≡ Z(1)].

It may be easily confirmed that the action of the Pauli
operators on the conjugate basis is

X(q ′)|+q〉 = ω−qq ′ |+q〉, Z(q ′)|+q〉 = |+q+q ′ 〉, (5)

for all q,q ′ ∈ Sd . Hence, the computational and conjugate
bases are eigenstates of Z(·) and X(·), respectively. It will
be useful to define the general QV Hermitian “position” and
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“momentum” operators

x̂ :=
∑
q∈Sd

q|q〉〈q|, p̂ :=
∑
q∈Sd

q|+q〉〈+q |, (6)

which for QCVs are the standard position and momentum
operators.

B. Pauli and Clifford groups

The X(q) and Z(q ′) operators commute up to a phase,
specifically,

Z(q)X(q ′) = ωqq ′
X(q ′)Z(q), (7)

for all q,q ′ ∈ Sd . Hence, the Pauli operators may be used to
define a subgroup of U (dn). The (n-QV) Pauli group, denoted
P , is defined to consist of all operators of the form

pξ,	q := ωξ/2X(q1)Z(qn+1) ⊗ · · · ⊗ X(qn)Z(q2n), (8)

where 	q = (q1, . . . ,q2n) ∈ S2n
d and ξ ∈ SD where SD =

Z(2d) for qudits and SD = R for QCVs [30]. This reduces to
the well-known qubit Pauli group for d = 2 (which contains
operators with I, X, Z, or Y = iXZ gates on each qubit along
with a global phase factor of +1, − 1, + i, or −i [44]) and
the Heisenberg-Weyl group for QCVs [45].

Note that takingSD = Z(D) with D = 2d for qudits, rather
than setting D = d, is only necessary to obtain the desired
properties of the Pauli group for even d [46]. However, it
is perhaps most convenient to take the convention whereby
D is always 2d [47], as we do here. Similarly, when Pauli
operators are composed we have pξ,	q pζ, 	p = pξ+ζ+2δ,	q+ 	p
where δ = q1pn+1 + q2pn+2 + · · · , and so for qudits it is
perhaps ambiguous as to whether to calculate δ using modulo
d or 2d arithmetic. However, as ωδ is invariant under changing
this convention, the choice is essentially irrelevant.

The (n-QV) Clifford group is defined in terms of the Pauli
group by [30]

C := {U ∈ U (dn) | UpU † ∈ P ∀ p ∈ P}, (9)

which are the unitaries which transform Pauli operators to Pauli
operators under conjugation. The Fourier and Pauli operators
are Clifford gates and a further important single-QV Clifford
gate is the phase gate, denoted P (p), defined by

P (p)|q〉 := ω
pq

2 (q+�d )|q〉, (10)

with p ∈ SD and �d = 1 for odd-dimension qudits and �d = 0
otherwise. The d-dependent �d parameter is required to
guarantee that the phase gate has equivalent properties in
all dimensions. For qubits, the phase gate reduces to P =
|0〉〈0| + i|1〉〈1|.

An important two-QV Clifford gate is the controlled-Z gate,
denoted CZ and defined by

|q〉|q ′〉 CZ−→ ωqq ′ |q〉|q ′〉. (11)

This gate acts symmetrically on the QVs.
The CZ, F , P (p) gates and the Pauli operators form a set of

generators for the Clifford group, specifically,

C = 〈CZ,F,P (q),Z(q)〉 with q ∈ Sd , (12)

meaning that any Clifford gate can be decomposed into
multiplicative and tensor products of these four gates [30,45–
47]. For qudits, we may set p = 1 and q = 1, as obviously
P (p) and Z(q) can be obtained by p and q applications of P

and Z, respectively. It may be directly confirmed that [30]

pξ,(q1,q2)
F−→ pξ−2q1q2,(−q2,q1), (13)

pξ,(q1,q2)
P (p)−−→ pξ+pq1(q1+�d ),(q1,q2+pq1), (14)

pξ,(q1,q2,q3,q4)
CZ−→ pξ+2q1q2,(q1,q2,q3+q2,q4+q1), (15)

where U
u−→ U ′ for operators u and U denotes that uUu−1 =

U ′.

C. Universal quantum computation

An n-QV universal quantum computer (UQC) is defined to
be a device which can approximate to arbitrary accuracy any
unitary operator in U (dn) on n QVs [30,43,48]. A quantum
computer which can implement any two-QV entangling gate
along with a set of single-QV gates that can approximate (to
arbitrary accuracy) any single-QV gate is universal [30,43,48].
Although the CZ gate will be the most important two-QV
entangling gate herein, we will also at times require more
general controlled-u gates, denoted Cc

t u and defined by

|q〉c ⊗ |q ′〉t
Cc

t u−−→ |q〉c ⊗ uq |q ′〉t , (16)

for some unitary u. Note that this definition is valid even when
the two systems are QVs of different types. The superscripts
and subscripts will be dropped from the notation when no
confusion will arise.

In order to obtain simple universal gate set constructions, an
important class of single-QV operators are the rotation gates.
The R(ϑ) rotation gate takes a function parameter ϑ : Sd →
R, and is defined by

R(ϑ)|q〉 := eiϑ(q)|q〉. (17)

For all types of QV, some set of rotation gates along with the
Fourier gate is a universal set for single-QV gates [30,43,49]
and hence such a set along with an entangling gate is sufficient
for UQC.

From a practical perspective, it will also be useful to
have more specific universal gate sets. It is well known that
computations using only gates from the Clifford group are
not universal and are efficiently classically simulatable when
QVs are only measured and prepared in the computational
basis [45,47,50–52]. However, for prime dimension qudits the
addition of any non-Clifford gate to a set of generators for the
Clifford group is sufficient for universality [4,53,54] and for
QCVs the addition of any continuous power of a non-Clifford
gate is sufficient for universality [30,43]. In these cases, the
gate normally considered is a so-called cubic phase gate of
some sort, which may be defined in general by

D3(q ′)|q〉 := ωq3q ′/c|q〉, (18)

for q ′ ∈ Sd and some suitable constant c.
For all (prime) dimensions of qudit we may take c = d3 and

this is the basic generalization of the well-known “π/8 gate”
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for qubits [30], for prime d > 3 qudits c = 1 also provides
a non-Clifford gate [2], and for QCVs c = 3 is conventional
[55] (in this case the value of c is essentially irrelevant). For
nonprime dimension qudits the addition of any R(ϑ) gate for a
“generic” fixed ϑ to the Clifford group generators is sufficient
for universality [30].

III. ANCILLA-DRIVEN QUANTUM COMPUTATION FOR
GENERAL QUANTUM VARIABLES

We now present a model of deterministic universal ancilla-
based quantum computation which requires a minimal number
of ancilla-register interactions per gate and uses only

(1) a fixed ancilla-register interaction gate;
(2) local destructive measurements on individual ancillas;
(3) ancillas prepared in the state |+0〉.
This model will be applicable to all types of quantum

variables, but for now it is convenient to consider only the case
in which the register and ancillary QVs are of the same type
(i.e., they are all QCVs or all qudits of the same dimension);
this restriction will be relaxed in Sec. III F.

It is clearly necessary to carefully choose the ancilla-
register interaction, as universal quantum computation will
not be possible in this fashion with just any fixed two-QV
gate (e.g., obviously it must be entangling). We will initially
consider the interaction gate

Ear := FrF
†
a CZ, (19)

with alternative interactions discussed in Sec. III F. That is,
the model allows the application of Ear to any ancilla-register
pair. Note that here (and throughout) the subscript a is used to
refer to an ancillary QV and other subscripts will be used to
refer to register QVs.

From a practical perspective, it is important to use only a
physically plausible set of measurements on the ancillas, and
not all local measurements are equally difficult in practice.
However, the allowed measurements will not be restricted at
this point; measurement sets that are sufficient for universality
will be discussed in Sec. III C. As already noted, the general
QV model proposed here includes, as the qubit special case, the
ancilla-driven quantum computation (ADQC) model proposed
by Anders et al. [34,35] (up to a very minor alteration, noted
later). For this reason, the same name is used here.

A. A universal gate set

Universal quantum computation can be implemented in this
general quantum variable ADQC model as follows. It is simple
to confirm that the action of the fixed interaction Ear on a
register QV in the state |q〉 and an initialized ancilla is

|q〉r |+0〉a Ear−→ |+q〉r |q〉a. (20)

Hence, an interaction of a register QV with an ancilla
delocalizes a logical QV in the register over the two physical
QVs. Therefore, any subsequent manipulations (i.e., gates or
measurements) on the ancilla will implement transformations
on the logical QV, and a measurement of the ancilla will destroy
this delocalization. It is this delocalization which enables the
following universal gate set implementation.

Sequential interactions between an ancilla and two register
QVs, r and s, followed by an x̂ measurement of the ancilla (of-
ten termed a computational basis measurement) implements
an entangling gate on this pair of register QVs [56]. This is
because

|q〉r |q ′〉s |+0〉 EasEar−−−→ ωqq ′ |+q〉r |+q ′ 〉
s
|+−q〉, (21)

and the ωqq ′
phase is exactly the phase that would be created

by a CZ gate acting on these two register QVs. Therefore,
given that the x̂ measurement outcome is m ∈ Sd , the gate
implemented after the ancilla has been measured may be
confirmed to be

〈m|aEasEar |+0〉a
‖〈m|aEasEar |+0〉a‖

= Xr (m)Ẽrs, (22)

where Ẽrs is the symmetric entangling gate given by

Ẽrs = FrFsCZ. (23)

Hence, an entangling gate has been implemented up to a
measurement outcome-dependent Pauli error gate X(m).

This may be summarized in the quantum-classical circuit
diagram

• F

= • F

|+0 x̂ •

which includes an explicit correction for the X(m) error; such a
correction is not required for deterministic universal quantum
computation, as will be seen later. Note that in this diagram two
quantum wires connected via a line and “◦” symbols denote
the fixed ancilla-register interaction, quantum wires joined by
a line and “•” symbols are the standard notation for CZ, the
double lines represent a classical variable of the appropriate
type (e.g., a bit, dit, or CV) and the “�” is a natural notation
for a X† gate, as this is a subtraction gate.

A FR(ϑ) gate, for any ϑ phase function, can be imple-
mented on a register QV (up to a Pauli error) by interacting the
register QV with an ancilla and then performing a ϑ-dependent
measurement on the ancilla. The specific measurement is of
x̂FR(ϑ), where this uses the shorthand

x̂u := u†x̂u =
∑
q∈Sd

q(u†|q〉〈q|u). (24)

This may be confirmed by showing that

〈m|FaRa(ϑ)E′
ar |+0〉

‖〈m|FaRa(ϑ)E′
ar |+0〉‖ = Xr (−m)FrRr (ϑ), (25)

where m ∈ Sd is the measurement outcome. This gate method
is summarized in the quantum-classical circuit diagram

|ψ FR(ϑ)|ψ

|+0 x̂FR(ϑ) • m

which again explicitly corrects for the error. Note that this gate
method is essentially equivalent to that proposed in Ref. [41].

Ignoring the Pauli errors for now, the two gate methods
presented above implement gates which are sufficient for
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universal quantum computation for all types of QVs as they
can generate an entangling gate F [by taking the phase
function to be ϑ(q) = 0 for all q] and any rotation gate [as
F 3FR(ϑ) = R(ϑ)].

B. Stepwise determinism

The Pauli errors may be accounted for using classical feed
forward of measurement outcomes and adaptive measure-
ments, instead of using explicit local correction gates which are
not available in the ADQC model. This is directly analogous
to the techniques of measurement-based quantum computation
[49,57–59] which have been recently presented in the general
quantum variable formalism used here in Ref. [60].

Consider an n-QV computational register and write the
state it is in as pζ,	q |ψ〉, where pζ,	q is any Pauli operator.
It is convenient to write 	q = (x1, . . . ,xn,z1, . . . ,zn), as then
the error on the kth QV is Xk(xk)Zk(zk). Given the vector
	q, we may implement the mapping pξ,	q |ψ〉 → pη, 	pU |ψ〉,
where U = FR(ϑ) or U = Ẽ on any QV(s), using the
available operations in ADQC (and so without explicit
local corrections). Repeated applications of these processes
allow for a deterministic implementation of any quantum
computation up to final Pauli errors on each QV, which can
then be accounted for in classical post-processing of final
measurement outcomes. Note that the natural way to think of
	q is as 2n classical variables on which classical computations
are implemented in parallel to the quantum computation on
the n QVs.

The entangling gate Ẽ is a Clifford gate, and hence
Xr (m)Ẽrspξ,	q = pη, 	pẼrs for some η and 	p. Hence, to im-
plement a Ẽ gate on a register with (possible) Pauli errors, no
adaptive element needs to be added to the process in Eq. (22)
and it is only necessary to implement a classical computation
to update 	q → 	p. The global phase is irrelevant, so we need
not compute ξ → η. It is simple to confirm [using Eqs. (13)
and (15)] that the classical computation required is

(xr,xs,zr ,zs) −→ (m − zr − xs, − zs − xr,xr ,xs). (26)

This can be achieved with classical SUM, SWAP, and inversion
(x → −x) gates (as always, −x is taken modulo d for dits).

To clarify this process, it may be written as a quantum-
classical circuit which acts on two register QVs, one ancillary
QV, and four classical variables. Specifically, this process to
implement Ẽ and update the classical variables is summarized
with the circuit

|+0 x̂ •

xr × V

zr × •
xs × V

zs × •

where the first and second quantum wires represent the r and s

QVs, respectively, V denotes the inversion operator x → −x,
and wires connected via a line and “×” symbols is the standard
notation for the SWAP gate, which maps (x,z) → (z,x).

To apply a FR(ϑ) gate on one of the QVs that has Pauli
errors, the measurement used in the process of Eq. (25) must
(in general) be classically adapted. The X(x) gate maps |q〉 →
|q + x〉. Hence, defining ϑx to be the phase function given by
ϑx(q) = ϑ(q + x), it follows from Eq. (13) that

X(−m)FR(ϑx)X(x)Z(z) = ω−xzX(−z − m)Z(x)FR(ϑ).

Therefore, to implement a FR(ϑ) gate on the rth QV,
the measurement of the ancilla after it interacts with the
register QV should be of the xr -adapted operator x̂FR(ϑxr ),
which implements X(−m)FR(ϑxr

) on the register with m

the measurement outcome. The corresponding update of the
classical variables is

(xr,zr ) −→ (−zr − m,xr ). (27)

This may be written as the quantum-classical circuit module

|+0 x̂FR(ϑ) •

xr × V

zr × •

where the adaption to the measurement basis is shown
schematically via the classical control wire to the measurement
device.

When the FR(ϑ) operator is a Clifford gate, the mea-
surement dependency can be removed from this procedure
at the cost of further classical computation. The error update
procedure for the FP (p) gate on the rth QV when no classical
control is used can be found from Eqs. (13) and (14) to be

(xr,zr )
FP (p)−−−→ (−zr − pxr − m,xr ). (28)

Written as a quantum-classical circuit module, the FP (p) gate
may be implemented by

|+0 x̂FP (p) •

xr × X(p) V

zr × •

.

Finally, note that Z(q) and X(q) gates can be implemented with
only classical processing. That is, to implement a Xr (q)Zr (q ′)
gate simply map the classical variables for the rth QV as
(xr,zr ) → (xr − q,zr − q ′).

Because CZ, FP (p), and Z(q) are sufficient to implement
any Clifford gate [see Eq. (12)] and methods for implementing
these operators have been given which require no classically
adapted measurements, then no measurement dependencies
are required for any Clifford gates. This is not surprising,
given the close relation of this model to MBQC for general
QVs, which will become particularly clear in Sec. III E.

C. Universal sets of measurements

The gate methods given so far are sufficient for universal
quantum computation on the register. However, these tech-
niques include x̂FR(ϑ) measurements for unspecified phase
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functions ϑ : Sd → R, and not all such measurements will be
equally straightforward in practice. In order to implement any
Clifford gate, a very limited set of measurements is required.
For qudits, only three measurement operators are necessary:
x̂, x̂F , and x̂FP (as F , FP , Z, and Ẽ generate the Clifford
group for qudits [30,46]). For a qubit, these are equivalent to
measurements of the Pauli Z, X, and Y operators, respectively,
up to a post-processing on the measurement outcomes of
+1 → 0 and −1 → 1.

For QCVs, any Clifford gate can be implemented via mea-
surement of the quadrature operator X(φ) = p̂ cos φ + x̂ sin φ

for variable φ ∈ [0,2π ), although this must be augmented with
additional post-processing on the measurement outcomes. This
is because x̂ = X(π/2) and x̂FP (tan φ) = −X(φ)/ cos φ, which
may be shown using the k = 2 case of the QCV relations

x̂
Dk(q)−−−→ x̂, p̂

Dk(q)−−−→ p̂ − qx̂k−1, (29)

where Dk(q)|q〉 = ωqx̂k/k|q〉. Quadrature measurements (also
termed homodyne detection) are now routine in quantum
optics, e.g., see Refs. [20,21]. Although the most natural
realization of the ancillary systems in QCV-based ADQC
is probably an encoding into optical states, interestingly,
homodyne detection of QCVs encoded into atoms has also
recently been demonstrated [61].

As discussed in Sec. II C, a non-Clifford gate is necessary
for universal quantum computation. For qudits, there is no
obvious physical reason why one gate in particular should
be picked to obtain universality and there are a large range
of fixed measurements which would suffice in conjunction
with the Clifford measurements. In a given physical setup,
the easiest such measurement (and its classically adapted
versions) could be chosen. A range of suitable variable-basis
measurements or, equivalently, variable local gates followed
by a fixed-basis measurement, have been implemented in
atomic higher-dimensional qudits [12,14], and are common
practice in qubit systems, e.g., see Refs. [62–64].

For QCVs, a single-QCV gate is a non-Clifford unitary
if and only if it is generated by a Hamiltonian which is at
least a cubic function of x̂ and p̂ [43,45]. The natural gate to
consider is the cubic phase gate, as introduced in Eq. (18). This
cubic phase gate (followed by F ) may be implemented via a
measurement of the operator

x̂FD3(q) = qx̂2 − p̂, (30)

where this equality follows directly from Eq. (29). The
adaptive version of this gate required for direct stepwise
determinism is simply given by letting q → q + x in Eq. (30),
where x is the classical variable tracking the X-type error on
the relevant register QV, which is the operator (q + x)x̂2 − p̂.
This can also be decomposed into a measurement of the
operator in Eq. (30) followed by x-dependent Clifford gates.
The next subsection implicitly covers how to do this.

D. Finite-squeezing distortions and cubic phase states for QCVs

There are two difficulties with physically realizing the
ADQC model which are specific to the setting of QCVs
and these are now addressed. First, ideal computational and
conjugate basis states (and so the initial ancilla states |+0〉) are
unphysical [43] and they may only be approximated. Define the

(Clifford) squeezing operator by S(s)|q〉 := |sq〉 with s > 0,
which may be also be written as S(s) = exp[−i ln(s)(x̂p̂ +
p̂x̂)/2], and let |vac〉 denote the vacuum. Then S(s)|vac〉 ≈
|+0〉 when s � 1 and S(s)|vac〉 ≈ |0〉 when s � 1 [65]. The
effect on the QCV ADQC computation of preparing the
ancillas in such approximations to |+0〉 is the introduction
of Gaussian noise to the register with the application of each
gate, as can be inferred from Ref. [55], in which the effect of
such approximations on QCV gate teleportation is analyzed.
Furthermore, this distortion will build up linearly with the
number of gates implemented [55]. Recently, it has been
shown that in QCV MBQC these errors can be mitigated for
by encoding qubits into the QCVs (using the technique of
Ref. [28]) as long as the squeezing is above a threshold value
[29]. This threshold is around 20 dB [29] which is higher than
the current experimental record of 12.7 dB [66,67] [the state
S(s)|vac〉 has 10 log10(s2) dB of squeezing [68]]. An extension
of this finite-squeezing fault-tolerance technique to the QCV
ADQC model is left for future work, although it is noted that
it is likely that any fault-tolerance threshold would be above
the currently experimentally obtainable values.

The second issue with the QCV ADQC model, particularly
with optical ancillas, is that the measurement to directly
implement the cubic phase gate (and obtain universality) is
very difficult to achieve experimentally; such a measurement
requires a nonlinear optical element. One alternative to these
measurements is to use auxiliary resource states, such as
the so-called cubic phase states [28] and convert these to
cubic phase gates. We now show how this technique can be
implemented within the ADQC model.

We first show how to create the state D3(γ )|+0〉 using
only homodyne detection, photon-number counting (assuming
the setting of optical ancillas, as we do for now), and the
fixed ancilla-register interaction. In Ref. [28] it is shown how
to approximately generate a cubic phase state with Gaussian
operations acting on squeezed vacua and a measurement of the
number operator n̂ = (x̂2 + p̂2 − 1)/2. From Refs. [28,55] [in
particular, see Eq. (45) of Ref. [55]] it may be confirmed that

S(s)|vac F † ≈ D3(γ(n))|+0

S(s)|vac Z(−q) n̂ n

where γ (n) = (2
√

2n + 1)−1 and with this approximation
holding when s � 1 and q � s. In this circuit and our
setting of QCV ADQC, the lower quantum wire represents
an ancilla initialized in an approximation to |+0〉 and the
top wire represents an auxiliary register QCV initialized
similarly. Note that the local F † gate on the register QCV
may be applied (up to a Pauli error) via an ancilla-driven
gate using homodyne detection. The measurement on the
ancilla here is a displacement, which is simple experimentally,
followed by a photon-number resolving detector (PND). There
have been many recent improvements in the state-of-the-art
in PNDs [69,70] and, although such measurements are still
highly challenging, they are perhaps currently the most well-
developed non-Gaussian optical component.

Auxiliary register QCVs prepared in cubic phase states,
using the method above, can be used to implement cubic
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phase gates in ADQC, using only homodyne detection and
the ancilla-register interaction, as we now show (this is an
adaption of a QCV MBQC method presented in Ref. [55]).
Equation (29) implies that

Z(q)
D3(γ )−−−→ Z(q), (31)

X(q)
D3(γ )−−−→ eiq(γ x̂2−p̂) =: C(q,γ ), (32)

where C(q,γ ) is a Clifford gate as it is generated by a
Hamiltonian that is quadratic in x̂ and p̂. Now, by noting
that any diagonal single-QV gate commutes with the control
of a controlled gate, it is not hard to confirm that

X(x)Z(z)|ψ x̂ m

D3(γ)|+0 C(x , γ)Z(z)|ψ (33)

where |ψ ′〉 = D3(γ )|ψ〉 and x ′ = x − m. In this context,
both of these QCVs represent register QCVs. Hence, by
using an auxiliary cubic phase state the cubic phase gate
has been implemented on a computational register QCV with
preexisting Pauli errors and, in the process, the computational
QCV has been teleported to the auxiliary QCV and a (non-
Pauli) Clifford error has been created, in addition to an ordinary
Pauli error.

Before discussing the Clifford error, it is important to note
that this circuit can be implemented with an ancilla-driven
sequence: The CX† gate in this circuit is a Clifford gate
(it may be decomposed into Ẽ and F gates) and hence it
may be implemented via ancillas and homodyne detection.
Furthermore, the x̂ measurement of the first register QCV may
be simulated using the ancilla-driven circuit

|ψ |+m

|+0 x̂ m (34)

which is equivalent to an x̂ measurement on the register
QV (more precisely, it is equivalent to a nondestructive
measurement of x̂ followed by F , but we may assume the
register QV is discarded).

Finally, the Clifford error in Eq. (33) can be converted to a
Pauli error via an ancilla-driven C(m − q,γ ) gate, as such a
gate can be implemented up to Pauli errors by decomposing
this Clifford gate into a sequence of FP (p) and F Clifford
gates. Hence, we have given a practical method for making an
auxiliary cubic phase state in QCV ADQC and we have shown
how it may be used to implement the mapping

X(x)Z(z)|ψ〉 → X(x ′)Z(z′)D3(γ )|ψ〉, (35)

for any arbitrary logical register state |ψ〉, with γ fixed by
the outcome of the photon-number detection. Moreover, this
can be converted to a cubic phase gate D3(q) with any
q ∈ R, by noting that D3(q) = S(γ /q)D3(γ )S(q/γ ), where
these squeezing gates may themselves be implemented via
homodyne detection on ancillas.

E. Parallel computation in ADQC

The ADQC model for general quantum variables has a
range of physically appealing properties, as we have already
discussed. Moreover, it also has interesting computational
properties. In particular, it has the same “parallelism” as
MBQC. The qubit MBQC model is well known to be more
powerful than quantum circuits for parallel computation
[71–73] and the higher-dimensional qudit and QCV models
have similar properties [49,59]. Recently, it has been shown
that the parallelism inherent in MBQC for all types of QVs
is essentially equivalent [30,60] and can be understood as
providing the ability to implement any Clifford gate in a
single layer of quantum computation, which is less than the
logarithmic (in n) number of quantum layers required to
implement an arbitrary n-QV Clifford gate in a quantum circuit
[30,60]. We now explain how the ADQC model has access
to the parallel power of MBQC by showing how an MBQC
computation can be simulated in ADQC with only a constant
increase in the number of computational layers (a more formal
proof is presented in [30]).

In MBQC with any type of QVs the computation can
be broken down into two sequential stages [60]: (1) layers
of CZ gates on an initial product state (all QVs, except
possibly the input are initialized to |+0〉), creating an entangled
“resource state”; (2) layers of x̂FR(ϑ) measurements, where
the ϑ functions may depend on measurement outcomes in
earlier layers. In each “CZ layer” at most one CZ acts on
each QV. Hence, each such layer may be easily simulated
in ADQC with only a constant (nine) number of layers.
Specifically, CZ = F 3 ⊗ F 3Ẽ, which requires seven ancillas
to implement with ADQC gates and takes no more than nine
layers (two layers for each F gate, in parallel, three layers
for the Ẽ gate), and each such CZ gate in a layer may be
implemented in parallel. Each layer of measurements may
be implemented using no more than four layers of ADQC
computation: each x̂FR(ϑ) measurement may be decomposed
into first a FR(ϑ) gate, where ϑ may depend on outcomes
from previous layers in the MBQC (and hence previous layers
in the ADQC simulation), followed by an x̂ measurement.
A local FR(ϑ) gate is easily applied via an ancilla, using the
method of Eq. (25) (which uses two layers). An x̂ measurement
on a register QV can be simulated in ADQC using the
procedure of Eq. (34) (which uses two layers). Each such
measurement simulation in the layer can be implemented in
parallel.

In summary, an MBQC computation can be simulated with
only a small constant overhead in the number of quantum
computational layers. Note that additional Pauli errors are
created in the ADQC simulation of the MBQC, as there are
more measurements, but these can simply be absorbed into the
classical side processing. Therefore, ADQC has access to at
least the same “parallelism” as MBQC, and their parallel power
is actually identical; this may be confirmed by showing that an
MBQC computation can also simulate an ADQC computation
with constant overhead, which follows from results in Refs.
[30,60]. We have already implicitly seen that the ADQC
model can also be used to drive a quantum circuit model
(i.e., unitary gates only) computation, and hence ADQC can
be understood as a hybrid between the MBQC and quantum
circuit models. Interestingly, similar conclusions may also be
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reached via considering “local complementations” of graphs
and the MBQC cluster state formalism, as in Ref. [41].

F. Alterations and extensions to the ADQC model

One of the first constraints imposed on the ADQC model
herein was that the ancillary and register QVs were all of the
same type. It is possible to extend the ancilla-driven model to
apply to the “hybrid” setting when the ancillary and register
systems are no longer the same type of QVs, as we now show.

Let da and d be the dimensionality constants for the
ancillary and register QVs, respectively. In the following, it
will be assumed that the register does not consist of QCVs,
as in that case the relations presented below only hold when
the ancillas are also QCVs [30] and this case has already been
covered above. Consider the natural extension of Ear to this
hybrid setting, which is the fixed interaction

E′
ar := FrF

†
a Cr

aZ. (36)

Note that the two F gates here are different, in the sense that
they are the gates for the appropriate dimensions of the register
and ancillary QVs, and the control direction in the “hybrid-CZ’’
gate is explicitly denoted as when the dimensions do not match,
then Cr

aZ �= Ca
r Z (the Z gates are not the same in each case).

The natural extension of the entangling gate technique in
Eq. (23), that is, two register qudits interacting with an ancilla
on which x̂ is measured, implements the gate

〈m|aE′
asE

′
ar |+0〉a

‖〈m|aE′
asE

′
ar |+0〉a‖

= ur (m)Ẽ′
rs , (37)

where m is the measurement outcome, Ẽ′
rs is the symmetric

entangling gate given by Ẽ′
rs = FrFsCu [where u ≡ u(1)],

and the gate u(q ′) is defined by the action

u(q ′)|+q〉 := e−2πiqq ′/da |+q〉. (38)

Note that u(·) is not a Pauli gate, in general.
Furthermore [extending Eq. (25)], we have that by interact-

ing an ancilla and register QV and measuring the ancilla in the
basis x̂FR(ϑ) (here ϑ : Sda

→ R) the gate

〈m|FaRa(ϑ)E′
ar |+0〉

‖〈m|FaRa(ϑ)E′
ar |+0〉‖ = ur (−m)FrRr (ϑ̄), (39)

is implemented, where m is the measurement outcome and ϑ̄

is the phase function given by ϑ̄(q) = ϑ(0 ⊕ q) for q ∈ Sd

with ⊕ denoting the arithmetic of Sda
.

Ignoring the m-dependent error gates for now, consider
the gate set these methods can implement. When da � d or
the ancilla is a QCV, any FR(ϑ) operator may be applied
to the register (up to the error) by an appropriate choice of
measurement basis for the ancilla (as 0 ⊕ q = q). However,
when da < d then, no matter what measurement is chosen, the
gate implemented has a phase function which obeys ϑ̄(q) =
ϑ̄(q mod da). For example, if the ancillas are qubits, then each
FR(ϑ̄) gate that can be implemented on the register has a phase
function ϑ̄ with ϑ̄(q) = ϑ(0) if q is even and ϑ̄(q) = ϑ(1) if
q is odd for some ϑ : {0,1} → R, which is fixed by the choice
of measurement basis. Therefore, when da � d it is clear that
the gate set is universal [an entangling gate along with all
FR(ϑ) gates], but it is not clear that this is the case for any

da < d. Such a gate set may be universal for some values of
d and da < d, but it seems unlikely that such a gate set is
universal in all cases and it would need to be considered on a
case-by-case basis.

Consider now the u(±m) error gates. In order to account
for these errors using the stepwise determinism techniques
employed herein, it is necessary for Ẽ′ to be Clifford and for
u(±m) to be a Pauli gate for all measurement outcomes. The
condition under which this holds is when da = d/k for some
positive integer k, where d is the dimensionality of the register
qudits, as in this case then u(±m) = X(±km). Hence, we must
have ancillary qudits with da � d for stepwise determinism,
but unless da = d it may not be possible to implement a
universal gate set on the register. Alternatively, when the
ancillas are qudits of dimension da > d or QCVs, the gate set
which may be applied to the register is universal but stepwise
determinism is not possible (unless explicit local corrections
on the register are available). However, in this setting the model
can be said to be universal in a stochastic sense: any quantum
computation can be implemented with a stochastic sequence
of single-qudit gates of indeterminate length between each
entangling gate [which can be deterministically applied, up
to a u(m) error]. This is a form of what is termed repeat-
until-success gate implementation [74–76], and the properties
of computing in this fashion have been discussed in detail
elsewhere (e.g., see Refs. [38,39,76]).

We return now to the setting in which the register and
ancillary systems are of the same type. The choice to take the
fixed ancilla-register interaction gate to be Ear = FrF

†
a Cr

aZ

was made at the beginning of this section, and it is not obvious
that this interaction has unique properties that single it out
as the only possible option. Indeed, there is an alternative
interaction which allows for deterministic universal quantum
computation in ADQC. It is based on the SWAP gate and is
given by

Ěar := Fa · SWAP · CZ, (40)

where SWAP is defined by

|q〉|q ′〉 SWAP−−→ |q ′〉|q〉. (41)

When considering this fixed interaction, there are some minor
changes needed to the gate implementation methods, which
are outlined in Appendix A.

Note that with this interaction the close link between the
ADQC model and MBQC (for all types of QVs) is particularly
clear: The SWAP gate in the Ěar interaction entangles and
interchanges the register QV with an ancillary QV, and to
implement a one-QV gate, the ancilla is then measured; if the
SWAP gate is instead absorbed into the initial state this becomes
state teleportation along a two-QV “cluster,” which is a basic
building block in MBQC [49,59,60].

For the qubit subcase, it has been shown by Kashefi et al.
[35] that, up to local gates, the two interactions Ear and Ěar are
the only possible choices that allow for deterministic universal
quantum computation within the constraints of ADQC. The
full range of possible interactions in higher dimensions has
not been determined and is in general a difficult task. Adapting
this Ěar swap-based gate will provide the interaction for the
model we present in the next section.
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IV. MINIMAL-CONTROL COMPUTATION

The ADQC model for general quantum variables we have
presented in the previous section has a range of appealing
features, including that it requires a minimal level of access to
the computational register but may still implement universal
quantum computation on it. However, it requires high-quality
variable-basis measurements on the ancillas, and implement-
ing these is intrinsically challenging in any quantum system.

In this section, we present an alternative model of ancilla-
based quantum computation which may implement universal
quantum computation using only the following:

(1) a fixed ancilla-register interaction gate, which may be
applied to any ancilla-register pair;

(2) ancillas prepared in the computational basis.
Because the model proposed here bypasses the need for

online local controls of any kind on the register or on the
ancillary QVs, it allows the entire setup to be optimized
for a high-fidelity fixed ancilla-register interaction and long
coherence times in the computational register. Obviously, these
conditions are with the exception that some measurements
must be performed at the end of the computation to read
out the result (these may be performed on the register or on
ancillas). This model is applicable to all types of QVs, although
it is perhaps better suited to qubits and qudits than QCVs, as
discussed later, and it includes as a special case a qubit-based
model presented by some of these authors in Ref. [36].

As with the ADQC model, it is important to pick a suitable
fixed interaction. Define a general two-QV diagonal gate,
denoted D(φ) and parametrized by φ : S2

d → R, by

|q〉r |q ′〉s Drs (φ)−−−→ eiφ(q,q ′)|q〉r |q ′〉s . (42)

The model we propose is based on a fixed ancilla-register
interaction of the form

Êar (u,φ) := ua SWAP Dra(φ), (43)

with some unitary u and some two-parameter function φ,
which are for now both left unspecified in the interests
of flexibility. Note that this is a natural extension of the
SWAP-based gate that may be used for ADQC, as given in
Eq. (40), and because the interaction is based on SWAP it is
applicable only when the ancillary and register QVs are of the
same dimension.

A. Implementing local and entangling gates

It is straightforward to confirm that the fixed interaction
gate, when either the ancilla or the register QV is in a
computational basis state, implements the mappings

|ψ〉 ⊗ |q〉 Êar (u,φ)−−−−→ |q〉 ⊗ uR(φ(·,q))|ψ〉, (44)

|q〉 ⊗ |ψ〉 Êar (u,φ))−−−−−→ R(φ(q,·))|ψ〉 ⊗ u|q〉, (45)

where φ(·,q) and φ(q,·) are the one-parameter phase functions
obtained from φ with the first and second variables fixed to
q, respectively. Therefore, if either QV is in a computational
basis state, then the gate acts as a SWAP along with local gates.
Hence, an entangling gate may be implemented on a register

QV pair using only three interactions and an ancilla prepared
in any computational basis state.

In particular, it is simple to confirm that

|ψ〉rs ⊗ |0〉 Êar Êas Êar−−−−−→ Wrs(u,φ)|ψ〉rs ⊗ u|0〉, (46)

where Wrs(u,φ) is the two-QV gate

Wrs(u,φ) = Rr (φ(0,·))Êrs(u,φ)urRr (φ(·,0)). (47)

The Wrs(u,φ) gate is entangling except for special choices of
φ, specifically, it is entangling if there is some q,q ′ ∈ Sd such
that

φ(q,q) + φ(q ′,q ′) − φ(q,q ′) − φ(q ′,q) mod 2π �= 0, (48)

which is generically true. This entangling gate implementation
method may be summarized by the circuit diagram

W (u, φ)
=

|0 u|0 |0 u u|0

where, as earlier, two quantum wires connected via a line
and two “◦” symbols are used to denote the fixed interaction
gate [which is now Êar (u,φ), rather than Ear ]. Note that the
three gates used here to entangle a pair of register QVs via an
ancilla is one more than needed in the ADQC model, but it is
the minimum possible using unitary dynamics alone [77].

A set of |Sd | different gates may be implemented on any
register QV, with the gate chosen by specifying the preparation
state of an ancilla and interacting it twice with the register QV.
More specifically, from Eqs. (44) and (45) it follows that

|ψ〉 ⊗ |q〉 Êar Êar−−−→ s(q)|ψ〉 ⊗ u|q〉, (49)

where s(q) = R(φ(q,·))uR(φ(·,q)). This gate technique may
be summarized in the circuit diagram

|ψ s(q)|ψ

|q u|q . (50)

Note that the price of using a swap-based interaction without
the aid of measurements is that two gates are required to
implement each s(q) local unitary.

B. Universal gate sets

The two gate methods proposed above allow the determin-
istic implementation of the gate set

G = {W (u,φ),s(q) | q ∈ Sd}, (51)

on the register QVs. If W (u,φ) is entangling, this gate set is
sufficient for universal quantum computation if the single-QV
gates in the set are a universal set of single-QV gates. This
clearly is not the case for all choices of u and φ [e.g., if u is
diagonal it cannot be universal, as then all of the s(q) gates
are diagonal], but for QVs that are qudits of any dimension
choices of u and φ can be found such that this set is universal.
A physically practical choice is given in Appendix B, and we
conjecture that generic u and φ are sufficient for universality.
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Finally, we note that in some physical settings, a universal
set of high-fidelity local gates (i.e., single-QV gates) may be
available on the ancillas, even if high-quality variable basis
measurements are highly challenging. The SWAP-based model
presented in this section may be optimized to this setting,
allowing almost complete flexibility in the form the interaction
may take to obtain universality. In particular, in this case any
choices for the φ and u parameters in Ê(u,φ) such that the
interaction is entangling are sufficient for universality, and
ancillas need only be prepared in |0〉. This is because an
entangling gate on the register may be implemented as above
[see Eq. (46)] and any local gate may be implemented via
applying a local gate to an ancilla in-between interactions
of that ancilla with the register QV [i.e., adapting Eq. (49)].
More specifically, to apply v to the rth register QV the gate
v′ = R( − φ(0,·))vR( − φ(·,0))u† is applied to an ancilla QV
prepared in |0〉 in-between the application of two Êar gates.
That is,

|ψ〉 ⊗ |0〉 Êar v
′
aÊar−−−−→ v|ψ〉 ⊗ u|0〉, (52)

with this relation confirmed using Eqs. (44) and (45). This can
be understood as an extension to general quantum variables
of the qubit-based “ancilla-controlled quantum computation”
model presented in [37]. Note that if u = I, then each gate
has no overall effect on the ancilla that mediates it (it returns
to the |0〉 state) and, hence, the ancillas may be reused to
apply further gates to the register. However, using fresh or
reinitialized ancillas prevents the propagation of correlated
errors and is likely to be preferable in practice.

V. PHYSICAL IMPLEMENTATION

In this penultimate section we briefly discuss the physical
settings to which the ADQC and “minimal-control” models
might be particularly suited. The CZ gate may be generated by
the Hamiltonian Ĥ1 = x̂ ⊗ x̂ applied for a time t = 2π/h̄d,
and hence an Ĥ1 interaction between an ancilla and a register
QV followed by fixed local F and F † gates (on the register and
ancilla, respectively) implements the interaction Ear . These
local Fourier gates may be a fixed element in the experimental
setup, as they are applied after every interaction via Ĥ1, and
they may be particularly simple in some cases. For example,
with optical QCVs the Fourier gate and its inverse may be
implemented with suitable length phase or time delays.

In the context of qudits, it is more conventional to consider
“spin” operators instead of x̂ and p̂. A qudit of dimension d

is a spin s = (d − 1)/2 particle with a z-spin operator defined
by ŝz = ∑

q∈Sd

2q+1−d

2 |q〉〈q|. As x̂ = ŝz + (d − 1)I/2, letting

x̂ → ŝz in Ĥ1 results in a Hamiltonian Ĥ2 = ŝz ⊗ ŝz, which
still generates CZ (up to local rotation gates). We now
consider which physical systems might be particular suited to
the ADQC and minimal-control models, considering QCVs,
qudits, and hybrid QVs in turn.

Considering QCVs, the two ancilla-register interactions
proposed herein for the ADQC model (Ear and E′

ar ) are
both Clifford (i.e., Gaussian) and, hence, if the register and
the ancillary QCVs are both realized in optics, either of
these interactions can be composed from a fixed circuit of
beam splitters and local Gaussian transformations [78]. This is

promising as many Gaussian transformations on optical QCVs
are routine experimental techniques [79]. However, it should
be noted that some of these transformations must be active
optical elements as Ear and E′

ar do not preserve total photon
number. However, the QCV ADQC model is perhaps more
advantageous (in comparison to, say, a direct implementation
of MBQC) in the setting of atom-based QCVs: a computational
register could consist of matter-based quantum memory QCVs
interfaced via ancillary optical QCVs. Indeed, there have been
some experiments along these lines: optical QCVs have been
both stored in [22], and used to entangle [61,80], atomic-
ensemble QCVs.

Assuming the most physically relevant setting, whereby the
ancillas are realized optically, homodyne measurements and
photon-number-resolving detection (PND) of these ancillas is
sufficient for universal QCV ADQC, as shown in Sec. III D.
Encouragingly, Clifford gates driven by homodyne detection
have already been demonstrated [20,21] in the context of QCV
MBQC, and there have been significant recent improvements
in PNDs [69,70], suggesting that QCV non-Clifford gates
may be realizable soon. The final important resource required
in this setting is highly squeezed input ancillas. The current
experimental record is 12.7 dB of squeezing in optical states
[66,67], but it seems likely that squeezing nearer 20 dB will be
required for computations of indefinite length in QCV ADQC,
as this is the known squeezing threshold for (qubit-encoded)
fault-tolerant QCV MBQC [29].

We now consider possible settings that might be suitable
for realizing the higher-dimensional qudit ADQC model and
the SWAP-based minimal-control model of Sec. IV; we are
neglecting the qubit special case as that has been discussed
elsewhere [30,34,36,37,39,40] for these and closely related
models. Impressive controls and high-quality measurements
of higher-dimensional qudits have been realized in a range
of physical systems, including superconducting [12] (up
to d = 5), atomic [13,14] (d = 16), and photonic systems
[15–19] (up to d = 12), where in the optical case the qudit
is encoded in the linear [17,18] or orbital angular momentum
(OAM) [15,19] of a single photon. Alternatively, a qudit may
be encoded into the collective excitations of a qubit ensemble,
with ensembles of this sort having been realized using, for
example, cesium atoms [81] and nitrogen-vacancy centers
in diamond [82]. Such ensembles have been investigated
as a possible long-life quantum memory for qubits [83–86]
but they may also be used to store qudits (or QCVs as
discussed above). This suggests that atomic ensembles might
be a suitable setting for a low-decoherence computational
qudit register. Interestingly, OAM-encoded qubits have been
stored in such atomic ensembles [87], and the technique of
Ref. [87] can in principle be used to store OAM qudits for
d > 2. Hence, given that only experimental constraints limit
the dimensionality of the qudits which may be encoded into
OAM, and a range of high-quality measurements have been
demonstrated on OAM-encoded qudits [15], OAM qudits may
be particularly well suited to mediating gates on a register
of atomic-ensemble-based qudits, with very high values of d

possible in principle.
Another possible encoding for qudits is into quantum

harmonic oscillators, using the first d energy eigenstates of a
quantum harmonic oscillator as the computational basis of the
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qudit [88]. In this setting, the qudit case of the Ĥ1 Hamiltonian
may be implemented if two oscillators can be coupled via
the Hamiltonian Ĥ3 = â†â ⊗ b̂†b̂, and hence a CZ gate may be
generated with an appropriate evolution time. Ĥ3 is often called
the cross-Kerr Hamiltonian, and it has been engineered using
electromagnetically induced transparencies [89,90], optical
fibers [91,92], and cavity-QED systems [93,94].

Finally, we briefly consider the “hybrid” setting in which the
ancillary and register QVs are of different types, noting that in
this setting the ADQC model is only guaranteed to be universal
in a stochastic sense (see Sec. III F). With a register of qubits
interfaced via QCV ancillas, the Hamiltonian Ĥ4 = σz ⊗ (â +
â†) may be used to generate hybrid CZ gates, which are
often called “controlled displacements” [31], and high-quality
interactions of this sort have been realized in superconducting
systems [95–97]. Alternatively, the dispersive limit of the
Jaynes-Cummings model [98], with a qudit encoding into the
quantum harmonic oscillator, generates a hybrid qubit-qudit
CZ gate [33] and this regime of the Jaynes-Cummings model
has been experimentally realized in [99,100].

VI. CONCLUSIONS

We have presented a model for universal quantum com-
putation in which only very limited access is required to
a well-isolated computational register and the computation
is driven via measurements of ancillas. Furthermore, this
model has been formulated to be directly applicable to qubits,
higher-dimensional qudits, and QCVs. To be more specific,
in this model universal quantum computation is implemented
on a register using only repeated applications of a single fixed
two-body gate (which may be applied to any ancilla-register
pair) and variable basis measurements of the ancillas which
are prepared in a fixed initial state. This includes as the qubit
special case the so-called ancilla-driven quantum computation
(ADQC) model [34,35], and for this reason the same termi-
nology has been used herein. Because measurement outcomes
are fundamentally probabilistic, the measurements of the
ancillas introduce random Pauli errors into the computation.
Nonetheless, stepwise determinism is possible using classical
feed forward of measurement outcomes, in a similar fashion
to measurement-based quantum computation (MBQC).

We have shown that the parallelism inherent in the MBQC
model is also available in the ADQC model we have proposed
here, for all types of quantum variable, i.e., for qudits of any
dimension and QCVs. This includes the power to implement
any circuit of Clifford gates in essentially one quantum
computational layer, which is not possible using unitary
quantum gates alone [60]. Hence, the ADQC model is not
only appealing from a practical perspective, but it is also
powerful for parallel quantum computation. The measurement
bases that are sufficient for universal quantum computation
have been discussed and in particular we showed that in
the setting of QCVs, with the ancillas realized as optical
states, homodyne detection and photon-number counting are
sufficient for universality. This is promising, as homodyne
detection is now a routine quantum optics technique [20,21]
and there have been many recent improvements in photon-
number-resolving detectors [69,70].

We then presented a globally unitary ancilla-based model,
which may be more relevant in settings in which high-quality
measurements on ancillas are challenging or not possible. In
this minimal-control model, universal quantum computation
may be implemented using only a single fixed ancilla-register
interaction and ancillas prepared in states from the computa-
tional basis. Hence, being unable to perform measurements
to drive the computation has been compensated for with
state preparation, using the natural symmetry between state
preparation and projective measurement.

The models presented herein allow for a computational
register to be fully optimized for long coherence times and
a single interaction with some ancillary systems, which
may be physically distinct and chosen for their convenient
properties (e.g., natural interactions with the register systems).
Universality is then obtained via very limited manipulations of
the ancillary systems. Hence, we have provided methods for
realizing universal quantum computation on a well-isolated
register with a practical and simple scheme that is applicable
to qubits, higher-dimensional qudits, and quantum continuous
variables.
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APPENDIX A

In this Appendix, we briefly outline the minor changes that
are required to the gate methods in the ADQC model when the
fixed ancilla-register interaction is the gate

Ěar := Fa · SWAP · CZ, (A1)

rather than Ear = FrF
†
a CZ, which was used throughout the

main text. The two-QV gate implemented by sequential
interactions of an ancilla with QVs r and s followed by an
x̂ measurement may easily be confirmed to be

〈m|ĚasĚar |+0〉
‖〈m|ĚasĚar |+0〉‖

= Xs(−m)FrFsC
r
s X, (A2)

where m ∈ Sd is the measurement outcome. Note that this
implements a slightly different entangling gate on the register
to when the interaction is Ear [see Eqs. (22) and (23)], but it
is still a Clifford gate.

The same set of single QV gates [i.e., any FR(ϑ) gate] can
be implemented using this alternative interaction by measuring
slightly different operators. Specifically, an interaction of an
ancilla with a register QV followed by a measurement of
x̂FR(ϑ)F † on the ancilla implements FR(ϑ) up to a Pauli
error as

〈m|FaRa(ϑ)F †
a Ěar |+0〉

‖〈m|FaRa(ϑ)F †
a Ěar |+0〉‖

= Xr (−m)FrRr (ϑ). (A3)
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Although the gate set that may be implemented with this
interaction is not identical to the one implemented with the
Ẽar interaction (the entangling gate is different), the same
techniques of classical feed forward may be used to implement
the computation deterministically. The only difference is a
minor change in the exact form of the required classical side
processing.

APPENDIX B

In this Appendix it is shown that, for any dimension of qudit,
there are choices for the parameters u and φ in the gate set

G = {W (u,φ),su,φ(q) | q ∈ Sd}, (B1)

such that it is universal for quantum computation, where
W (u,φ) is defined in Eq. (47) and s(q) is given by
s(q) = R(φ(q,·))uR(φ(·,q)). We conjecture that generic
choices for the parameters u and φ will be sufficient for
universality for all dimensions of qudit, and it may be possible
to confirm this using similar ideas to those used in [101].
However, here we provide a more specific choice for u and φ,
for which we explicitly prove universality.

Let u = F and take any φ such that φ(q,q ′) = 0 for all
q,q ′ ∈ Z(d) except when q ′ = d − 1, in which case φ(q,d −
1) = θq with θq randomly (and independently) sampled from
R for all nonzero q ∈ Z(d) and θ0 = 0. It is immediately
clear that in this case W (u,φ) is entangling, and hence
showing that the set of local gates s(q) with q ∈ Z(d) can
approximately generate (to arbitrary accuracy) any local gate
is sufficient to prove universality. It is easily confirmed
that s(0) = F . It is therefore also possible to implement
the gates s(q)s(0)3 = R(φ(q,·)) for 0 < q < d − 1. Because
φ(q,q ′) = θq for q ′ = d − 1, and φ(q,q ′) = 0 otherwise, then
this gives a method for implementing a gate which applies no
phase to all the basis states except the |d − 1〉 basis state,
for which it applies a “generic” phase (which is different
for each q). Because these phases are generic, it is therefore

possible to approximate any gate which applies only a phase
to this last basis state to arbitrary accuracy. Now, s(d − 1) =
R(φ(d − 1,·))FR(φ(·,d − 1)), and R(φ(d − 1,·)) is a gate
which applies only a phase to the last basis state. Because with
s(q) gates with q = 0, . . . ,d − 2, the gate R( − φ(d − 1,·))
can be implemented to arbitrary accuracy and s(0)3 = F †, it
is possible to obtain the gate s ′(d − 1) = R(φ(·,d − 1)) from
the available set. Now, φ(·,d − 1) is a generic phase function
[note that, although here the φ(0,d − 1) = 0, i.e., only the
other d − 1 values of φ(·,d − 1) are generic, this is irrelevant
as this may be considered to be fixing the global phase of
the rotation gate] as implied by the conditions on φ given
above, and as a rotation gate with a generic phase function in
combination with the F gate [obtained as s(0)] is a universal
set of single-qudit gates [30,60], this confirms the universality
of the available gate set with an interaction gate of this form.

The construction given above may seem rather contrived,
however, it represents a physically sensible gate: a Dra(φ)
gate with φ as described above is a gate which implements
phases on the register qudit only if the ancilla qudit is in the
state |d − 1〉. However, if this model were to be of further
interest (outside the qubit-based setting, in which further
appropriate choices for u and φ can be found in [30,36]), it
would be important to undertake a more thorough investigation
of which parameter choices in the interaction are sufficient
for universality. Finally, note that universality in the QCV
model has not been investigated as it does not seem likely
that this model will be of practical interest in this case. One
reason for this is that Gaussian (i.e., Clifford) operations
are generally much simpler to implement than non-Gaussian
operations in the most promising QCV setting of optics (e.g., a
Gaussian entangling gate can be achieved via a beam splitter).
Hence, in this setting it makes more sense to consider a
Gaussian computer aided by some non-Gaussian operator
used as sparingly as possible and this does not fit into the
paradigm considered here, whereby a quantum computer is
based entirely on a single gate which must be non-Gaussian to
achieve universality.
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