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Abstract

A number of chronic poverty measures are now empirically applied to quantify the
prevalence and intensity of chronic poverty, vis-a-vis transient experiences, using panel
data. Welfare trajectories over time are assessed in order to identify the chronically poor
and distinguish them from the non-poor, or the transiently poor, and assess the extent
and intensity of intertemporal poverty. We examine the implications of measurement
error in the welfare outcome for some popular discontinuous chronic poverty measures,
and propose corrections to these measures that seeks to minimize the consequences of
measurement error. The approach is based on a novel criterion for the identification of
chronic poverty that draws on fuzzy set theory. We illustrate the empirical relevance of
the approach with a panel dataset from rural Ethiopia and some simulations.
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1 Introduction

Chronic poverty measurement has grown in academic and policy interest over the past

ten years in particular, not least due to the increasing availability of panel datasets,

especially in developing countries. Several intertemporal poverty measures have now

been proposed, and are in use in empirical applications around the world. While no one

measure has yet become the standard, several extensions of the Foster-Greer-Thorbecke

set of static measures (Foster et al., 1984) are currently proposed. Porter and Quinn

(2013) review the intertemporal poverty measurement literature, and show that some of

the well-established properties of static poverty measurement are not easily extended to

the intertemporal context. We do not review all of them here, but we note that several

options are available to the poverty analyst. Intertemporal poverty measures have been

proposed, inter alia, by Jalan and Ravallion (2000); Porter and Quinn (2008); Hoy and

Zheng (2011); Calvo and Dercon (2009); Foster (2009); Bossert et al. (2012); Gradin et al.

(2012); Foster and Santos (2013); Dutta et al. (2013).

In particular, there has been a policy interest in quantifying duration of poverty, as

well as in identifying those who may be said to be “chronically” poor as opposed to tran-

siently poor. In parallel, chronicity is a concept which many authors in the intertemporal

poverty literature have sought to incorporate. This is an appealing concept in the in-

tertemporal context: all other things equal, the length of time spent in poverty may have

a more than one-for-one impact on the underlying wellbeing of a person.1 There is also a

direct analogy to the unemployment literature, which shows that spending longer time in

unemployment may also decrease the chances of exiting unemployment. The same may be

posited regarding poverty. Meanwhile there is a clear consensus on the substantial mea-

surement error present in almost all survey data in developing and developed countries

(Deaton and Grosh, 2000; Bound et al., 2001).

The literature has not yet managed to design a continuous measure of intertemporal

poverty that incorporates an appropriate concept of duration sensitivity, even though these

1See for example several qualitative research papers and summaries from the Chronic Poverty Research
Centre, www.chronicpoverty.org.
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two properties are not incompatible in theory. Continuity is an important and desirable

property of any poverty measure, given that any discontinuity would render the measure

highly sensitive to small changes in the wellbeing indicator being used. Of particular

concern, the measure would also be sensitive to measurement error generating spurious

fluctuations around poverty lines; in turn leading to misclassifications of people as either

non (chronic) poor, or (chronic) poor. In the static and multidimensional context, similar

concerns have motivated the incorporation of insights from fuzzy set theory (see e.g.

Lemmi and Betti, 2006), in order to better identify the poor, and to avoid the problem of

setting a poverty line that classifies people as poor or non-poor, with nothing in between

(Pritchett, 2006). More recently, Marano et al. (2015) proposed a method to mitigate

the potential impact of measurement error on the estimation of persistence and transition

probabilities into and out of poverty. Their method combines a fuzzy approach to poverty

identification with latent class Markov models. Verma et al. (2015) adopt a fuzzy approach

with a continuous fuzzy identification function, applied to EU data.

Our focus in this paper is somewhat pragmatic, building on these insights for appli-

cation with widely used monetary measures of chronic poverty that speak to the policy

literature. We create a “thick” poverty line enabling us to mitigate the potentially exces-

sive sensitivity of discontinuous intertemporal poverty measures to spurious transitions

across the poverty line. Specifically we propose a generalization of two popular intertem-

poral poverty measures: the measure of Foster (2009) and the more recent measure of

Gradin et al. (2012). Hence we are not concentrating on the impact of measurement error

on transition probabilities, as some of the recent literature. Rather, we are proposing

amendments which reduce the influence of measurement error on the quantification of

duration-sensitive poverty. The two new proposals are characterized by a lower sensitiv-

ity to transitions around the poverty lines. In accordance with fuzzy set theory applied

to poverty measurement, our measures allow some people to have a fuzzy poverty status,

somewhere between being poor and non-poor. We dedicate special attention to mone-

tary measures of wellbeing and to measurement error which may be negatively correlated

with the true value of wellbeing indicators (e.g. income or consumption), since the scant
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available evidence points to this phenomenon (Gibson et al., 2015). Hence, our concern is

that existing intertemporal poverty measures might underestimate the extent of chronic

poverty, and/or the intensity of duration-sensitive poverty experiences, in the face of this

form of measurement error.

While we expect our proposed adjustments to be helpful in the case of several classes

of intertemporal poverty measures, we illustrate with one class of measures that aims

to identify the chronically poor (Foster, 2009), and with another class which does not

distinguish between the chronically poor and the rest (never poor and transiently poor),

but rather renders the individual poverty function dependent on the number of contiguous

poverty periods (Gradin et al., 2012).

We explore these measures’ empirical implications with some simulated data, as well

as the Ethiopian Panel Household Survey. In the Ethiopian case-study, we find that a

crisp-poverty-line application of the Gradin et al. measures underestimates intertempo-

ral poverty vis-a-vis the fuzzy-poverty-line application. Meanwhile, whether the Foster

measure reports higher poverty statistics for the crisp or the fuzzy poverty line depends

crucially on the choice of chronic-poverty duration cut-off. The simulations show that in

the case of classical or mean-reverting measurement error, the fuzzy measures are closer

to the “true” (error free) measures, and that it is possible to minimise exclusion errors

by fuzzying only above the poverty line. Our simulations therefore provide suggestive

evidence that the two measures (Foster and Gradin et al.) may underestimate chronic

poverty and intertemporal poverty, respectively, in the presence of both classic and mean-

reverting measurement error.

The rest of the paper proceeds as follows. Firstly, we briefly introduce a few ideas

about intertemporal poverty measurement, followed by a basic notion of poverty identifi-

cation with fuzzy sets. Then we dedicate two sections, respectively, for the new proposals

generalizing the measures of Foster (2009) and Gradin et al. (2012). Then we proceed

to the empirical section. There, we first provide a discussion of empirical issues in mea-

surement error, followed by the simulations, and then by the application to the Ethiopian

dataset. Finally, the paper ends with some concluding remarks.
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2 Intertemporal Poverty Measurement

Most intertemporal poverty measures build on the class of measures known as p-alpha,

or FGT, which were introduced by Foster et al. (1984) in order to quantify poverty at the

individual and social levels in one specific time period. Let xn(∈ R+) be the attainment

(e.g. income) of household n (out of N households) and z be the poverty line. A person

is deemed poor if xn < z. Then the FGT class is given by:2

Pα(X) =
1

N

N∑
n=1

(
1− xn

z

)α
I(xn ≤ z), (1)

for α ≥ 0; which satisfy the axioms of Focus, Anonymity, Weak Monotonicity,

Weak Transfer, Subset Consistency and Population Size Neutrality. Ad-

ditionally, the measures satisfy Strict Monotonicity and Continuity when α > 0,

and Strict Transfer when α > 1. They have become very well-known and widely

applied.

Now consider a matrix X, whose N rows have information on the wellbeing attain-

ments of N individuals across a time span of T periods. Each column, therefore, hosts

the attainment distribution across the population in a specific time period:

X =



x11 x12 · · · x1T

x21 x22 · · · x2T
...

...
. . .

...

xN1 xN2 · · · xNT


. (2)

A typical attainment element of the matrix is: xnt(∈ R+), that is, the attainment of

individual n in period t. The poverty lines, specific to each period, are denoted by zt

(from a vector of poverty lines, Z : (z1, . . . , zt, . . . , zT )), and a person is deemed poor

in period t if: xnt < zt. When conceptualising poverty over time, it is useful to think

about the trajectory of wellbeing attainments experienced by an individual n (Porter

and Quinn, 2008), that is, the nth row of the data matrix xn = (xn1, xn2, . . . , xnT ).

2I(.) is an indicator function equal to 1 whenever the content in parenthesis is true. Otherwise it is
equal to 0.
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Most intertemporal poverty measures are constructed in two steps. In the first step, an

individual measure is devised as a function of the individual trajectory vector xn. In the

second step, all the individual (intertemporal) poverty measures are aggregated in order

to produce a social poverty measure.

Some earlier measures developed in the literature (e.g. Jalan and Ravallion, 1998 which

is an extension of Rodgers and Rodgers, 1993) addressed that first step, i.e. the challenge

of transforming the trajectory vector into a measure of individual intertemporal poverty,

by averaging of the income stream over time, meaning to capture the notion of permanent

income. The method is straightforward, and intuitively appealing: if a household’s average

income lies below the poverty line, then they can be deemed chronically poor. And

their poverty gap (along with square poverty gap and further poverty measures) can be

calculated also using this average, applying the FGT class of measures in (1).

This approach has been criticised partly because it allows a period of high income to

compensate for a period in severe poverty. In response, several authors (Calvo and Dercon,

2009; Foster, 2009) proposed alternative extensions of the static focus axiom (Foster and

Shorrocks, 1991) to the intertemporal context. They propose that the principle of strong

focus should apply to any chronic poverty measure; that is, the poverty measure should

not be sensitive to changes in wellbeing, in any time period when wellbeing is above the

poverty line.3

The concept of strong focus is not sufficient to distinguish between the group of

static poor and intertemporal poor, which led Foster (2009) to introduce the concept of

duration sensitivity, which is at the heart of the identification strategy in his measure:

only those people who are poor for at least a certain proportion of time qualify as chronic

poor. Porter and Quinn (2008) show that this property is incompatible with another

property, that penalises depth of poverty and allows a non-zero elasticity of substitution

of wellbeing between periods (intertemporal transfer). Which of these properties

one wishes to incorporate in the analysis is a normative choice, and depends on the policy

3For an alternative view see Dutta et al. (2013). See also Foster and Santos (2013) for an intermediate
approach between the perfect compensation implied by the framework of Jalan and Ravallion (1998) and
the null compensation implied by the strong focus axiom.
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context and the data under consideration.

Two properties that capture the specific concept of chronicity, or length of time spent

under the poverty line, have been proposed so far in the literature: the first relates to

the total number of time periods spent in poverty, regardless of their order in time. This

has been termed duration sensitivity by Porter and Quinn (2013) and Time Mono-

tonicity by Foster (2009). The second is contiguity of poverty (introduced by Bossert

et al., 2012, whose measure is generalised by Gradin et al., 2012, and recently further de-

veloped by Dutta et al., 2013). Contiguity refers to the concept that consecutive spells

of poverty without any recovery time in between may be more damaging to wellbeing than

when there is some recovery time in between. So, for example in a three-period panel,

a sequence [poor, poor, non-poor] would be ranked as worse off than [poor, non-poor,

poor] for a poverty measure satisfying Contiguity. Both these are appealing normative

properties.

However, another property that is highly desirable is continuity, which is motivated

by the notion that an infinitesimal change in wellbeing in any period should lead to no

more than an infinitesimal change in the value of the individual trajectory measure, i.e. the

evaluation of intertemporal poverty (Porter and Quinn, 2013). If the trajectory ordering

is not continuous then we may find trajectories which are ordered in a perverse way (see

Quinn (2014) for a further illustration). For empirical applications this is also extremely

important: a discontinuous measure would be excessively sensitive to measurement error,

at any point of discontinuity.

3 Duration-sensitive Poverty Measures

3.1 The chronic poverty measures of Foster (2009)

We first tackle one of the most popular measures, that proposed by Foster (2009), which

has increasingly been adopted in policy applications (e.g. Perez-Mayo, 2009; Nunez Ve-

lasquez, 2009), in addition to being the inspiration behind the class of multidimensional

poverty indices proposed by Alkire and Foster (2011). Foster proposes a property of
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Time Monotonicity, whereby an additional period of poverty experienced by an al-

ready chronically poor person should lead to an increase in the poverty measure.

Foster’s measure includes a ‘double cutoff’: (1) A poverty line indicating material de-

privation in one time period, and (2) a duration cutoff indicating the minimum proportion

of periods in poverty required for a household, or individual, to be deemed chronically

poor. This measure satisfies a focus axiom stating its insensitivity to any period-specific

deprivation from people who are not identified as chronically poor.

Foster’s chronic poverty measure is based on a deprivation count which has a very

simple and intuitive understanding: a person is chronically poor (as opposed to tran-

siently poor, or non-poor) if they experience poverty during a minimum proportion of

time periods. A count of deprivation periods is computed weighting each deprivation

period with weights vt, from a vector of weights V : (v1, . . . , vt, . . . , vT ), such that:

vt ∈]0, 1[⊂ R++|
∑T

t=1 vt = 1. Hence the weighted number of deprivation periods suf-

fered by individual n is: cn ≡
∑T

t=1 vtI (zt > xnt).
4

Foster (2009) identifies the chronically poor as those whose weighted deprivation count

is at least as high as the duration cutoff, τ ∈ [0, 1] ⊂ R. The poverty identification function

is thus:

ϕ(cn; τ) ≡ I(cn ≥ τ). (3)

Then, for an individual poverty function, Foster (2009) proposes a weighted sum of the

powered and censored normalized poverty gaps in every period, i.e. the FGT metric

(Foster et al., 1984):

p(xn;Z, V, τ, α) ≡ ϕ(cn; τ)
T∑
t=1

vt(1−
xnt
zt

)αI(zt > xnt), α ≥ 0. (4)

Note that, in this approach to chronic poverty measurement, the sequence and timing of

poverty spells does not impact the individual measure. Foster (2009) calls this property

‘time anonymity’.

4For simplicity, we keep the weights at one for our empirical illustrations, though these could be
altered.
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Finally, the social poverty measure, P , has a functional form satisfying desirable prop-

erties like individual anonymity, population principle, and additive decomposability:

P ≡ 1

N

N∑
n=1

p(xn;Z, V, τ, α). (5)

3.2 The intertemporal poverty measures of Gradin et al. (2012)

The second measure under consideration is the one by Gradin et al. (2012) (GDC), which

is a generalisation of Bossert et al. (2012). This measure features a different duration-

sensitivity property, whereby consecutive spells of poverty are weighted more heavily.

Bossert et al. (2012, p. 1) observe that: “[t]he negative effects of being in poverty are

cumulative, hence a two-period poverty spell is much harder to handle than two one-period

spells that are interrupted by one (or more) period(s) out of poverty.”

Gradin et al. (2012) take a similar approach to that of Foster (2009), in that the

measure is an intertemporal sum of FGT per-period poverty measures. However, they do

not incorporate the duration cutoff for identification. This means that anyone with any

period in poverty at all is included in the set of the intertemporally poor (in the poverty

identification literature this would be deemed a union identification approach). Put it

differently, this measure of intertemporal poverty is not meant to differentiate between

chronic and transient poverty.

In order to penalise contiguous periods of poverty Gradin et al. (2012) introduce a

weight multiplying the FGT normalized poverty gap. This weight, wnt, depends on the

length of a contiguous poverty spell, denoted by snt. Thereby the same poverty shortfall

gets weighted more heavily if it belongs in a longer experience of uninterrupted poverty:

pG(xn;Z, S, α) = [
1

T

T∑
t=1

(1− xnt
z

)γI(z > xnt)wnt]
α α ≥ 0, γ ≥ 0; (6)

where

wnt =
(snt
T

)β
, β > 0. (7)

and S is the vector of poverty spells, snt. So, for example, a single period in poverty en-
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ters with a weight of (1/T )β; whereas both periods in a two-period spell would be weighted

by (2/T )β as in (7). As noted by Porter and Quinn (2013), the Gradin et al. measure sat-

isfies weak identification, general focus, weak monotonicity, strong focus,

restricted strict monotonicity (if γ > 0) and contiguity; but not continuity,

non-decreasing compensation or time symmetry. Its discontinuities mean that

it does not satisfy intertemporal transfer or duration sensitivity although it

does satisfy each of these for certain poverty trajectories. Gradin et al. (2012) note that

the measures proposed by Foster (2009) are a special case of their measure if β = 0 and

α = 1. However, this is strictly true only if we set all time-period weights equal to 1
T

and

τ = 0 in the framework proposed by Foster (2009).

Finally, the social poverty measure, P , can be constructed by inserting (6) into the

general form (5). Gradin et al. (2012) note that the measure by Bossert et al. (2012) is a

specific subclass characterized by β = α = 1.

4 Poverty identification with fuzzy sets

In order to compensate for the potential effects of measurement error on duration-sensitive

chronic poverty measures, we propose a generalization of the two measures outlined above,

building on the fuzzy set literature. Fuzzy set theory has been used extensively in the

social sciences (e.g. see Ragin, 2000; Smithson and Verkuilen, 2006). In the poverty

literature, fuzzy set theory was introduced as an alternative identification criterion by

researchers who were unhappy with the blunt dichotomy posed by traditional poverty

lines for the identification of the poor. Instead, they opted for the membership functions

used in fuzzy set theory (see e.g. Lemmi and Betti, 2006). While we do not intend to

contest the practice of setting a poverty line for identification purposes, we do worry

about the consequences of using a traditional poverty line in chronic poverty assessments

based on duration-sensitive measures, when transitions across the line may be taking place

spuriously due to measurement error. We discuss the empirical considerations around the

likely type of measurement error after this section.

Since traditional measurement error corrections are usually not readily available (for
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a comprehensive treatment, see Bound et al., 2001), we propose a fuzzy-style adjustment

to the period-specific poverty lines, and then to the identification criteria of both the

time-specific poor and the chronically poor. This adjustment smooths out the impact of

(potentially spurious) transitions that take place across, and in close proximity to, the

poverty lines. In that way, we generalize some of the proposed duration-sensitive measures

of chronic poverty.

An illustration of our proposed identification adjustment is in Figure 1 where a tra-

ditional poverty line, z, is compared against a ‘thick’ poverty line bounded by z1 and

z2, such that z1 < z < z2. This is the general class of fuzzy poverty lines introduced

by Dombi (1990). In a traditional identification approach, a person is deemed poor if

his/her income is below z, and non-poor otherwise. Under a fuzzy approach, poverty

status ceases to be dichotomic if a person’s income is in the interval [z1, z2]; for example,

in the proposal by Dombi (1990) the membership function in that interval is given by:

πnt = (z2t−xnt)2

(xnt−z1t)2+(z2t−xnt)2
.

Two important features of our application of a fuzzy identification approach to chronic

poverty measurement stand out: i) transitions across the vicinity of z do not generate

abrupt changes in poverty status when the ‘thick’ poverty line is used. For big changes

in poverty status to happen, the magnitude of the transition has to be large enough to

cross from below z1 to above z2 (or the other way around). In those cases, we assume

that the transition is less likely to be spurious (e.g. driven by measurement error). ii)

our fuzzy identification approach can be fine-tuned, thus tailored to different concerns

around measurement error, by either changing the values of [z1, z2] or by changing the

parameters that control the shape of the membership function.

As it is clear from definition (3), a change in xnt that modifies the deprivation status

in period t, i.e. a transit across zt, increases or decreases cn in the amount vt. In turn

such a perturbation may or may not change ϕ(cn; τ) from 1 to 0 (or viceversa), in the

case of measures like Foster (2009)’s. As long as there is transit across zt, a change in

individual poverty status is possible, irrespective of the magnitude of the change in xnt

that caused the transit.
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However we do not want small, and potentially spurious, changes around zt to have a

significant effect on chronic poverty status. In order to reduce the likelihood of such occur-

rence, we propose an alternative poverty identification function, which follows definition

(3), however, deprivation in any individual period is determined by the fuzzy poverty line

introduced by Dombi (1990):

πnt =


1 if xnt < z1t

(z2t−xnt)
2

(xnt−z1t)2+(z2t−xnt)
2 if z1t ≤ xnt ≤ z2t

0 if xnt > z2t

 , (8)

where z1t ≤ zt ≤ z2t, i.e. there is now a ‘thick’ poverty line above and below the original.

Also, we note here that, if we are particularly concerned with errors of exclusion (i.e.

underestimation of the chronically poor), rather than those of inclusion (overestimation),

we may wish to set the lower bound of the thick poverty line at z, and an upper bound

somewhere above it. The choice of the bounds for the ‘thick’ poverty line is discussed

further in the empirical section below.

We could also consider alternative membership functions instead of (8). For in-

stance the class of membership functions proposed by Chakravarty (2006), in which

πnt =
[
z2−xnt

z2−z1

]θ
if z1t ≤ xnt ≤ z2t. An illustration of this membership function can

be found in figure 3 in annex 6, though we note that these are not twice-differentiable.

PLACE FIGURE 1 HERE

4.1 Poverty identification with fuzzy sets: the case of the mea-

sures by Foster (2009)

Drawing on the preceding section, the next step in our proposal to amend the Foster (2009)

measures is to redefine the intertemporal deprivation count: cπn ≡
∑T

t=1 vtπnt. Then the

new individual poverty function is:
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pπ(xn;Zπ, V, τ, α) ≡ ϕ(cπn; τ)
T∑
t=1

vtπnt[1−
xnt
zt2

]αI(zt2 > xnt), α ≥ 0, (9)

where ϕ (cπn; τ) = I(cπn ≥ τ), and the vector Zπ is now made of trios of poverty lines, one

per time period, Zπ := {z11, z1, z21; . . . ; z1t, zt, z2t; . . . , z1T , zT , z2T}.

Finally, the new social poverty function is:

Pπ ≡
1

N

N∑
n=1

pπ (xn.;Zπ, V, τ, α) . (10)

For the rest of the paper, especially in the empirical application, we mainly focus on the

measure with α = 0, though we also illustrate the case of α > 0 in table 7. Two interesting

differences between the class of measures in (9) and the original one by Foster (2009) are

worth highlighting. Firstly, our proposal fulfills the original properties of the Foster (2009)

measures, in addition, now, to continuity in each period.5 Hence, for instance, a transit

across zt is less likely to change cπn by a full amount of vt. The change, ∆cπn depends now

on the magnitude of the change in xnt, ∆xnt :

∆cπn = [πnt(xnt −∆xnt)− πnt(xnt)]vt. (11)

The lower sensitivity of cπn to the same change in xnt, as reflected in (11), is the main

feature rendering Pπ better protected from drastic changes in period-specific deprivation

status, and chronic poverty status, due to small and potentially spurious transits across

zt.

However this new specification has other consequences. A second, expectable, differ-

ence is that the baseline number of chronically poor people according to Pπ in (10) need

not coincide with that according to P in (5). For example, in the case of deprived people

in period t, the following condition, for continuous variables, establishes the circumstances

under which Pπ overstates the proportion of deprived people in period t:

5Though note that the presence of τ retains a discontinuity that we could also in principle remove by
fuzzying, though we do not at this point.
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∫ zt

z1t

[1− π (x)] dF (x) <

∫ z2t

zt

π (x) dF (x) , (12)

where F (x) is the cumulative distribution function of x and π (x) is the membership

function. The left-hand side of (12) measures the ‘loss’ in full deprivation status ex-

perienced by those who still have partial deprivation status, i.e. individuals for whom

z1t ≤ xnt ≤ zt. The right-hand side measures the acquired partial deprivation status

among individuals who, otherwise, would not be considered deprived in period t, i.e. peo-

ple for whom zt ≤ xnt ≤ z2t. Whenever the latter is greater than the former for every t,

the social poverty headcount is never lower according to Pπ.

The case of α = 0

When α = 0, the individual poverty function in (9) reduces to:

pπ(xn;Zπ, V, τ, 0) = ϕ(cπn; τ)
T∑
t=1

vtπnt, (13)

then, following Foster (2009), the social poverty function can be expressed as the product

of the chronic poverty headcount times the average proportion of poverty periods among

the chronically poor (hence why it is also known as a duration-adjusted headcount ratio):

Pπ;(0) ≡ 1

N

N∑
n=1

pπ (xn.;Zπ, V, τ, 0) = HπDπ, (14)

where:

Hπ ≡
1

N

N∑
n=1

ϕ (cπn; τ) , (15)

and:

Dπ ≡
1

HN

N∑
n=1

ϕ(cπn; τ)cπn =
Pπ;(0)

H
. (16)

Given that P in definition (14) can be expressed in terms of a chronic poverty headcount

(H) multiplied by an average proportion of poverty periods among the chronically poor
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(D), then it is clear, from (14), (15), and (16), that a fuzzy identification function can

change not only the chronic poverty headcount (H), but also the average duration statistic

(D).

Comparison with alternative tools to deal with measurement error: the case

of the Foster (2009) measures

Even if ‘thickening’ the poverty line in every period does help mitigate the effects of

measurement error in the case of Foster (2009) measures, there are conceivable alternatives

for the same purpose, including performing robustness checks with alternative poverty

lines (i.e. changing z) and/or alternative duration cut-offs (i.e. changing τ).6 These are

all legitimate and potentially useful alternatives, in fact some could even be implemented

in tandem (e.g. combinations of duration cutoff with fuzzy poverty lines). We illustrate

this in our empirical section, by varying τ . As a note of caution, here we would like to

illustrate the potentially different effects of some of these possible adjustments on poverty

measurement with Foster (2009) measures, vis-a-vis using fuzzy poverty lines.

We will focus the illustration on the case of negative correlation between measurement

error and the true vale of the wellbeing indicator, which has gained notoriety due to its

recent empirical detection in a developing country Gibson et al. (2015), and is connected

to the concern for so-called errors of exclusion (i.e. failing to classify poor households

as poor). Consider, first, a situation with z = 100, and a hypothetical household A

observed over T = 4 with the following achievement vector: xA = (110, 120, 105, 110).

Now imagine that the vector of true unobserved values (i.e. purged of measurement error)

is: x∗
A = (80, 120, 70, 80). That is, if we could observe x∗

A we would classify A as poor with

any τ ≤ 0.75 (assuming time periods weighted evenly). Clearly, with z = 100 and a ‘crisp’

application of the Foster (2009) measure, household A would be ‘off the radar’ for any τ .

That is, reducing τ would not be helpful in this circumstance. By contrast, consider a

simple fuzzy poverty identification function πnt = 120−xnt

120−100
if 100 ≤ xnt ≤ 120, otherwise

πnt = 1 if xnt < 100 and πnt = 0 if xnt > 120. In this case, we would get the following

6We would like to thank an anonymous referee for highlighting this point.
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poverty identification vector (πAt for every period): (0.5,0,0.75,0.5). If every time period

is weighted equally, this yields a total deprivation score of 0.4375. Therefore, household

A would be identified as chronically poor with any τ ≤ 0.4375 in a ‘fuzzy’ version of the

Foster (2009) measure.

Now consider household B with observed achievement vector: xB = (80, 120, 105, 110),

and a vector of true unobserved achievements: xB = (70, 120, 90, 95). If we could observe

x∗
B we would not classify B as poor with τ > 0.75 (assuming time periods weighted

evenly). Now imagine we raise z from 100 to 110. Then we classify B as poor for any

τ ≤ 0.75. However, if we raise z from 100 to 120, then B would be deemed poor for any

τ . By contrast, consider the poverty identification function of the previous example. We

would get the following poverty identification vector for B (πBt): (1,0,0.75,0.5); which

yields a total deprivation count of 0.5575. Therefore, household B would be identified

as chronically poor with any τ ≤ 0.5575. Here raising the poverty line evenly would be

more successful in reducing potential error of exclusion, but at the expense of higher error

of inclusion. More importantly, if we believe that higher incomes are less likely to be

overestimated by measurement error, then a fuzzy approach would enable us to reflect

that judgment by attributing a lower membership function value to higher incomes within

the fuzzy domain. By contrast, even increases in z would treat all incomes below it in the

same manner for poverty identification purposes.

There are certainly many more household situations that could be considered. The

point of the above illustration is to highlight the differential impacts of alternative ro-

bustness adjustments to the measure, and how a fuzzy approach to the period-specific

poverty line can be helpful toward mitigating the impact of measurement error on chronic

poverty identification.

4.2 Poverty identification with fuzzy sets: the case of the mea-

sures by Gradin et al. (2012)

In the case of the measures by Gradin et al. (2012), the concern with measurement error

generating a transit across zt, in turn changing the deprivation status in period t, is not

16



that the individual chronic poverty status may be affected, since these measures do not

intend to identify the chronically poor from the rest (put it differently, they rely on a union

approach to identification, i.e. τ = 0 implicitly). However, as is clear from the weight

equation (7), a small disturbance can produce significant changes in the spell variables, i.e.

snt, which in turn affect the weights. This becomes apparent by examining the formula

for snt:

snt = [
t+n∑

i=t−m

I(zi > xni)][
t+n∏

i=t−m

I(zi > xni)]I(zi ≤ xn,t−m−1)I(zi ≤ xn,t+n+1). (17)

As is clear from equation (17), changes in period poverty status, both within t −m

and t + n, as well as in the immediately adjacent periods (t − m − 1, t + n + 1), can

generate discontinuous changes in snt. Our proposal seeks to reduce this sensitivity to

small changes in xnt generating transit across zt, by introducing πnt, from equation (8),

into expression (17), thereby ‘thickening’ the poverty lines. This yields the following spell

value function:

sfnt = [
t+n∑

i=t−m

πni][
t+n∏

i=t−m

πni]I(z2i ≤ xn,t−m−1)I(z2i ≤ xn,t+n+1). (18)

An illustration

Here we provide one illustration of the impact of ‘thickening’ the poverty lines in the

context of the Gradin et al. (2012) poverty measures. The four panels of Figure 2 show

the income profiles of an individual over three periods. According to the top left panel, the

individual is poor in periods 1 and 3 if poverty line z is used. On the top right panel, the

individual’s income in period 2 is lower enough to render him/her poor. Comparing the

poverty spells of the two top panels it turns out that: Stl := (1, 0, 1), while Str := (3, 3, 3)

(where ‘tl’ and ‘tr’ denote, respectively, the top left and the top right panels). Let

α = 1 in equation (6) and gγt be the (FGT) normalized poverty gap in period t. Then

ptlG = (gγ1 + gγ3 )(1
3
)β, ptrG = (

∑3
t=1 g

γ
t )(3

3
)β; and the difference between the two is:

∆ptopG ≡ ptrG − ptlG = 3−β[gγ2 (3)β + (gγ1 + gγ3 )(3β − 1β)]. (19)
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PLACE FIGURE 2 HERE

By contrast, the two bottom panels perform the same comparison but using a ‘thick’

poverty line, between z1 and z2, for period poverty identification, and z for the normalized

poverty gaps. Using πnt with the membership function proposed by Chakravarty (2006),

it turns out that: sblt = 2 + ( z2−x2
z2−z1 )θ ∀t = 1, 2, 3, while sbrt = 2 + ( z2−x2+ε

z2−z1 )θ ∀t = 1, 2, 3

(where ”bl” and ”br” denote, respectively, the bottom left and the bottom right panels,

and ε represents the drop in income on the right-half panels). Then pblG = 3−β∑3
t=1 g

γ
t (2+

[ z2−x2
z2−z1 ]θ)β, pbrG = 3−β∑3

t=1 g
γ
t (2 + [ z2−x2+ε

z2−z1 ]θ)β; and the difference between the two is:

∆pbotG ≡ pbrG − pblG = 3−β
3∑
t=1

gγt [(2 + [
z2 − x2 + ε

z2 − z1
]θ)β − (2 + [

z2 − x2
z2 − z1

]θ)β]. (20)

Comparing (19) against (20), it is clear that the impact of ε should be milder on ∆pbotG

than on ∆ptopG as long as: θ > 0, β ≥ 1, x2 − ε > z1 and z2 > x2. For instance, when

β = θ = 1, as in (21):

∆pbotG (β = θ = 1) =
ε

3(z2 − z1)

3∑
t=1

gγt <
2

3
(gγ1 + gγ3 ) + gγ2 = ∆ptopG (β = θ = 1). (21)

5 Empirical considerations

5.1 What kind of measurement error do we expect to encounter?

The existence of measurement error in income and consumption is of huge concern in many

areas of applied economics (Bound et al., 2001), and the consequences of measurement

error for econometric estimation are well documented. Many theoretical studies of the

consequences of measurement error tend to assume for convenience that measurement

error is ‘classical’, that is, with a mean of zero, and no correlation with the variable(s) of

interest (Bound et al., 2001). However, Ravallion (1994) showed that this may have little
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effect for static poverty measurement. Classical measurement error should not affect the

distribution of the variable. Ravallion shows that if random measurement error is added

to two distributions, one of which has higher poverty, then the measurement error should

not affect the mean, and the poverty ranking of households should not change. Our

analysis above shows that when multiple time periods are involved, then this may not be

the case.

What form does measurement error take? In the US, several studies have validated

earnings data, and found a high degree of measurement error; further, that the likely

form is in fact non-classical: mean-reverting, and serially correlated (Bound and Krueger,

1991; Pischke, 1995). Poverty studies in developing countries (especially outside Latin

America) have tended to focus on consumption as a measure of welfare. The rationale

is that consumption is likely less subject to systematic measurement error than income

or earnings, i.e. due to underreporting (Deaton and Grosh, 2000). Several studies in

developing countries have shown the importance of correcting for measurement error when

estimating e.g. mobility and poverty dynamics (Antman and McKenzie, 2007; Glewwe,

2007; Lee et al., 2016), however none to our knowledge have applied any methods of

measurement-error correction to duration-based chronic poverty measurement.

Given these concerns, how should the analyst choose the bounds for the ‘thick’ poverty

line? Traditional applications of the ‘totally fuzzy relative approach’ effectively give each

and every individual a non-zero value for the fuzzy poverty measure (Cheli and Lemmi,

1995). We do not proceed in this way, as otherwise we would lose some of the interesting

properties characterizing intertemporal poverty measurement (e.g. duration-sensitivity).

In an earlier contribution, Cerioli and Zani (1990) propose that a fuzzy poverty measure

(based on FGT) could have a subsistence poverty line, z, as the minimum bound, and

mean income as the maximum. For our purpose, we are interested in errors of inclusion

and exclusion brought about through measurement error. We therefore seek empirical

evidence on what the extent of measurement error is likely to be in a consumption survey.

There is relatively little information on the actual parameters of measurement error

in a developing country context - e.g. what on average do we expect the mean, variance
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and correlation with welfare to be? Beegle et al. (2012) recently conducted a randomized

control trial of consumption in the context of a household survey in Tanzania. The au-

thors compare several methods to elicit recall of food consumption. The benchmark is a

daily visit to the household with individual diary for each day. The method used by the

ERHS survey, 7-day recall at the household level, is also included. The results show that

the 7-day recall method is subject to underestimating the level of consumption, by ap-

proximately 20%. Using the same experiment, Gibson et al. (2015) also conclude through

regression analysis that measurement error is thus mean-reverting, given a negative cor-

relation between the true level of consumption and the amount of error, and substantial

(as shown by a higher variance of consumption relative to the benchmark).

Gibson et al. (2015) estimated regressions on alternative consumption data in order

to estimate parameters of the following equation:

x∗ = θ + λx+ v, (22)

with x∗ the error-ridden consumption, x true consumption. λ shows the correlation be-

tween true consumption and the error-ridden consumption. v is a random variable with

mean zero and variance σ2. Gibson et al. (2015) find that λ lies between 0.4 and 0.6,

and also that it is higher in rural than urban areas. The variance of the error-ridden

consumption is therefore lower than that of true consumption.

Given this information, we provide results varying the bandwidth of the thick poverty

line by 10, 20 and 30% of the original poverty line for a well-used Ethiopian household

dataset. First we conduct some illustrative simulations based on “true” consumption

data (artificially constructed) and then measurement error that is a) classical and b)

mean-reverting.

5.2 Simulations on synthetic data

We create a synthetic dataset of a panel of 1500 individuals, and six time periods, to mirror

that of the actual survey data used in the empirical section below. For convenience, we
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call the underlying wellbeing measure “consumption” Our first simple example is created

to fix ideas on movements around the poverty line. We examine a case where error-

free consumption stays constant over time, and therefore all movements observed in the

measured data are due to measurement error. Let households be allocated randomly

to either “high” or “low” consumption, of either 90 or 110 units, which stays constant

across all 6 periods. We draw the poverty line at 100. Given this setup, we can consider

how to set the fuzzy poverty lines - for example 10% of the poverty line is one standard

deviation of the error (by construction) and will therefore capture a large portion of the

measurement error. We then add measurement error to create the error-ridden wellbeing

measure. We first add classical measurement error such that θ = 0, λ = 1 in equation

(22) above, and v ∼ N(0, σ2
v). We set σv = 10.

For the Foster measures we set τ = 4 and vt = 1
T
∀t. In this construction we can easily

see that exactly half of the households are chronic poor (since they are always poor) and

half are not (never poor). This would also not change by varying the level of τ . In table 1,

we show the “true” headcount measure (50%). Taking 1000 draws from the measurement

error distribution, we calculate the average Foster headcount measures (crisp and fuzzy)

in the face of measurement error. The headcount of the crisp measure falls to 37%.

However, fuzzying the line at 10% above and below yields 44%, and fuzzying only (at

10%) above the line gives similar results to the “true” data. Looking at the aggregate

rate may not give the full picture in terms of targeting - the two averages could be quite

similar but comprise different individuals/households. Therefore in the second and third

columns of table 1 we show the proportion of exclusion and inclusion errors over the 1000

simulation draws. The crisp measure has quite a high 12% of exclusion errors which may

be worrying for policy. The fuzzy measure reduces this to 5.7%, and fuzzying only at

the upper bound almost eliminates exclusion errors completely. The price for this is 1%

inclusion errors - it would be a normative choice whether this is worth the tradeoff in

policy applications. Note that in this particular example the inclusion errors increase

as the bound is increased upward, so it is important not to set the bounds higher than

required. Adding mean reverting measurement error (θ = 40, λ = 0.6) causes the crisp
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measure to drop below half of that for the true data. The fuzzy measure again comes

closer to the true measure, especially when fuzzying only above the poverty line, though

the errors of inclusion do increase slightly more in this case. We also calculate the GDC

measure (with β = 1), and adding measurement error changes the crisp measure from 0.5

to 0.32. The fuzzy measures come closer to the true measure; especially when we fuzzy

only above the poverty line, in which case, the measures are almost identical.

PLACE TABLE 1 HERE

Our second synthetic example is more realistic based on empirical observations and

other studies in the literature. The “true” consumption measure x is lognormally dis-

tributed in period one, and in subsequent time periods welfare evolves through a mildly

autoregressive (and therefore converging) process, with a random disturbance (e.g. Fields,

2008; Burger et al., 2016). We write the evolution of true consumption x over time as:

xt = βxt−1 + uit. (23)

The mean of consumption in the first period is 1507 and we again set the poverty line

to 100 for convenience. Table 1 shows the results for the Foster measure (left hand

columns). We calculate the Foster measure for the true consumption data as 0.198.

Adding classical measurement error as above (N (0,10)) reduces the crisp measure to

0.14, with 5% exclusion errors. The fuzzy measures reduce this to 3% and 1% when

fuzzying above and below, and only above, respectively. The inclusion errors as before

are low, but do increase to just under 3% when we only fuzzy above z.

We then add mean-reverting measurement error (such that λ = 0.6) as in the first

example. This further reduces the Foster measure to 0.12, with a lower impact on the fuzzy

measure, to 0.15. As in the first example too, fuzzying only above the poverty line almost

eliminates errors of exclusion though inclusion errors are again higher -almost 4%. For the

GDC measures we also find that fuzzying only above the poverty line brings the measure

closer to that from the true distribution. The usefulness of these examples of course

7We set this higher than in the previous example as there is a greater variance in the consumption
outcomes, and we avoid the issue of negative values when measurement error is introduced.
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depends on how realistic the assumptions are around i) the underlying data generating

process of the consumption data and ii) the type and parameters of the measurement

error. We also present results below using real data to see how the results differ between

the fuzzy and crisp measures (though of course we do not know the true consumption in

this case).

5.3 Empirical application: Ethiopia

We explore the empirical implications of these generalizations using the Ethiopian Rural

Household Survey (ERHS). The ERHS is a well-known panel dataset from a developing

country that has been extensively used for poverty and mobility analysis (Baulch and

Hoddinott, 2000; Dercon and Shapiro, 2007; Dercon et al., 2012). The ERHS contains

data on just over 1100 households in 15 villages, observed at six points in time over a

fifteen year period, 1994 – 2009. The timing of the rounds is not even, with fieldwork in

1994, 1995, 1997, 1999 , 2004 and 2009.8 We use information on household consumption,

that households were asked to recall for the week prior to the survey, including food that

was home grown, bought at market, and received as a gift or benefit from government. In

this way, we can assume that any consumption smoothing that the household intended,

and was able to implement, would have been implemented. Below, we note the likely

measurement error that this method may incorporate.

The poverty line is village-specific, and represents the amount needed to consume just

over 2000 calories per day per adult equivalent, plus some very basic non-food items (such

as firewood to cook). It is thus an extremely austere poverty line, around one-third of the

commonly used “dollar a day” international poverty line. In each round we also deflated

consumption and the poverty line by a village-specific food price index based on prices

collected at the community level, and thus we construct a measure of consumption per

adult equivalent. For more details on this survey and the calculation of the, by now, quite

widely used consumption basket, see Dercon and Krishnan (1998). The poverty line is on

average 43 Ethiopian Birr (1994 prices) per adult equivalent in the household.

8Two rounds were actually fielded in 1994, but only six months apart, so we drop the second one.
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PLACE TABLE 2 HERE

Several authors have analysed wellbeing based on consumption measures in the ERHS,

including most recently Baulch (2011) and Dercon et al. (2012). Table 2 shows that cross

sectional, or ‘snapshot’, poverty fell in the study villages between 1994 and 2004, with the

headcount (P0) falling from just under 43% to just under 20%, but then the headcount

rate increased between 2004 and 2009 back to 35%. The other two measures, the average

poverty gap (P1) and the poverty severity index (P2), followed a similar trend.

Table 3 shows the tabulation of number of periods spent in poverty. Looking at house-

holds over time, there is a lot of movement in and out of poverty, and fewer than a third

of all households have never experienced any poverty at all. However, only 2% recorded

consumption below the poverty line in every visit over the ten-year period. Hence we

are faced with exactly the kind of exercise that was outlined in the theory section above.

Some households have longer periods in poverty, but do not fall very much below the

poverty line; some have fewer episodes of poverty but some of those are very severe.

PLACE TABLE 3 HERE

We now calculate the “fuzzy” poverty measures outlined above, the chronic poverty

measure of Foster (2009) and the intertemporal poverty measure of Gradin et al. (2012)

by taking an upper and lower bound around the poverty line.

Given the discussion above, we begin by setting the upper bound for the fuzzy set (z2)

at 10% above the poverty line, and symmetrically with the lower bound (i.e. z1 = 0.9z,

z2 = 1.1z,). We note that this means that πnt = 1 only if consumption is below the lower

bound poverty line z1, and πnt = 0 for consumption above the upper bound z2. Between

z1 and z2 πnt receives a value between zero and one. We choose the fuzzy membership

function proposed by Dombi (1990); we show results for alternative specifications based

on the proposal by Chakravarty (2006) (in Annex 6 below), and in fact the results do not
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change substantially.

How many households have recorded consumption levels that are between the upper

and lower bounds of the “thick” poverty lines as discussed above? To understand how

much impact the fuzzying of poverty identification will have, we note that 545 observations

(just under 8% of all observations) lie between z1 and z2 at +−10% fuzzy set. If we increase

the set to +−20% the number doubles, and at +−30% just over a fifth of the observations

(1373) are included. We conclude, then, that the fuzzy identification has the potential to

affect poverty measures that incorporate a strict cutoff.

We begin our analysis with the Foster measure, and considering vt = 1
T
∀t. For the

calculations, we note from table 4 that the measure depends crucially on the value of

choice parameter τ , i.e. the duration cutoff. If τ = 0.66, or 4/6 periods (those poor in 4

or more of the 6 periods are classified as poor), then 16.5% of the sample will be classified

as poor. If we increase the required number of periods in poverty to 5/6 for chronic

classification, then only 8% are defined as chronic poor. Recall that the other measures

in the Foster class of indices are calculated based on this identification step (duration,

poverty gap, squared poverty gap).

We also note that, for “crisp” poverty identification in our setting of discrete time pe-

riods (or rounds of survey data) defining those who are chronically poor if the deprivation

score is higher than or equal to 0.66 is empirically equivalent to chronic poverty identifi-

cation when the deprivation score is strictly above 0.5 (see table 4, “crisp” column). In

other words, in our setting, the members of the chronic poor set are the same whether

we defined them as having spent four or more periods in poverty or strictly more than

three periods in poverty. This is to be expected with “crisp” (i.e. non-fuzzied) measures.

However, as the results in table 4 show, the difference in the way τ is defined, can and

does matter when calculating fuzzy poverty measures.

PLACE TABLE 4 HERE

We illustrate the effect of increasing the bandwidth of the fuzzy line on the headcount
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(H and Hπ) and the duration-adjusted headcount measure (P and Pπ) in table 4. In the

first row, the first column shows the headcount, or proportion of households classified as

chronically poor, at 16.5%. Increasing the thick poverty line at 10% reduces this to 13.5%.

At 20% bandwidth, 12% of households are considered chronic poor, and at 30% bandwidth

11% of households are chronically poor. The second row incorporates the fuzzyness into

a duration cutoff based on a strict inequality, with τa = 0.5 (i.e. the deprivation score

has to be strictly higher than 0.5 to identify the household as chronically poor). In this

case, the proportion deemed chronically poor is increasing in the bandwidth of the thick

poverty line, classifying just over 20% of households as chronically poor for the highest of

our chosen illustrative bandwidths. The next two columns use the identification choices

mentioned above in order to calculate the corresponding duration-adjusted headcounts,

which behave similarly. The poverty measures with α = 1 and α = 2 also decrease

correspondingly, though to a lesser extent, since those gaps that are included through the

fuzzying are weighted lower than more extreme poverty.

We also discussed above that, under different scenarios, the Foster measure with

“crisp” poverty lines may overestimate, or underestimate, chronic poverty (vis-a-vis “fuzzy”

alternatives) in the presence of measurement error, when there are transitions of a small

amount above and below the poverty line that may be spurious due to measurement er-

ror. The simulations also showed that fuzzying with the poverty line as the lower bound

brought us closer to the “true” measures in the cases that we presented. We may therefore

wish to make a slightly different normative choice, which is to set the thick poverty line

at z as a minimum, and allow periods in which consumption is just above the poverty line

to still be considered poor. The assumption here would be that we care more about mea-

surement error that misclassifies a household just above the poverty line, rather than just

below it as we wish to penalise errors of exclusion more heavily than those of inclusion.

Table 7 in the Annex below shows headcount measures for all of our different assump-

tions. The last two rows consider the poverty line z as the lower bound. By design, this

would increase the poverty measures; e.g. the headcount from under 21% to just under

24%. The change may seem minor, but it could be important in terms of targeting. This
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reflects also the results from the simulation, that if we care most about exclusion errors,

then this would be an appropriate choice.

Next we show our calculation of the Gradin et al. “fuzzy measures”. In this case,

there is no second duration cutoff, due to the union approach to poverty membership.

However as outlined above, in calculating the individual poverty measure, each poverty

episode is weighted by the length of the “spell” to which it belongs (see equation (17)).

For simplicity, we again calculate only the headcount measure (i.e. γ = 0), and we use

values α = β = 1 to illustrate the change in the measure when we “thicken” the poverty

line.

Table 5 shows the results. As the bandwidth widens, the measure increases, by ap-

proximately 1% for every 10% of poverty-line widening. This increase is due to the net

lengthening in spell duration; e.g. the effect of periods being reclassified from 0 (in terms of

poverty status) to a non-zero amount on spell lengthening overtaking the spell-shortening

effect of periods being reclassified from 1 to a lesser amount (see equations (17) and (18)).

For the 10% bandwidth this represents a change for 448 of the people-year observations,

and for the 30% bandwidth the change affects 1369 people-year observations. (By con-

trast, in the case of Foster measure an increase in the headcount, or lack thereof, was

conditional upon the choice of the duration cutoff).

PLACE TABLE 5 HERE

Our results show some material differences between the crisp and fuzzy measures

as calculated. Does this matter in practice in terms of rankings of households in the

distribution? In the annex, table 9 and 10 rank the 15 villages in the survey by poverty

first with the crisp measure, then the fuzzy. Interestingly, but perhaps also expected, we

found that rankings are altered in the middle of the rank distribution. This seems to make

sense if we consider that the top and bottom ranks are made of villages hosting higher

proportions of households which either spend most periods safely out of poverty, i.e. away

from the poverty line, or spend most periods with very low consumption levels. In other

words, households whose membership functions and poverty measures are less likely to

be affected by the fuzzying vis-a-vis households which spend more time nearer the fuzzy-
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line region. We looked at large vs small households, given the findings of Caeyers et al.

(2012), who found that measurement error was likely higher for larger households, when

comparing paper surveys with computer-based surveys that corrected for inconsistencies.

The ranking does not change, but the difference between the fuzzy and crisp measures is

higher for the larger households as shown in table 6.

PLACE TABLE 6 HERE

The magnitude of change for the fuzzy measures is of course proportional to the

bandwidth, and the choice of this we would see as a pragmatic issue, depending on

the perceived level of measurement error. We replicated our results using alternative

definitions of the fuzzy set, and they are not substantially different. Finally, one may be

concerned with errors of exclusion, rather than inclusion in the case of poverty targeting;

in which case, we would recommend setting the lower bound of the thick poverty line to

the original poverty line, and creating a bandwidth above it.

6 Conclusions

This paper presents an empirical adjustment for some increasingly used chronic or in-

tertemporal poverty measures which show desirable normative properties, yet may be

excessively sensitive to measurement error, due to the discontinuities inherent in their

calculation. The adjustment is fairly simple and empirically practical. Moreover, de-

pending on the policy concern (e.g. errors of exclusion), it can bear conceptual and/or

practical advantages vis-a-vis alternative possible adjustments (e.g. changing duration

cutoffs). Drawing on fuzzy set theory, we construct a ‘thick’ poverty line that enters into

the poverty identification step of the poverty measures in each and every time period.

This thickening of the poverty line allows us to remove some of the discontinuities in the

measures, thus rendering the measures less sensitive to measurement error, and without

affecting any of their other properties.

The empirical section presents some simple simulations, and empirical results for data

on rural Ethiopia, showing that, in this case, the choice of functional form for the fuzzy

poverty identification method is less important than the size of the bandwidth (i.e. the
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poverty line’s ‘thickness’). In our simulations, the fuzzy adjustment around the poverty

line shows that both measures by Foster (2009) and Gradin et al. (2012) may underesti-

mate intertemporal poverty (as defined by each measure respectively) in the presence of

measurement error. It is possible that, with a longer time series, the potential for mea-

surement error to affect the results would be greater. The poverty analyst should make

choices on these sensitivity tests based on the appropriate objectives of the measurement

exercise (e.g. if there is higher concern over exclusion errors vis-a-vis others). We hope

that our proposed adjustment method adds to the toolkit suitable for these purposes.

The proposed adjustment focused on two classes of intertemporal poverty measures.

We chose those two classes for two reasons, in addition to limited space: (1) they illustrate

important traits of intertemporal poverty measurement with clarity (identification of the

chronically poor in the case of Foster (2009), sensitivity to duration of contiguous spells

in the case of Gradin et al., 2012), and (2) their discontinuities may render them highly

sensitive to measurement error. However the adjustment could also be implemented

in other equally insightful classes of measures. For example, some classes of measures

axiomatically justify differential weighting of poverty spells according to their timing

in households’, or individuals’, lifetimes (e.g. Hoy and Zheng, 2011; Hoy et al., 2012),

e.g. prioritising spells experienced earlier in life. Likewise, classes of measures where

spells outside poverty count toward mitigating the effects of poverty spells could also be

considered (Dutta et al., 2013).9

9We thank an anonymous referee for this suggestion.
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Tables

Table 1: Simulations: Constant wellbeing and lognormal autoregressive consumption
Foster-H0 Exclusion errors Inclusion errors GDC-0

Crisp - true consumption 0.500 0.198 . . . . 0.500 0.187
Classical M.E.
Crisp 0.377 0.148 0.123 0.055 0.000 0.005 0.326 0.145
Fuzzy (0.9, 1.1) 0.443 0.170 0.057 0.036 0.000 0.008 0.429 0.179
Fuzzy (1, 1.1) 0.503 0.211 0.008 0.013 0.012 0.026 0.505 0.204
Mean-Reverting M.E.
Crisp 0.241 0.121 0.263 0.083 0.003 0.006 0.249 0.122
Fuzzy (0.9, 1.1) 0.322 0.149 0.183 0.058 0.005 0.010 0.394 0.171
Fuzzy (1, 1.1) 0.521 0.215 0.044 0.020 0.065 0.038 0.506 0.208

N 1500

Notes: Left hand columns refer to the “constant wellbeing” simulation results, right hand columns in
italics refer to the lognormal autoregressive simulation results.

Table 2: FGT Poverty, by year
Year P0 P1 P2

1994 0.346 0.140 0.078
1995 0.378 0.151 0.081
1997 0.213 0.067 0.031
1999 0.232 0.073 0.033
2004 0.199 0.066 0.031
2009 0.347 0.127 0.064

N 1136

35



Table 3: Number of periods in poverty

Item Number Per cent
Never Poor 343 30.19
Once 264 23.24
Twice 194 17.08
Three times 147 12.94
Four times 107 9.42
Five times 59 5.19
In every period 22 1.94
Total 1,136 100
Source: ERHS Data

Table 4: Fuzzy Foster measures

Measure Crisp Fuzzy 10 Fuzzy 20 Fuzzy 30
Headcount
τ = 0.67 .165 .137 .118 .108
τa = 0.5 .165 .189 .196 .203
Duration-adjusted Headcount
τ = 0.67 .125 .106 .093 .086
τa = 0.5 .125 .136 .139 .142
Poverty Gap
τ = 0.67 .053 .054 .054 .055
τa = 0.5 .075 .076 .077 .079
Squared Poverty Gap
τ = 0.67 .029 .03 .03 .03
τa = 0.5 .041 .041 .042 .042

N 1136
Notes: Fuzzy poverty defined as the S-shaped membership function (Dombi, 1990), with fuzzying above

and below the poverty line at 10, 20, 30 percent respectively. The difference between the two τ is that

in the first case, we set τ ≥ 4 periods. In the second case, τ > 3. This does not change the crisp

measure, but allows the fuzzying to take effect above and below τ . See text for further discussion.

Table 5: GDC Headcount measures (s-convex)

Variable β = 1 β = 0.5
Crisp 0.108 0.168
Fuzzy 10 percent 0.115 0.173
Fuzzy 20 percent 0.123 0.178
Fuzzy 30 percent 0.132 0.185

N 1136
Gradin et al (2012) measures (GDC). The thick poverty line is defined as in table 4.
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Table 6: Example: Measure differences by Household Size
Small HH Large HH

Foster Crisp 0.113 0.237
Foster Fuzzy 0.122 0.255

GDC Crisp 0.079 0.147
GDC Fuzzy 0.116 0.207

Notes: Fuzzy measures are calculated at 30% bandwidth, τ = 0.67. Large household is defined as

having greater than 5 members. Measures calculated as in table 4.
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FIGURES

Figure 1: Fuzzy identification of deprivation status in period t (Dombi, 1990)
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Figure 2: Fuzzy poverty spells
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SUPPLEMENTARY INFORMATION

Annex 1: Alternative membership functions

Figure 3: Fuzzy identification of deprivation status in period t (Chakravarty, 2006)
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Annex 2: Additional Tables based on alternative as-

sumptions for the membership function

Table 7: Poverty headcounts, Foster measures, alternative membership function

Variable Mean Std. Dev.
Crisp 0.216 0.412
Fuzzy(10%), θ = 1) 0.181 0.385
Fuzzy(20%), θ = 1) 0.154 0.361
Fuzzy(30%), θ = 1) 0.142 0.349
Fuzzy(10%), θ = 0.5) 0.185 0.388
Fuzzy(20%), θ = 0.5) 0.168 0.374
Fuzzy(30%), θ = 0.5) 0.165 0.371
Fuzzy (z=min, +20%), θ = 1) 0.229 0.42
Fuzzy (z=min, +20%), θ = 0.5) 0.237 0.426

N 1136
Notes: As in the main tables, Fuzzy 10% means that the upper bound of the “thick” poverty line is at

1.1z and the lower bound at 0.9z, similarly with 20 and 30% respectively. θ is the parameter referred to

in figure 4, for the fuzzy membership function as proposed by Dombi (1990). The bottom two lines

include the poverty line z as the lower bound of the thick poverty line, with the upper bound set at

1.2z.

Table 8: GDC measures, alternative membership function

Variable Mean Std. Dev.
Fuzzy(10%), θ = 1) 0.115 0.184
Fuzzy(20%), θ = 1) 0.122 0.191
Fuzzy(30%), θ = 1) 0.131 0.199
Fuzzy(10%), θ = 0.5) 0.119 0.187
Fuzzy(20%), θ = 0.5) 0.131 0.198
Fuzzy(30%), θ = 0.5) 0.146 0.211

N 1136
Notes: As in the main tables, Fuzzy 10% means that the upper bound of the “thick” poverty line is at

1.1z and the lower bound at 0.9z, similarly with 20 and 30% respectively. θ is the parameter referred to

in figure 4, for the fuzzy membership function as proposed by Dombi (1990).
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Table 9: ERHS Village rankings: Foster measure
Foster RANK-F F-30 RANK F-30

Doma 0.694 1 0.600 1
Geblen 0.607 2 0.411 2

Dinki 0.327 3 0.250 3
Imdibir 0.246 4 0.158 4

Dinki 0.222 5 0.139 5
Adado 0.164 6 0.073 6

Gara Godo 0.156 7 0.052 8
Haresaw 0.130 8 0.072 7

Korodegaga 0.096 9 0.012 11
Trurufe Kechemene 0.063 10 0.025 9

Yetmen 0.021 11 0.000 12
Debre Birhan 0.019 12 0.000 12

Adele Keke 0.013 13 0.013 10
Shumsha 0.000 14 0.000 12

Sirbana Godeti 0.000 14 0.000 12
Notes: Foster measures calculated as in tables above. Rank refers to the village ranking in terms of the

amount of poverty as per the measure. Fuzzy measure is calculated with 30% bandwidth.

Table 10: ERHS Village rankings: GDC measure
GDC Rank-GDC GDC-30 Rank GDC-30

Gara Godo 0.383 1 0.443 1
Geblen 0.251 2 0.305 2
Doma 0.205 3 0.248 3
Dinki 0.157 4 0.197 5

Imdibir 0.151 5 0.217 4
Aze Deboa 0.111 6 0.123 8

Korodegaga 0.110 7 0.140 6
Adado 0.110 8 0.129 7

Haresaw 0.095 9 0.115 9
Adele Keke 0.049 10 0.063 11

Trurufe Ketchema 0.047 11 0.064 10
Debre Birhan 0.033 12 0.038 12

Yetmen 0.026 13 0.034 13
Shumsha 0.012 14 0.017 14

Sirbana Godeti 0.005 15 0.007 15

Notes: GDC measures calculated as in tables above. Rank refers to the village ranking in terms of the

amount of poverty as per the measure. Fuzzy measure is calculated with 30% bandwidth.
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