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Abstract

Recent progress in adaptive beamforming techniques for medical ultrasound has

shown that current resolution limits can be surpassed. One method of obtaining im-

proved lateral resolution is the Minimum Variance (MV) beamformer. The frequency

domain implementation of this method effectively divides the broadband ultrasound

signals into sub-bands (MVS) to conform with the narrow-band assumption of the

original MV theory. This approach is investigated here using experimental Synthetic

Aperture (SA) data from wire and cyst phantoms. A 7 MHz linear array transducer is

used with the SARUS experimental ultrasound scanner for the data acquisition. The

lateral resolution and the contrast obtained, are evaluated and compared with those

from the conventional Delay-and-Sum (DAS) beamformer and the MV temporal imple-

mentation (MVT). From the wire phantom the Full-Width-at-Half-Maximum (FWHM)

measured at a depth of 52 mm, is 16.7 µm (0.08λ) for both MV methods, while the

corresponding values for the DAS case are at least 24 times higher. The measured

Peak-Side-lobe-Level (PSL) may reach -41 dB using the MVS approach, while the

values from the DAS and MVT beamforming are above -24 dB and -33 dB, respec-
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tively. From the cyst phantom, the power ratio (PR), the contrast-to-noise ratio (CNR),

and the speckle signal-to-noise ratio (sSNR) measured at a depth of 30 mm are at best

similar for MVS and DAS, with values ranging between -29 dB and -30 dB, 1.94 and

2.05, and 2.16 and 2.27 respectively. In conclusion the MVS beamformer is not suit-

able for imaging continuous targets, and significant resolution gains were obtained only

for isolated targets.

Keywords: Minimum Variance Beamformer, Sub-band Processing, Experimental

Performance, Micrometre Lateral Resolution

1. Introduction1

Adaptive beamforming techniques have been used for decades in numerous appli-2

cations of array processing [1–4] in fields such as sonar, radar, and seismology. The3

commercial use of such techniques is mainly related to military applications [5] or4

telecommunications [6]. In general, adaptive beamformers aim to maximize the signal5

strength from a particular location and suppress signals from all other locations. This6

is accomplished by processing the received responses of an array to obtain constructive7

and destructive interference respectively. Improved transducers, reduced costs, and the8

availability of processing with Field-Programmable Gate Arrays (FPGAs) or Graphics9

Processing Units (GPUs) makes it possible to introduce similar real-time adaptive pro-10

cessing to medical ultrasound imaging [7, 8]. Initial results indicated that increased11

resolution and contrast can be achieved. Such research includes the linearly con-12

strained adaptive beamformer [9, 10], the adaptive beamformers suggested by Viola13

and Walker [11], and the Minimum Variance (MV) beamformer [12–15]. The latter14

was originally developed by Capon [16] for use with seismic arrays with the objective15

of localizing earthquakes with greater precision. From a theoretical perspective, the16

MV beamformer is intended to provide unit gain in a selected direction and minimize17

the signal power for all other directions that are normally contributions from side-lobes.18

The MV method has been extended unmodified to broadband ultrasound imaging,19

in the time-domain [17], or in the frequency domain [18] where division of transducer20

element signals into frequency sub-bands (MVS) precedes the processing. The fre-21
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quency division ensures that the original narrow-band condition of the beamformer is22

met as laid out by Capon [16]. As a result the MVS is expected to achieve improved23

resolution compared to the temporal implementation (MVT). In medical ultrasound24

imaging, the MVS was first introduced by Holfort et al. [18] with a quantitative eval-25

uation on simulated data showing, by some measures, one order of magnitude higher26

image resolution compared to the conventional Delay-And-Sum (DAS) beamformer.27

Applying lateral oversampling in simulated ultrasound data during the receive process-28

ing, resulted in further resolution gains [19]. Particularly, the main-lobe width of a29

point target located at a depth of 40 mm was found to be 22 times narrower with MVS30

beamforming when compared to that achieved by DAS beamformers. A −13 dB side-31

lobe reduction was also noticed in favor of the adaptive approach. A 10-fold resolution32

improvement was maintained for point targets located at greater depths, up to 80 mm.33

Further results from a circular cyst phantom showed that the MVS yielded 3 dB higher34

contrast compared to the best DAS beamformer, which also distorted the initial cyst35

shape.36

The above simulation studies on MVS motivate the experimental validation. In an37

experimental setting, the cancellation of unwanted signals becomes less reliable, and38

the interference of adjacent targets is likely to compromise the accuracy of the method.39

Thus, in this work the MVS was applied to real ultrasound data from a wire-target40

and a cyst phantom. The MVS was combined with a Forward-Backward (FB) spatial41

smoothing technique [20], as it has been shown to increase the robustness of the time-42

domain MV beamformer implementation [21, 22]. Quantitative resolution and contrast43

metrics were used to evaluate the MVS performance and to compare it with the MVT,44

and the DAS beamformer, which is widely used in commercial ultrasound systems.45

2. Methods46

The standard way to process the signals received by a transducer array [23] is47

the DAS beamformer. The channel signals are time-delayed, weighted, and finally48

summed to form the beamformer output. The apodization weights depend on depth49

with a fixed F-number rather than on the data, and therefore expand with increasing50
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depth. The MVS method, the experiment, and the quantitative analysis are described51

below.52

2.1. Sub-band Minimum Variance Beamforming53

The MVS method calculates a set of data-dependent apodization weights. This de-54

pendence on the acquired Radio Frequency (RF) data renders the beamformer adaptive.55

The received channel data are focused as in a normal DAS beamformer to generate the56

input signals to the MVS algorithm. The short-time Fourier transform (STFT) is used57

to divide the time delayed channel signals into frequency sub-bands, and each band58

is thereafter processed separately. For a single focus point, ~rp, the Discrete Fourier59

Transform (DFT) is applied on segments with a period td , hence STFT, transforming60

the time domain input signals into the frequency domain. The segment size depends on61

the excitation pulse and the 2-way impulse response of the transducer used. The mth62

segmented, channel signal ym(t) is given for t ∈ [−td/2, td/2]. The beamformer output63

b(ω,~p), for a single emission, for a transducer with M elements, that are all used in64

receive, and for each frequency sub-band ω, is given by:65

b(ω,~rp) =
M−1

∑
m=0

wm(ω)Ym(ω) = w(ω)HY (ω) , (1)

where w(ω) = [w0(ω),w1(ω), ...,wM−1(ω)]
H is the complex weights vector, Y (ω) =66

[Y0(ω),Y1(ω), ...,YM−1(ω)]
H is the vector of the Fourier Transform of the segmented67

channel signals, and {.}H denotes conjugate transpose. The MVS minimizes the power68

of each b(ω,~rp) corresponding to a single frequency bin, while preserving the signal69

from the position~rp. The power is given by:70

(2)

P = E{|b(ω ,~rp)|2}
= E{|w(ω)HY (ω)|2}
= E{w(ω)HY (ω)Y (ω)Hw(ω)}
= w(ω)HR(ω)w(ω) ,

where E{.} denotes the expectation value and R(ω) is the covariance matrix given by:71
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R(ω) = E{Y (ω)Y (ω)H} . (3)

The MV objective can be expressed as:72

minwHR(ω)w, subject to wHe = 1 , (4)

where, e is the time-delay vector that is only a vector of ones, since the time delays73

already have been applied to the signals. Lagrangian multiplier theory [24] yields an74

analytical solution to this constrained optimization problem. Given that R−1 exists, the75

MV weights are calculated by:76

w =
R(ω)−1e

eHR(ω)−1e
. (5)

The minimization goal is expressed for each frequency band, and the constraint refers77

to the distortionless response (unity gain) from the focus point [25, 26]. The MVS78

weight calculation is followed by the summation of the individual sub-band responses.79

For K sub-bands, the final beamformer output B(ω,~rp) averaged over a number of N80

emissions, is:81

B(ω) =
N

∑
n=1

K−1

∑
k=0

M−1

∑
m=0

wn,m(ωk)Yn,m(ωk) =
N

∑
n=1

K−1

∑
k=0

bn(ωk,~rp) . (6)

An important aspect of frequency domain implementation of the MV beamformer is the82

ability to calculate different weights for each sub-band and each point as seen from (6),83

which averages the processed channel data. After the MVS weight calculation, the in-84

verse DFT is employed to derive the broadband MVS response, which for~rp is centred85

around t = 0.86

2.2. Forward-Backward Sub-array Averaging87

A simple substitution of w into (1) would result in the calculation of the output of88

the MVS beamformer. While increased aperture size provides improved resolution, the89
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increased number of channel data may result in inaccurate covariance matrix estima-90

tion, and thus incorrect weight calculation [17]. To reduce the correlations between91

the received signals, the transducer array is divided into a number of overlapping sub-92

arrays, and the covariance matrix is replaced by the sample covariance matrix, which93

is estimated from several samples instead of the whole array. The sample covariance94

matrix may be derived by samples starting from the left of the array and moving to the95

right in Forward averaging (R̂F ), or by the average of R̂F and R̂B, where R̂B is the aver-96

aging starting from the opposite direction (Backward averaging). The R̂F for a single97

frequency component, can be expressed as:98

R̂F =
1

M−L+1

M−L

∑
l=0

GlGH
l , (7)

where L is the sub-array length, and Gl is the set of signals from the lth sub-array, in99

the form of Gl(ω) = [Yl(ω),Yl+1(ω), ...,Yl+L−1(ω)]
H . R̂B is equal to JR̂H

F J as shown100

in [22], where J is the exchange matrix. In the Forward-Backward (FB) averaging101

technique the sample covariance matrix, R̂FB is given by:102

R̂FB =
1
2
(R̂F + JR̂H

F J) , (8)

The FB averaging allows R̂FB to be inverted for larger L values than Forward only103

averaging does, making it possible to use larger sub-apertures during the processing.104

The latter naturally increases the resolution limits. Once the optimized apodization105

weights, w̃, are calculated, with the use of the R̂FB, the beamformer output for each106

frequency bin, can be given by:107

b(~rp) = w̃H 1
M−L+1

M−L

∑
l=0

Gl . (9)

2.3. Experimental Setup and Data Analysis108

The measurements were performed using the 1024 channel experimental ultra-109

sound scanner SARUS [27], and all the parameters of the scans are summarized in110
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Table 1. A 7 MHz, 192 element, linear array transducer with ≈ λ pitch was used to111

scan two phantoms containing wires and cysts respectively. In the first phantom, wires112

of a diameter of 0.07 mm were separated by 10 mm axially starting at a depth of 42 mm113

and reaching up to 122 mm. The speed of sound, c was measured to 1484 m/s based114

on the water temperature [28], resulting in a wavelength λ = c/ f0 equal to 212 µm.115

The cyst phantom contained a collection of different sized cylinders with diameters of116

8, 4, and 2 mm at various depths starting from 10 mm to 60 mm (Dansk Fantom Ser-117

vice, Frederikssund, Denmark). The cyst phantom was homogeneous with a constant118

speed of sound equal to 1540 m/s, resulting in a wavelength equal to 220 µm. Data119

were initially sampled at 70 MHz, and then the sampling frequency, fs was decimated120

by a factor of 2 to 35 MHz. Averaging was used along with the decimation, through121

accumulation of successive samples, effectively implementing a rectangular filter with122

a sinc transfer function.123

In transmit, the active aperture consisted of 128 elements emitting a focused field.124

The virtual source [29, 30] was placed at a depth of 53.2 mm resulting in a F-number125

equal to 2, and Hanning transmit apodization was also used to reduce edge waves [31].126

The lateral co-ordinate of the aperture centre was moved by a distance equal to one127

pitch between successive emissions, starting from the position of element #64 and end-128

ing to the position of element #128. RF data from 65 emissions in total were acquired129

from all 192 channels individually in receive, and were combined to provide a final130

high-resolution image as in standard Synthetic Aperture (SA) imaging [32]. The MVS131

method was used to beamform a full image, by calculating an apodization weight for132

each image pixel. Synthetic aperture images using the MVT [17] as well as fixed Box-133

car and Hanning [33] apodization weights with receive F-number equal to 1.5, were134

also formed as a standard for comparison. Adaptive apodization weights with L val-135

ues ranging from 32 (= M/6) to 128 (= 2M/3) were extracted from the wire and cyst136

phantom data. For the wire phantom, areas of 6.4 mm in the lateral and 3.3 mm in137

the axial direction were beamformed separately. The selected areas included only one138

wire to avoid interference between neighboring scatterers and evaluate the effect of the139

beamformers on the side-lobes. The number of pixels in each image was 491×33, with140

small pixel lateral dimension of 13 µm (= pitch/16). The smaller pixel size increases141
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Table 1: Scan Parameters for the Wire- and Cyst-Phantom Measurements

Transducer

Transducer type Linear array

Number of transducer elements, M 192

Transducer element pitch 208 µm

Transducer element kerf 35 µm

Transducer element height 4.5 mm

Elevation focus 25 mm

Center frequency, f0 7 MHz

Sampling frequency, fs 70 MHz

Speed of sound, c (in wire/cyst phantom) 1484/1540 m/s

B-mode imaging

Number of transmitting elements 128

Transmit apodization Hanning

Transmit F-number 2

Number of emissions, N 65

Excitation pulse Two-cycle sinusoid at f0

Pulse repetition frequency (PRF) (in wire/cyst phantom) 100/1000 Hz

Number of receiving elements 192

Receive apodization Boxcar/Hanning/MVT/MVS

Receive F-number 1.5

the number of pixels and thus weights to be calculated, and was found to improve the142

lateral resolution when MV beamforming is used with point scatter data [19]. Further143

decrease than the selected pitch/16 value in the lateral pixel size, did not result in ad-144

ditional lateral resolution improvements. For the cyst phantom, received data from all145

65 emissions were used to form a complete image with dimensions 30 mm × 60 mm,146

with the same pixel size as in the wire phantom case.147
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2.4. Performance Assessment148

Quantitative measurements on the acquired images were employed to evaluate the149

performance of the different beamformers. The lateral Full-Width-at-Half-Maximum150

(FWHM) and the Peak-Side-lobe-Level (PSL) were measured from the Point Spread151

Function (PSF) of an isolated wire. The lateral FWHM measures the width of the PSF152

main-lobe with narrower main-lobes indicating better resolution. The PSL quantifies153

the side-lobe suppression with lower values indicating contrast improvement. From the154

cyst phantom, the power ratio (PR), the contrast-to-noise ratio (CNR) and the speckle155

signal-to-noise ratio (sSNR) were used to assess the contrast resolution. The power156

ratio was calculated using the envelope detected image data by [18, 34]:157

PR = 20× log10
Pc

Ps
, (10)

where Pc is the mean power of a circular area inside an anechoic region (cyst) and Ps158

the mean power of a circular area from the uniform scattering medium (speckle) of159

similar size. The CNR was calculated using the following equation [35, 36]:160

CNR =
|µc−µs|√

σ2
c +σ2

s
, (11)

where µc and µs are the mean intensity of a cyst and speckle at the same depth, and σc161

and σs are their corresponding intensity standard deviations. The sSNR was defined as162

µ/σ where µ is the mean value of the speckle amplitude and σ its standard deviation [36,163

37].164

3. Results165

3.1. Wire Targets166

Beamformed responses of individual wire targets at increasing depths are shown167

in Fig. 1 for Boxcar, Hanning, MVT, and MVS apodizations. The PSFs were shown168

using a 40 dB dynamic range to highlight the width of the main lobe. The adaptive169

methods did not perform uniformly for all sub-array lengths, L. MVS responses with170
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two different L values and a single MVT case were selected for display. In Fig. 1(c) the171

sample covariance matrix was calculated with a common sub-array length [38], L =172

M/4 = 48 as in [18]. In Fig. 1(d)-(e) the MVT and MVS images with L = 2M/3 = 128173

that achieved the highest resolution are shown.174
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(a) DAS Boxcar
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(c) MVS (L = 48)
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(d) MVT (L = 128)
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Figure 1: Responses of individual wire-targets at different depths are shown for 5 different sets of apodization

weights as resulted from conventional beamforming (a) and (b), and MV adaptive beamforming (c), (d) and

(e). A 40 dB dynamic range display was used.

The power in dB (y-axis) across the lateral beam width (x-axis) at a 52 mm depth175

is shown for all methods in Fig. 2. The values of the lateral FWHM and the PSL asso-176

ciated with this figure are displayed in Table 2. The lateral FWHM and PSL variation177

in respect to the different L values are shown in Fig. 3 for the wire-target located at178

a depth of 52 mm. For L = 32, the MVS results are comparable to those of the DAS179

beamformers (Table 2). The lateral FWHM varied between≈ 0.3 mm and≈ 0.02 mm,180

taking lower values at increasing L (Fig. 3(a)). The smallest value, and thus, best per-181

formance, was found for the largest L (= 128). The PSL was relatively constant around182

−20 dB for all L values up to 112 (Fig. 3(b)). The side-lobes dropped significantly to183

−41 dB only for L = 128, demonstrating, as in the FWHM case, the best image quality184

for L = 128. Further L increase resulted in noise-only images, from which no FWHM185

or PSL could be measured. The MVT results (Fig. 3 ,Table 2 showed no significant186

10



differences compared to the MVS, apart from a small difference in the PSL for the187

larger L values, where the MVS was at best 8 dB improved.188
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Figure 2: Lateral variations of the beamformed responses of Fig. 1 (first row) at a depth of 52 mm.

Table 2: Peak-Side-lobe Level (PSL), and lateral Full-Width at Half-Maximum (FWHM), for the beam-

formed responses at z = 52 mm,where λ = c/ f0 = 212 µm.

PSL FWHM

DAS Boxcar −11 dB 406.5 µm 1.93λ

DAS Hanning −24 dB 659.9 µm 3.07λ

MVS (L = 48) −23 dB 265.7 µm 1.27λ

MVT (L = 128) −33 dB 16.6 µm 0.08λ

MVS (L = 128) −41 dB 16.7 µm 0.08λ

The variation of the lateral FWHM and the PSL in respect to depth is shown in189

Fig. 4(a) and 4(b), respectively, for both conventional and adaptive approaches. The190

lowest FWHM was measured to 16.6 µm (or ≈ λ/12) at 52 mm for the MVT using a191

large sub-array length (L = 128), which is very similar to the 16.7 µm achieved by the192

MVS. For the maximum L, the two MV implementations provided a FWHM, which193

was at best 24 times lower than the best DAS (Boxcar). The MVS with a smaller194

sub-array length (L = 48) provided a 33% FWHM reduction compared to DAS Boxcar195

(0.27 mm and 41 mm, respectively). The FWHM values generally increased monoton-196
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Figure 3: Lateral FWHM and PSL variation in respect to sub-array length L, for 65 emission MVT and MVS

responses. Sub-array length L values up to 2M/3 were used.

ically as the wire depth increased for all 5 weighting functions. Despite the MV per-197

formance deterioration with depth, a 7-fold improvement remained at worst (122 mm),198

compared to the DAS beamformers (Fig. 4(a)).199
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Figure 4: Lateral FWHM variation (a) and PSL variation (b) as a function of depth for 65 emission DAS and

MV responses. Wire-targets between depths of 42 mm and 122 mm were imaged.

The PSL increased with depth for all beamformers (Fig. 4(b)), but this was not200

monotonic for the MV beamformers at L = 128. A small PSL variation between201

−36 dB and −41 dB for targets located up to 82 mm depth was measured using the202

MVS, which is a significant improvement (15− 20 dB) compared to the best DAS203
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beamformer (Hanning). The corresponding PSL range using the MVT was between204

−33 dB and −36 dB. For targets deeper than 92 mm the PSL increased to ≈ −20 dB205

for both MV methods, a 5 dB improvement on average compared to DAS Hanning.206

The MVS implemented with L = 48 showed overall very similar performance to DAS207

Hanning with a 2 dB average difference, in favor of the adaptive approach.208

3.2. Cyst Phantom209

In this study the DAS and the MV methods were used to beamform an entire im-210

age instead of the isolated targets of the previous subsection. In Fig. 5 the beam-211

formed responses of the cyst phantom are shown with a dynamic range of 60 dB. Sim-212

ilarly to Fig. 1 two MVS images are shown with sub-array lengths L = M/4 = 48 and213

L = 2M/3 = 128 and one MVT with L = 2M/3 = 128. In Fig. 6 the lateral variations214

at 30 mm depth are shown, and the images from the cyst at 30 mm depth are also dis-215

played separately in Fig. 7 for more detail. The calculated contrast resolution metrics216

can be found in Table 3 for the 4 mm diameter cyst centred at (x,z =−1 mm, 30 mm)217

based on the yellow circled areas shown in Fig. 7(a).218

Table 3: Contrast-to-Noise-Ratio (CNR), speckle Signal-to-Noise-Ratio (sSNR), and Power Ratio (PR) cal-

culated at z = 30 mm from the cyst phantom.

CNR sSNR PR

DAS Boxcar 1.94 2.16 −30 dB

DAS Hanning 2.05 2.27 −29 dB

MVS (L = 48) 1.97 2.18 −30 dB

MVT (L = 128) 1.13 1.49 −16 dB

MVS (L = 128) 1.12 1.50 −15 dB

Visually the first 3 beamformed responses of the cyst phantom in Fig. 5, appear219

very similar, which was confirmed quantitatively (Fig. 6 and Table 3). At 30 mm220

depth, the PR was between −29 and −30 dB, the CNR between 1.94 and 2.05 and221

the sSNR between 2.16 and 2.27, demonstrating no significant improvement for the222

MVS. The three leftmost images also have two strong specular reflections at the top223

and bottom of the cyst. These characteristics are similar for all MV responses using224
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(e) MVS (L = 128)

Figure 5: Responses of the cyst phantom are shown for 5 different sets of apodization weights as resulted

from conventional beamforming (a) and (b), and MV adaptive beamforming (c), (d) and (e). A 60 dB

dynamic range display was used.

L sizes between M/6 and M/2. The maximum sub-array length L = 128 used, which225

provided maximum resolution for the wire phantom (Fig. 1) was found to randomize226

the speckle appearance and therefore resulted in a varying intensity across the MVT227

and MVS images with alternating bright and dark vertical zones particularly at the228

top. Due to this intensity variation, the contrast at 30 mm was significantly reduced to229

−16 dB and −15 dB for MVT and MVS respectively. The corresponding CNR and230
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Figure 6: Lateral variations of the beamformed responses of Fig. 5 for the 4 mm diameter cyst centred at

(x,z =−1 mm, 30 mm).
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(d) MVT (L = 128)
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(e) MVS (L = 128)

Figure 7: Responses of the cyst centred at (−1 mm,30 mm) are shown for 4 different sets of apodization

weights as resulted from conventional beamforming (a) and (b), and MV adaptive beamforming (c), (d) and

(e). A 60 dB dynamic range display was used. The cyst and speckle regions that were used for the calculation

of the contrast resolution metrics are indicated in yellow in the leftmost image.

sSNR values were 1.12 and 1.50 for the MVS (L = 128) indicating a 45.4% drop in231

CNR and a 34% drop in sSNR compared to DAS Hanning. The image degradation was232

similar for the MVT with CNR equal to 1.13 and sSNR equal to 1.49. In addition, for233
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the cyst centred at (x,z = 3.5 mm, 50 mm) the PR varied between −10 and −11 dB234

in Figs. 5(a)-(c) while the same cyst was hardly visible in Figs. 5(d)-(e), with contrast235

≈ −7 dB. On the contrary, in comparison with the other images of Fig. 5 and Fig. 7,236

the specular reflections were either very weak or appear completely absent in (d) and237

(e). Essentially, each reflection is a point scatterer for which the MVT and the MVS238

(L = 128) methods produced a PSF similar to those shown in Fig. 1(d) and (e) for the239

wire-targets.240

4. Discussion241

A quantitative assessment of the Minimum Variance Sub-band (MVS) beamformer,242

using experimental ultrasound data was investigated for the first time. It was shown that243

such adaptive apodization weights achieve super-resolution lateral localization of point244

sources, with FWHM values of λ/12, while at the same time keeping the side-lobes245

below −40 dB. It is difficult to compare the above findings with other MV imple-246

mentations due to the use of varying scan parameters, scanned object dimensions, or247

metrics definitions. However, to the best of the authors’ knowledge such low FWHM248

values have never been presented in the MV beamforming literature for medical ultra-249

sound. The MV processing (as opposed to the MVS) is mainly time domain-based and250

has provided λ/10 at best, for simulated data elsewhere [19, 36, 39–41].251

The point scatterer results obtained using real data here, confirm the previous find-252

ings derived in a simulation environment. In this work, the MVS provided at best 24253

times lower FWHM and −17 dB improved side-lobe suppression compared to DAS254

beamforming. These numbers are comparable to those mentioned in the simulation255

study (22 times and −13 dB respectively) [19]. However, the experimental results256

have been acquired by deploying an optimized processing that involved a larger sub-257

array length value (L = 2M/3 = 128) and target isolation. The use of such a high L258

value was enabled by using the FB averaging technique. It is commonly accepted that259

the FB averaging outperforms the standard forward averaging [21], providing a more260

robust sample covariance matrix. The forward only averaging is usually combined261

with sub-array lengths that are between M/4 and M/2 [18, 38], since there is a trade-262
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off between sub-aperture size and sample covariance matrix accuracy. Importantly, for263

L values smaller than 128, the MVS showed some resolution gains compared to con-264

ventional beamforming (Fig. 1), but the level of improvement was significantly lower265

compared to the simulation results [18]. Moreover, the MVS beamformer was applied266

to small regions centred around a single wire to ensure that the highest possible per-267

formance is achieved. The beamforming of larger structures, minimized the resolution268

gain of the adaptive method as was demonstrated by the cyst data processing. From269

Fig. 5(a)-(c) and Table 3, it is not possible to identify a significant advantage of the270

MVS over the DAS. The deterioration of the MVS image in Fig. 5(d)-(e) is due to the271

larger sub-aperture used which, given the large number of scatterers that were included272

in this phantom, reduces the possibility of optimal signal cancellation. The cyst phan-273

tom results are not in full accordance with the initial simulations, where the circular274

shape of a cyst located at 40 mm depth was preserved with the MVS compared to the275

distorted DAS response [18, 42]. Recent MV studies on cystic resolution [39, 43] show276

that it is only towards the edges of small cysts that the MV beamforming may result in277

higher contrast, which is not in disagreement with the results here.278

A comparison of the MVT and the MVS, did not demonstrate a clear advantage279

of one implementation over the other. From the wire-target experiment, there is little280

difference in PSL between the two adaptive approaches, as in simulation [19]. This281

is best reflected in the PSF appearance for the wire target closest to the virtual source282

(at 52 mm depth), where the target is more clearly defined for the MVS derived im-283

age (Fig. 1(e), first row), while side-lobes are visible in the MVT case (Fig. 1(d), first284

row). From the cyst phantom, the resulting values of all contrast resolution metrics285

are similar for MVT and MVS, while there was a −9 dB contrast improvement for286

the MVS in the simulation results [19]. Overall, the expected theoretical advantage287

of dividing the broadband ultrasound signals into sub-bands, was not confirmed ex-288

perimentally. However, as noted in [44], beamforming methods such as the MVS,289

are in general, sub-optimal since correlations between the frequency domain chan-290

nel signals of different sub-bands are not taken into account in the derivation of the291

broadband beamformer output. Considering the additional computational load, which292

is attributed to the number of matrix multiplications needed for the weight calculation293
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as shown from (5), (7), and (8) (proportional to L3), and to the individual processing294

of each frequency band, it can be concluded that there is no clear benefit in using the295

MVS method in structural/anatomical imaging. Both wire and cyst phantom experi-296

ments confirm that the MV efficiency depends on the relation between the number of297

available channel signals and the number of scatterers to be resolved [17]. The MV298

performance is likely to be further compromised when imaging structures of the hu-299

man body by the tissue induced aberration [45], mainly due to the variations in the300

speed of sound [18] and attenuation [46]. The MV beamformer would require further301

development to compensate for such environments.302

The applicability of the MV method remains open for B-mode imaging, and de-303

spite the limitations described above, it has been shown that it is feasible to implement304

MV beamforming for real-time cardiac ultrasound imaging[7] or imaging of the eye[8].305

The results here show that the MVS using L = 48 is a balanced MV implementation306

offering 33% improved lateral resolution compared to DAS, while also maintaining307

similar contrast resolution with lower than 5% deviation based in all the criteria se-308

lected for the quantitative evaluation, as shown in Table 3. However, the high-sub-array309

length MV implementations appear particularly attractive for use in point scatter imag-310

ing. The emerging field of super-resolution ultrasound contrast imaging is an obvious311

example. It is well established that single microbubbles are very efficient point scatter-312

ers [47], and recent developments have utilized this fact to explore techniques available313

from other fields of sensing. In essence all the techniques aim to locate the centre of314

a particle signal and minimize side-lobes. With the aid of such contrast microbub-315

bles, and an a priori knowledge of point source scatter, high resolution transcranial316

images of vascular structure have been obtained [48]. This was accomplished by ap-317

plying aberration correction methods based on the position estimation of individual318

bubbles, thus achieving resolution beyond the diffraction limit. Similarly, based on319

the localization of isolated signals from microbubbles, in-vivo imaging of the mouse320

ear microvasculature with 5-fold resolution gains was performed with the additional321

feature of a super-resolution blood velocity mapping [49]. In other work, improved322

microbubble localization with ultrafast Ultrasound Localization Microscopy (uULM)323

applied to conventionally beamformed data, resulted in the mapping of vessels up to 10324
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times smaller than the ultrasound wavelength, during in-vivo measurements on anaes-325

thetized rats [50]. Whereas super-resolution imaging is mainly image-based, the MV326

beamformer offers a complementary method in the processing of signals. The advan-327

tage of using such a method does not only rely on the narrower main-lobe width of328

a PSF (FWHM), but also in improved side-lobe suppression (PSL). This suggests the329

potential for reduced variability of the PSF and reduced background clutter or noise.330

Both of these may improve the statistics of detecting microbubbles in an image, further331

improving accuracy and reproducibility of image processing, while also increasing the332

number of bubbles possible to use. The lack of axial resolution improvement using the333

MV method is not a major obstacle as the PSF has a very well defined shape, which334

may facilitate the image analysis implemented after the image formation.335

5. Conclusion336

The performance of the frequency domain implementation of the MV beamformer337

was experimentally examined for medical ultrasound imaging. The adaptive method338

provided up to 24-fold resolution gains and up to 17 dB improved side-lobe suppression339

over the conventional DAS beamformers in the lateral localization of individual point340

scatterers. A comparison with the time domain MV beamformer showed no difference341

in resolution and up to 8 dB improvement in the side-lobe suppression. These results342

were acquired using experimental ultrasound data from point scatterers, and confirmed343

previous simulation findings. Further, the adaptive method did not demonstrate its344

usefulness for entire images in a cyst phantom study, where the contrast resolution was345

at best similar to the one provided by the DAS beamformers.346
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