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Abstract

This paper models and predicts the term structure of US interest rates in a data rich en-
vironment. We allow the model dimension and parameters to change over time, accounting
for model uncertainty and sudden structural changes. The proposed time-varying param-
eter Nelson-Siegel Dynamic Model Averaging (DMA) predicts yields better than standard
benchmarks. DMA performs better since it incorporates more macro-finance information
during recessions. The proposed method allows us to estimate plausible real-time term
premia, whose countercyclicality weakened during the financial crisis.
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1 Introduction

Modeling the term structure of interest rates using risk factors is a vast and expanding re-
search frontier in financial economics; see Piazzesi (2010), Gürkaynak and Wright (2012),
Duffee (2013) and Diebold and Rudebusch (2013) for extensive reviews. Three pricing
factors can capture most of the variation in bond yield data, as indicated in Nelson and
Siegel (1987) and Litterman and Scheinkman (1991). Diebold and Li (2006) propose a
dynamic Nelson-Siegel (NS) model and successfully predict the yield curve. Our paper
builds upon previous work and proposes a term structure model with the ensemble of
several salient features. Firstly, to fully capture the factor dynamics, both parameter in-
stability and stochastic volatility in a large system are taken into account. We utilize the
dynamic Nelson-Siegel setup with time-varying parameters following Bianchi, Mumtaz
and Surico (2009).1 Our time-varying macro-finance model builds upon a large vector
autoregressive (VAR) system with macroeconomic and financial factors in the spirit of
Carriero, Kapetanios and Marcellino (2012) and Coroneo, Giannone and Modugno (2015).
By extending Koop and Korobilis (2013) a Bayesian method is developed that allows a
fast estimation of large systems with many variables.

Secondly, in a reduced-form representation we incorporate financial information in
addition to traditional macro variables. Ang and Piazzesi (2003) introduce inflation and
the output gap to augment the term structure model and show that macro factors can
explain large variation in bond yields. This evidence is echoed by other researchers such
as Diebold, Rudebusch and Aruoba (2006), who also stress the importance of key macro
variables for the yield curve. Moreover, Moench (2008) shows that a term structure model
augmented with a broad macro-finance information set can provide superior forecasts, and
the global financial crisis, as an abrupt nonlinear shock, highlighted the importance of
the financial market for macroeconomic activity and bond yields more generally. In this
paper, we incorporate a substantial range of macro-finance risk factors with modeling
techniques that distill large datasets.

Lastly, the proposed model accommodates different degrees of structural changes. Fol-
lowing Koop and Korobilis (2012) we employ Dynamic Model Averaging (DMA) methods
in order to determine in a data-based way which macroeconomic or financial risks are
relevant for the yield curve.2 We can choose, at different points in time, between three
models: i) one with three pricing factors only; ii) pricing factors plus three key macroe-
conomic indicators; and iii) pricing factors augmented using up to 15 macro and financial

1The term structure model is also similar to Van Dijk et al. (2014), where they show drifting param-
eters are helpful in improving forecast performance.

2Bayesian model averaging accounts for model uncertainty, see Bauer (2016) for the implementation
in a static setup.
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factors. The third macro-finance model is like a ‘kitchen sink’ model which fully accounts
for, and extends, the point of Dewachter and Iania (2012) and Dewachter, Iania and Lyrio
(2014) in that financial factors are important for modeling yields, whilst allowing for much
more information to be incorporated in the spirit of Ludvigson and Ng (2009). Using
DMA probabilities are assigned to each of the models at each point in time and thus
averaging is dynamically implemented. When compared with alternative time-varying
parameter models, this method is more robust as it encompasses moderate to sudden
changes in economic conditions. DMA allows agents to flexibly shift to a more plausible
model specification over time, and Elliott and Timmermann (2008) indicate this method
can reduce the total forecast risk associated with using only a single ‘best’ model.

We empirically examine U.S. term structure dynamics using monthly observations
from 1971 to 2013. The proposed approach has useful empirical properties in yield
forecasting, as it considers parameter and model uncertainty and is robust to poten-
tial structural breaks. We compare the forecast performance of DMA to a basic dynamic
Nelson-Siegel model and several variants, and show that gains in predictability are due
to the ensemble of salient features – time-varying coefficients, stochastic volatility and
dynamic model averaging. We find that the predictability of term structure models is
time-varying and tends to be procyclical, and macro-finance information is important dur-
ing recessions. The superior out-of-sample forecasting performance of DMA, especially
for short rates, reveals plausible expectations of market participants in real time, and
the indicators of real activity and the stock market are particularly helpful in explaining
the movements.3 Using only conditional information, DMA provides successful term pre-
mium alternatives to full-sample estimates produced by the no-arbitrage term structure
models of Kim and Wright (2005), Wright (2011) and Bauer, Rudebusch and Wu (2014).
The estimated term premia has a significant countercyclical pattern, but it appears this
pattern is weakened in the global financial crisis possibly because of ‘flight-to-quality’
demand for US bonds.

This paper is structured as follows. Section 2 describes the framework and the es-
timation method for modeling bond yield dynamics. Section 3 describes the data and
discusses the results. Specifically, the first two subsections test the parameter instability
and elaborate on the usefulness of employing DMA. Section 3.3 displays the point and
density forecasting performance of our term structure model. Section 3.4 presents that the
evidence of time-varying predictability and reveals important macro-finance sources that
drive the bond yields. Section 3.5 shows the model-implied term premia has informative

3This is consistent with Kurmann and Otrok (2013) and Bansal, Connolly and Stivers (2014), who
relate the changes in the term structure to news shocks on total factor productivity and asset-class risk,
respectively.

3



economic implications. Section 4 concludes.

2 Methods

2.1 The Cross-Sectional Restrictions

Following Nelson and Siegel (1987) and Diebold and Li (2006) we assume that three
factors summarize most of the information in the term structure of interest rates. The
Nelson and Siegel (1987) (NS) approach has an appealing structure that is parsimonious,
flexible, and allows for an easy interpretation of the estimated factors. Let yt (τ) denote
yields at maturity τ , then the factor model we use is of the form:4

yt (τ) = LNSt + 1− e−τλNS

τλNS
SNSt +

(
1− e−τλNS

τλNS
− e−τλNS

)
CNS
t + εt (τ) , (2.1)

where LNSt is the “Level” factor, SNSt is the “Slope” factor, CNS
t is the “Curvature” factor

and εt(τ) is the error term. In the formulation above, λNS is a parameter that controls
the shapes of loadings for the NS factors; following Diebold and Li (2006) and Bianchi,
Mumtaz and Surico (2009), we set λNS = 0.0609. For estimation purposes, we can rewrite
the equation (2.1) in the equivalent compact form,

yt(τ) = B(τ)FNS
t + εt(τ),

where FNS
t =

[
LNSt , SNSt , CNS

t

]′
is the vector of three NS factors, B(τ) is the loading

vector and εt(τ) is the error term.
The above Nelson-Siegel restrictions on loadings are cross-sectional restrictions. Fe-

unou et al. (2014) show that the NS model is the continuous time limit of their near
arbitrage-free class with a unit root in the pricing dynamics. In light of their findings, we
specify the cross-sectional loadings with NS restrictions and focus on time-series variation
of yield factors, in order to improve the forecast performance.5

The time series or physical dynamics of factors are augmented with macro-finance
information in an unrestricted VAR. In this setup, the macro variables only affect the
unobserved NS factors and do not interact contemporaneously with the observed yields,
so that they are unspanned by the yields. In other words, a ‘knife-edge’ restriction is

4This is an asymptotically flat approximating function, and Siegel and Nelson (1988) demonstrate
that this property is appropriate if forward rates have finite limiting values.

5Joslin, Singleton and Zhu (2011) show that no-arbitrage cross-sectional restrictions cannot improve
out-of-sample forecasts in the context of canonical Gaussian affine term structure models. We test the
robustness of core results to the no-arbitrage restrictions in Appendix C.3.
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imposed on the coefficients of macro variables in the cross section, while the time-series
dynamics are left unconstrained, see Joslin, Priebsch and Singleton (2014) for details.

2.2 Yield Factor Dynamics

In the first step, we use a simple ordinary least squares (OLS) to extract three NS factors.
We assume these factors are observed without errors, which is a standard assumption in
term structure modeling. The interpretation of the Nelson-Siegel factors is of consider-
able empirical importance. The Level factor LNSt loads on all maturities evenly. The
Slope factor SNSt approximates the long-short spread, and its movements are captured by
placing more weights on shorter maturities. The Curvature factor CNS

t captures changes
that have their largest impact on medium-term maturities, and therefore medium-term
maturities load more heavily on this factor. In particular, using the setting λNS = 0.0609,
the CNS

t has the largest impact on the bond at 30-month maturity, see Diebold and Li
(2006).6

An important and novel aspect of our methodology is in modeling the factor dynamics
in the second step. Following Bianchi, Mumtaz and Surico (2009), the extracted Nelson-
Siegel factors augmented with macroeconomic variables follow a time-varying parameter
vector autoregression (TVP-VAR) of order p of the form

F
NS
t

Mt

 = ct +B1t

F
NS
t−1

Mt−1

+ · · ·+Bpt

F
NS
t−p

Mt−p

+ vt, (2.2)

where ct are time-varying intercepts, B1t, ..., Bpt are time-varying autoregressive coeffi-
cients, Mt is a vector of macro-finance risk factors, and vt is the error term. Following
Coroneo, Giannone and Modugno (2015) and Joslin, Priebsch and Singleton (2014), we
do not impose any restrictions on the above VAR system.

For the purpose of econometric estimation, we work with a more compact form of Eq.
(2.2). We can show that the p-lag TVP-VAR can be written as

zt = Xtβt + vt, (2.3)

where zt =
[
LNSt , SNSt , CNS

t ,M ′
t

]′
, Mt is a q×1 vector of macro-finance factors, Xt = In⊗[

z′t−1, ..., z
′
t−p

]
for n = q+3, βt =

[
ct, vec (B1t)′ , · · · , vec (Bpt)′

]′
is a vector summarizing all

VAR coefficients, vt ∼ N (0,Σt) with Σt an n×n covariance matrix. This regression-type
equation is completed by describing the law of motion of the time-varying parameters βt

6Further discussion of these factors can be found in Appendix B.
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and Σt. For βt we follow the standard practice in the literature from Bianchi, Mumtaz
and Surico (2009) and consider random walk evolution for the VAR coefficients,

βt+1 = βt + µt, (2.4)

based upon a prior β0 discussed below, and µt ∼ N (0, Qt). Following Koop and Korobilis
(2013) we set Qt = (Λ−1 − 1) cov (βt−1|Dt−1) where Dt−1 denotes all the available data
at time t− 1 and scalar Λ ∈ (0, 1] is a ‘forgetting factor’ discounting older observations.

The covariance matrix Σt evolves according to a Wishart matrix discount process
(Prado and West (2010)) of the form:

Σt ∼ iW (St, nt) , (2.5)

nt = δnt−1 + 1, (2.6)

St = δSt−1 + f
(
v

′

tvt
)
, (2.7)

where nt and St are the degrees of freedom and scale matrix, respectively, of the inverse
Wishart distribution, δ is a ‘decay factor’ discounting older observations, and f

(
v

′
tvt
)
is

a specific function of the squared residuals of our model and explained in the Appendix
A.1.

Therefore, we have specified a VAR with drifting coefficients and stochastic volatility
which allows for model structural instability and regime changes in the joint dynamics
of the NS factors and the macroeconomic and financial factors. In Bayesian inference if
Markov Chain Monte Carlo is employed, it will be computationally demanding especially
in a recursive forecasting context. Here we extend the methodology of Koop and Korobilis
(2013) and conduct a fast estimation scheme to provide accurate results while largely
speeding up the estimation procedure. We use what is known as a ‘forgetting factor’
or ‘decay factor’ to discount the previous information when updating the parameter
estimates; detailed information of our empirical methodology can be found in Appendix
A.1.

2.3 Model Selection

2.3.1 Uncertainty about Macro-Finance Factors

This paper argues that the possible set of risk factors relevant for characterizing the yield
curve can change over time. We are faced, therefore, with multiple potential yield curve
models. Hence, we focus on Eq. (2.3) and work with three different model specifications:
small, medium, and large. The small-size (NS) model only contains the three yield factors
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extracted from the Nelson-Siegel model and zero macro variable, therefore q = 0 in Eq.
(2.3). The middle-size (NS + macro) model includes, in addition to the Nelson-Siegel
factors, Federal Fund Rate, CPI and Industrial Production, so q = 3. The large (NS +
macro-finance) model includes q = 15 macroeconomic and financial variables.

Having three modelsM(i) = 1, 2, 3, in our model space, we use the recursive nature
of the Kalman filter to choose among different models at each point in time. That is, for
each t we chose the optimalM(i) which maximizes the probability/weight

π
(i)
t = f

(
MTRUE

t−1 =M(i)|Dt−1
)

under the regularity conditions ∑K
i=1 π

i
t = 1 and πit ∈ [0, 1], and where MTRUE

t−1 is the
‘true’ model at time t−1. We estimate these model weights in a recursive manner, in the
spirit of the Kalman filtering approach. We follow Koop and Korobilis (2013) and define
the updating step

π
(i)
t|t ∝ π

(i)
t|t−1p

(i) (zt|Dt−1) . (2.8)

where the quantity p(i) (zt|Dt−1) is the time t predictive likelihood of model i, using
information up to time t−1. This quantity is readily available from the Kalman filter and
it provides an out-of-sample measure of fit for each model which allows us to construct
model probabilities. In this paper we focus on the predictive likelihoods of the three
Nelson-Siegel factors when implementing DMA. The time t prior π(i)

t|t−1 is given by

π
(i)
t|t−1 =

(
π

(i)
t−1|t−1

)α
∑K
i=1

[(
π

(i)
t−1|t−1

)α] (2.9)

where 0 < α ≤ 1 is a decay factor which allows discounting exponentially past forecasting
performance, see Koop and Korobilis (2013) for more information. When α→ 0 we have
the case that at each point in time we update our beliefs with a prior of equal weights
for each model. When α = 1 the predictive likelihood of each observation has the same
weight which is basically equivalent to recursively implementing static Bayesian Model
Averaging. For all other values between (0, 1) Dynamic Model Averaging occurs. In this
paper a sufficiently small value is used for α such that the time t prior is flat, and we will
show later this can capture the changing economic conditions and increase the predictive
performance.
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2.3.2 Prior Selection

We define a Minnesota prior for our VAR, which provides shrinkage that could prevent
overfitting of our larger models. This prior is of the form β0 ∼ N

(
0, V MIN

)
where V MIN

is a diagonal matrix with element V MIN
i given by

V MIN
i =

γ/r
2, for coefficients on lag r where r = 1, ..., p

α, for the intercept
, (2.10)

where p is the lag length and α = 1. The prior covariance matrix controls the degree of
shrinkage on the VAR coefficients. To be more specific, the larger the prior parameter
γ is, the more flexible the estimated coefficients are and, hence, the lower the inten-
sity of shrinkage towards zero. As the degree of the shrinkage can directly affect the
forecasting results, we allow for a wide grid for the reasonable candidate values of γ:
[10−10, 10−6, 0.001, 0.005, 0.01, 0.05, 0.1]. The best prior γ is selected dynamically accord-
ing to the forecasting accuracy each value in the grid generates. That is, following Koop
and Korobilis (2013) we select γ for each of the three models M (i) = 1, 2, 3 and for each
time period. Details of this Dynamic Prior Selection (DPS) procedure can also be found
in the Appendix A.2.

In this paper we also need to calibrate some other free parameters: the NS factor pa-
rameter λNS in Eq. (2.1), the forgetting factor Λ in Eq. (A.3), and the decay factor δ in
Eq. (A.2).7 Regarding the forgetting factor and the decay factor, we follow recommenda-
tions in Koop and Korobilis (2013). Intuitively, these parameters control the discounting
of past information, which occurs at an exponential rate. When these parameters are
equal to one, the model becomes a constant parameter model. Values smaller than one
discount past data at a faster rate, allowing faster switches of model parameters. How-
ever, too small values may induce sudden changes to outliers, so the state space system
is not stable and the results will not be reliable. Hence, following Koop and Korobilis
(2013), we choose relatively high values (but less than one) to ensure stability while still
allowing for flexibility: The Λ and δ are set to 0.99 and 0.95, respectively.

3 Data and Results

This study uses the smoothed yields provided from the US Federal Reserve by Gürkaynak,
Sack and Wright (2007). We also include 3- and 6-month Treasury Bills (Secondary

7Following Diebold and Li (2006), Bianchi, Mumtaz and Surico (2009) and Van Dijk et al. (2014) we
set λNS = 0.0609.
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Market Rate). The empirical analysis focuses on yields with maturities of 3, 6, 12,
24, 36, 48, 60, 72, 84, 96, 108 and 120 months. The key macroeconomic and financial
variables that enter our Dynamic Model Averaging model are obtained from St. Louis
Federal Reserve Economic Data (FRED). These include inflation, real activity indicators,
monetary policy tools, as well as the stock market, exchange rate, house prices and other
financial market indicators; the details can be found in Data Appendix. The full sample is
from November 1971 to November 2013 and we use end of the month yield data. The 1, 3,
6 and 12 months ahead predictions are produced with a training sample of 38 observations
from the start of our sample, up to and including December 1974. We present the yields’
descriptive statistics in Table 1. As expected the mean of yields increase with maturity,
consistent with the existence of a risk premium for long maturities. Yields have high
autocorrelation which declines with lag length and increases with maturity. The short
end of the yield curve is more volatile than the long end.

Different numbers of macro-finance variables are selected for the three VARs entering
our DMA. As mentioned above, the small-size VAR (NS) does not include any macro or
financial variables, but only the Nelson-Siegel factors. The middle-size VAR (i.e. NS +
macro) includes Federal Fund Rate, inflation and Industrial Production, which are also
used in related literature such as Ang and Piazzesi (2003) and Diebold, Rudebusch and
Aruoba (2006). The large VAR (i.e. NS + macro-finance) includes all 15 macro and
financial variables, which should comprehensively include the information the market
players are able to acquire.

3.1 Evidence on Parameter Instability

In this section we seek to validate the use of time-varying parameter methods. There
is a vast selection of different tests of parameter instability and structural breaks in the
literature from both a frequentist and a Bayesian perspective; see for example, Andrews
and Ploberger (1994), Hanson (2002) and Rossi (2005). McCulloch (2007) suggests a
likelihood-based approach to test parameter instability in a TVP model. The limiting
distribution of the test statistics may not be standard and, consequently, its critical values
need to be bootstrapped. In the spirit of McCulloch (2007), we construct a likelihood-
based test on the small VAR system of the factor dynamics, using the 1983-2013 sample.
We bootstrap 5000 samples to recover the test statistics following Feng and McCulloch
(1996). Based on our test, the null hypothesis that the coefficients of the VAR are
constant over time is rejected at 1% significance level, which means employing the TVP-
VAR model is appropriate.

However, all the tests mentioned above are in-sample tests and fail to provide evidence
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Table 1: Descriptive Statistics of Bond Yields

Mean Std. Dev. Minimum Maximum ρ̂(1) ρ̂(12) ρ̂(30)

3 5.154 3.341 0.010 16.300 0.987 0.815 0.533

6 5.284 3.320 0.040 15.520 0.988 0.827 0.557

12 5.675 3.440 0.123 16.110 0.987 0.842 0.599

24 5.910 3.355 0.188 15.782 0.988 0.858 0.648

36 6.102 3.259 0.306 15.575 0.989 0.868 0.677

48 6.266 3.161 0.454 15.350 0.990 0.873 0.695

60 6.411 3.067 0.627 15.178 0.990 0.876 0.707

72 6.539 2.980 0.815 15.061 0.990 0.877 0.714

84 6.653 2.902 1.007 14.987 0.990 0.878 0.718

96 6.754 2.833 1.197 14.940 0.990 0.878 0.721

108 6.843 2.772 1.380 14.911 0.990 0.878 0.722

120 6.920 2.720 1.552 14.892 0.990 0.877 0.723

Level 7.437 2.379 2.631 14.347 0.989 0.866 0.700

Slope -2.277 1.940 -5.824 4.522 0.954 0.492 -0.114

Curvature -1.424 3.222 -8.948 5.282 0.903 0.634 0.369

Notes: This table presents descriptive statistics for monthly yields at 3- to 120-month maturity, and for the yield curve
Level, Slope and Curvature factors extracted from the Nelson-Siegel model. The sample period is 1971:11–2013:11. We
use following abbreviations. Std. Dev.: Standard Deviation; ρ̂(k): Sample Autocorrelation for Lag k.

concerning out-of-sample instability. Therefore, instead of explicitly specifying a test of
parameter instability we follow a different strategy. First, note that in the case of our
model specified in Section 2, the constant parameter Nelson-Siegel model can be obtained
as a special case of our proposed time-varying specification, that it is nested.8 Since our
ultimate purpose is to obtain optimal forecasts of the yield curve, “testing” for parameter
instability can conveniently boil down to a comparison of predictability between the
TVP-VAR and a constant parameter VAR. We employ the test proposed by Diebold and
Mariano (1995) and evaluate the predictability of competing models across four forecast
horizons (h = 1, 3, 6, 12 months) and at all twelve of our maturities. The p-values of the
tests are reported in Table 2, which correspond to the test of the null hypothesis that
the competing TVP-VAR model has equal expected square prediction error relative to
the benchmark forecasting model constant parameter VAR (i.e. Diebold and Li (2006)),
against the alternative hypothesis that the competing TVP-VAR forecasting model has
a lower expected square prediction error than the benchmark forecasting model. Table
2 indicates the TVP-VAR consistently outperforms the constant parameter VAR. The

8In particular, as Koop and Korobilis (2013) show, by setting the forgetting and decay factors Λ =
δ = 1, our model is equivalent to the recursive estimation of a model with constant parameters and
volatility.
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test statistic rejects the null for most of the maturities, and especially at longer forecast
horizons, so the time-varying parameter model should be preferred as it can provide more
robust estimates.

Table 2: Parameter Instability Test

P-Values: TVP-VAR vs. VAR

Maturity 3 6 12 24 36 48 60 72 84 96 108 120

h = 1 0.02 0.00 0.54 0.14 0.02 0.00 0.00 0.00 0.01 0.08 0.33 0.68

h = 3 0.03 0.01 0.13 0.04 0.01 0.01 0.00 0.01 0.02 0.05 0.13 0.28

h = 6 0.00 0.00 0.04 0.02 0.01 0.01 0.01 0.01 0.02 0.04 0.08 0.16

h = 12 0.00 0.00 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.03

Notes: 1. This table reports the statistical significance for the relative forecasting performance, based
on the Diebold and Mariano (1995) test. We conduct 1, 3, 9 and 12 months ahead forecasts for bond
yields at maturities ranging from 3 months to 120 months. The predictive period is between 1983:10
and 2013:11.
2. Statistical significance for the relative MSFE statistics is based on the p-value for the Diebold and
Mariano (1995) statistic; the statistic corresponds to the test of the null hypothesis that the competing
TVP-VAR model has equal expected square prediction error relative to the benchmark forecasting
model constant parameter VAR (i.e. Diebold and Li (2006)), against the alternative hypothesis that
the competing forecasting model has a lower expected square prediction error than the benchmark
forecasting model.

To highlight the importance of the TVP feature, we set out the persistence of the
time-varying physical factor dynamics of the small-size VAR in Figure 1. This can be ex-
amined by considering the behavior of the eigenvalues. We can detect significant changes
in all eigenvalues, which reflects indispensable changes in the persistence of pricing fac-
tors over time. The first eigenvalue seem relatively stable, but the mild variation in the
eigenvalue would translate into sufficiently large changes in long-term expectations. An-
other observation is the clear rising trend for the third eigenvalue, which implies the third
pricing factor is becoming more persistent. Moreover, we find that the second and third
eigenvalues have important changes in near recession periods, which is connected to the
shifting dynamics of Slope and Curvature factors. This is evidence of sudden structural
changes. As macro-finance information is considered important during recessions as sug-
gested by Bernanke, Gertler and Gilchrist (1996), it is uncertain whether the small-size
VAR can still produce plausible forecasts when faced with structural instability.
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Figure 1: Time-Varying Persistence of Physical Dynamics

Notes: The graph shows the largest three eigenvalues of the physical dynamics in the small-size TVP
model. The shaded areas are recession periods according to the NBER Recession Indicators.

3.2 Model Dynamics

In our Bayesian empirical analysis of the factor dynamics, we begin by selecting priors
with Dynamic Prior Selection (DPS), then the best prior will be selected for each of the
three VAR models. Next we update the model weights with Dynamic Model Averaging
(DMA), and finally we update on the parameters using a Bayesian Kalman filter.

In the Dynamic Prior Selection step, we find that the best prior γ value in Eq. (2.10)
is stable, i.e. fixed at 0.1, for all three VAR models, given the associated forgetting factor
fixed. The associated forgetting factor controls the persistence of probabilities, and the
results do not change substantially as long as it is sufficiently large: the best γ values
is relatively stable for all three sizes of models when the forgetting factor is larger than
0.90. The evidence concludes that a relatively flexible and consistent prior can generate
more accurate yield forecasts. For simplicity and tractability, we fix the value at γ = 0.1,
and therefore the DPS procedure could be skipped in the following analysis. In fact, we
find that holding γ constant at 0.1 slightly improves the forecasts, possibly because of
the fact that fixing γ reduces posterior parameter uncertainty which in turn can affect
uncertainty of posterior predictive densities.

Graphical evidence of the usefulness of our model averaging approach is provided by
the Figure 2. The upper two panels set out the relative importance of the small, medium
and large VAR models used in DMA. In general, there is substantial time variation in
the weights, and the empirical observations are of economic importance.
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Figure 2: Model Weights for NS, NS plus Macro and NS plus Macro-Finance VAR Models
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Notes:
1. This figure sets out the time-varying probabilities of our three models in our Dynamic
Model Averaging (DMA) approach. The probabilities for DMA are updated from a
Kalman filter based on the predictive accuracy, see Eq. (A.5); the probabilities/weights
of the VAR models sum up to 1.
2. The upper left panel shows the probability weights of all models. The upper right and
the lower panels display the weights of the NS VAR, NS + Macro VAR and the NS +
Macro-Finance VAR, respectively. The shaded areas are the recession periods based on
NBER Recession Indicators.

Firstly, during recession periods, the approach tends to use more macro-finance in-
formation to generate forecasts. The probability of the large-size (macro-finance) model
rose steeply and then stayed at a high level during macroeconomic recessions. This is
indicated by the higher weights for the macro-finance model during recession periods in
the lower right panel of Figure 2. In times of acute economic stress, macroeconomic and
financial risk factors become more relevant for modeling yields, which is supported by
the ‘financial accelerator’ argument of Bernanke, Gertler and Gilchrist (1996). Among
the three, the macro-finance model displays the largest variability in terms of the as-
signed weights. Hence the additional macro-finance information used to predict yields is
appropriately modeled using the DMA approach.

Additionally, the allocated weights of small-size NS model are similar to the medium-
size (NS + macro) model. These two models generally have higher weights in the DMA
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during non-recession periods, but the medium-size model tends to be more stable. This
means parsimonious yield curve models with macroeconomic variables, such as Ang and
Piazzesi (2003) and Diebold, Rudebusch and Aruoba (2006), are generally effective except
during recession periods.

It is worth reiterating the importance of the large macro-finance VAR, as Altavilla,
Giacomini and Ragusa (2014) indicate that the original version of the dynamic NS model
without macro information has weaker predictive power in recent years. We show the
large-size VAR significantly boosts the forecast performance because of its superior per-
formance during the recession periods. Moreover, model averaging expands the model
set when compared with a single-model setup or model selection, and potentially miti-
gates the misspecification problem. Intuitively, the consideration of models with richer
information allows us to effectively ‘hedge’ the risk of using a single model as Elliott and
Timmermann (2008) suggest.

Since the changes in model weights are very sensitive to new information, DMA allows
us to react to sudden, rather than smooth, changes in coefficients. Without model aver-
aging or selection, a time-varying parameter model with a specific information set may
have volatile performance in forecasting, as the true dynamics may not be well captured
during certain periods. Our approach encompasses moderate to sudden changes in the
economic environment and accordingly is promising in producing more stable forecasting
performance.

3.3 Forecasting Performance

We now consider the forecasting performance of our approach. We use the Dynamic
Model Averaging (DMA) model to predict the yields in a two-step estimation procedure.
The first stage is using the Kalman filter to generate predictions of the three Nelson-
Siegel yield factors with macro variables, with the addition of DMA. That is, we use Eq.
(2.3) with the predicted βt+1 to forecast our factors. The second stage is forecasting the
yields with the predicted NS factors and the fixed NS loadings. The macro variables are
not directly used to predict the yields in the second step, because of the consideration of
unspanned macro risks. The predictive duration is from 1983:10 to the 2013:11.

To better evaluate the predictive performance of DMA, we have the following seven
variants of dynamic Nelson-Siegel models: recursive estimation of factor dynamics us-
ing standard VAR following Diebold and Li (2006) (DL), 10-year rolling-window VAR
estimations (DL-R10), recursive VAR estimation with three macro variables (DL-M), re-
cursive estimations of standard VAR with macro-finance principal components following

14



Stock and Watson (2002) (DL-SW), time-varying parameter VAR estimations of factor
dynamics without macro information (TVP), time-varying parameter VAR estimations
of factor dynamics with three macro variables (TVP-M), and Dynamic Model Selection
(DMS).

DL is the two-step forecasting model proposed by Diebold and Li (2006), which recur-
sively estimates the factor dynamics using a standard VAR. In other words, DL estimates
the VAR model of factors recursively with historical data, extending through all the fol-
lowing periods. We have four variations of the DL model: 10-year rolling-window esti-
mations (DL-R10); recursive estimations with three macro variables of Fed Fund Rate,
Inflation and Industrial Production (DL-M); and recursive estimations with three prin-
cipal components of our whole macro-finance dataset (DL-SW). In the DL-SW model,
three macro principal components are drawn using the method proposed by Stock and
Watson (2002) to augment DL. Lastly, we include two extensions of DL using a time-
varying parameter VAR without macro information and a time-varying parameter VAR
with three macro variables to characterize the factor dynamics, denoted TVP and TVP-
M, respectively; the latter is essentially the model estimated in Bianchi, Mumtaz and
Surico (2009) using MCMC methods. We report the performance of all models relative
to the Random Walk (RW) model so that we can evaluate whether the term structure
models successfully capture the high persistence in bond yields.

We assess all models’ predictive properties in Table 3 which displays the one-period
and three-period ahead Mean Squared Forecasting Error (MSFE) Performance for all
forecasting models. The core empirical results are very encouraging for the proposed
method. As can be seen in Table 3, our preferred DMA model consistently outperforms
all the benchmark models. Table 4 shows the DMA is also preferred at relatively long
forecast horizons.9 The cumulative sum of predictive log-likelihood is displayed in Figure
3. It shows that the predictive density of the DMA is more accurate compared to the
predictive density of the Diebold-Li (DL) across all maturities, especially for short rates.

Among all models, the results indicate DMA is the only one comparable in forecasting
performance to, or better than, the RW. In fact, DMA not only successfully captures
the persistence in bond yields, but also reveals robust short rate expectations and risk
premium estimates because of its superior performance in short rate forecasts. It is worth
noting that the rolling-window forecasts perform much less favorably. In addition, the
predictability of DL-SW is not satisfactory. The macro principal components alone cannot
provide useful information in terms of yield forecasting, since the method fails to exclude
irrelevant information in a time-varying manner. That is, the common information in

9The density forecast performance is also reported in Tables 3 and 4, the log-likelihood of DMA is
systematically the highest among all forecasting models.

15



Table 3: One-Month and Three-Month Ahead Relative MSFE of Term Structure Models

DMA DMS TVP TVP-M DL DL-R10 DL-M DL-SW

MA One-Month Ahead Relative MSFE

3 0.706† 0.781 0.747 0.710 0.848 1.085 0.885 1.417

6 0.818† 0.927 0.894 0.908 1.068 1.313 1.130 1.668

12 0.971† 1.031 0.983 1.011 0.930 0.897 0.979 1.547

24 1.000† 1.075 1.044 1.060 1.064 1.105 1.103 1.461

36 0.977† 1.039 1.032 1.026 1.123 1.223 1.144 1.237

48 0.965† 1.008 1.016 1.002 1.130 1.266 1.143 1.099

60 0.965† 0.996 1.011 0.997 1.116 1.273 1.129 1.051

72 0.971† 0.998 1.015 1.006 1.096 1.259 1.114 1.055

84 0.982† 1.008 1.026 1.024 1.074 1.226 1.098 1.090

96 0.996† 1.023 1.040 1.046 1.052 1.173 1.083 1.139

108 1.009† 1.038 1.055 1.068 1.031 1.108 1.068 1.183

120 1.020† 1.050 1.065 1.084 1.015 1.043 1.053 1.214

Mean 0.964† 1.009 1.008 1.010 1.053 1.162 1.083 1.237

MA Three-Month Ahead Relative MSFE

3 0.765† 0.873 0.864 0.845 1.105 1.514 1.070 1.795

6 0.863† 0.976 0.976 0.997 1.305 1.646 1.283 1.907

12 0.931† 1.003 0.997 1.019 1.131 1.231 1.119 1.727

24 0.988† 1.046 1.062 1.068 1.255 1.390 1.249 1.537

36 1.002† 1.044 1.073 1.060 1.295 1.482 1.292 1.358

48 1.006† 1.037 1.069 1.049 1.294 1.528 1.293 1.246

60 1.006† 1.032 1.063 1.043 1.269 1.539 1.272 1.196

72 1.005† 1.030 1.057 1.041 1.233 1.525 1.239 1.189

84 1.002† 1.029 1.053 1.044 1.190 1.488 1.201 1.207

96 0.999† 1.031 1.050 1.049 1.146 1.431 1.160 1.238

108 0.996† 1.033 1.049 1.055 1.102 1.360 1.120 1.272

120 0.994† 1.035 1.048 1.061 1.062 1.283 1.083 1.302

Mean 0.969† 1.018 1.035 1.032 1.205 1.449 1.205 1.405

Notes: 1. This table shows 1-month and 3-month ahead forecasts of bond yields with maturities ranging from 3 months
to 120 months. The predictive duration is from 1983:10 to 2013:11.
2. We report the ratio of each model Mean Squared Forecast Errors (MSFE) relative to Random Walk MSFE, and the
preferred values are in bold. The dagger (†) indicates, in terms of the sum of predictive log-likelihood, the model has the
preferred value among all models at certain maturities (or in total), see Geweke and Amisano (2010) for details.
3. In this table, we use following abbreviations. MA: Maturity (Months); MSFE: Mean Squared Forecasting Error;
Mean: Averaged MSFE across all sample maturities. In our proposed Nelson-Siegel (NS) framework, DMA (Dynamic
Model Averaging) averages all the models with probabilities in each step, while DMS (Dynamic Model Selection) chooses
the best model with the highest probability at any point in time. TVP: a time-varying parameter model without macro
information; TVP-M: a time-varying parameter model with three macro variables: fund rate, inflation and industrial
production, similar to Bianchi Mumtaz and Surico (2009) but estimated with a fast algorithm without the need of MCMC;
DL: Diebold and Li (2006) model, i.e. constant coefficient Vector Autoregressive model with recursive (expanding)
estimations; DL-R10: Diebold and Li (2006) estimates based 10-year rolling windows; DL-M: factor dynamics in Diebold
and Li (2006) are augmented with three macro variables: fund rate, inflation and industrial production, using recursive
estimations; DL-SW: factor dynamics in Diebold and Li (2006) are augmented with three principal components (see
Stock and Watson (2002)) of our macro/finance data, using recursive estimations; RW: Random Walk.
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Figure 3: Cumulative Sum of Predictive Log-Likelihood of 3-, 12-, 60- or 120-Month
Maturities
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Notes: These are 1-month ahead cumulative sums of predictive log-likelihood for predicted yields from
early 1975 to late 2013. From top left clockwise we have maturities of 3, 12, 120 and 60 months. The
models are DMA (solid), DMS (dotted) and Diebold-Li (dashed). A higher log-likelihood implies
improved density predictability.
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macro-finance variables may not be useful in forecasting. Hence this result indicates the
relative advantages of DMA as a plausible shrinkage method.

In the Nelson-Siegel setup, the long-term yields are almost exclusively driven by the
Level factor which is very persistent and has relatively lower volatility, so long-rate fore-
casts at longer horizons should be quite stable for capable term structure models. For
long yields, the forecast performance of a term structure model should be very close to
the random walk if the model successfully captures the high persistence as suggested
by Duffee (2011a). In contrast, if short yields are anchored by policy rates, this im-
plies short-horizon forecasts of short yields are accurate as long as monetary policy is
predictable in the short run. However, without further information, forecasts of short
yields at longer forecast horizons deteriorate substantially, given that the monetary pol-
icy target or market expectations may shift in the long run. In comparing our results to
the existing literature, Diebold and Li (2006) shows the DL beats the RW for forecast
horizons up to 12 months before 2000. But Diebold and Rudebusch (2013) and Altavilla,
Giacomini and Ragusa (2014) imply NS can no longer beat a RW, which is in line with
the increased persistence as we showed previously. Our extended NS model consistently
improves upon DL across all horizons and maturities, which is confirmed by Relative
MSFEs, predictive log-likelihoods, and the Diebold-Mariano test. Moreover, and at least
for shorter horizons, our proposed method improves upon the RW.

Remarks on Predictive Gains Since the pricing dynamics are constrained by the
NS restrictions, we can conclude that the predictive gains are purely from the physical
dynamics especially by taking parameter and model uncertainty into account. Here we
would like to highlight different sources of predictive gains. As mentioned in the last
section, the last four columns in Table 3 set out the predictive performance of constant-
parameter models without stochastic volatility, which are consistently worse than TVP
models, no matter whether we include macro information or not. In contrast, our TVP
models with stochastic volatility in the third and fourth columns provide significant
gains in predictive performance, as they put more weight on the current observations
and hence are robust to parameter uncertainty and structural changes.10 Moreover,
introducing an extra layer of model uncertainty is also essential in improving forecast
performance. It helps us properly assimilate macro-finance information in a time-varying
manner and more importantly, react to abrupt changes, which parallels the ‘scapegoat
theory’ in Bacchetta and Van Wincoop (2004). From the first two columns in Table
3, we find further improvement over the TVP models if we allow for both parameter

10Additional results about stochastic volatility can be found in Appendix C.2.
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and model uncertainty. Hence, we believe that the ensemble of these salient features –
time-varying coefficients, stochastic volatility and model averaging/selection, is the key to
properly incorporate macro-finance information and hence can provide significant gains
in predictability.

To formalize the above arguments, we conduct a statistical test to evaluate the out-of-
sample forecasting performance. In Table 5 we show results of the Diebold and Mariano
(1995) test, in order to evaluate the forecasting performance of DMA relative to DL and
TVP-M. The Diebold and Mariano (1995) statistic is also used by Diebold and Li (2006)
and Altavilla, Giacomini and Ragusa (2014). The relative MSFE is shown in Table 5 for
forecasting horizons 1, 3, 6 and 12 months. These results indicate that the DMA clearly
outperforms the DL and TVP-M, not only since MSFE are consistently lower but the
differences are statistically significant.

Table 5: MSFE from DMA Relative to Other Models

DMA vs. DL DMA vs. TVP-M

Maturity h = 1 h = 3 h = 6 h = 12 h = 1 h = 3 h = 6 h = 12

3 0.833*** 0.693*** 0.653*** 0.843*** 0.995 0.906* 0.860* 0.790**

6 0.766*** 0.661*** 0.655*** 0.846*** 0.901** 0.865** 0.845** 0.800**

12 1.045 0.824** 0.743*** 0.866*** 0.961** 0.914** 0.897* 0.847**

24 0.939** 0.788*** 0.735*** 0.849*** 0.943*** 0.925** 0.927* 0.890*

36 0.870*** 0.774*** 0.733*** 0.845*** 0.952*** 0.945** 0.952 0.918

48 0.854*** 0.777*** 0.740*** 0.842*** 0.963** 0.959* 0.967 0.934

60 0.864*** 0.793*** 0.754*** 0.844*** 0.967** 0.965* 0.973 0.939

72 0.886*** 0.815*** 0.773*** 0.846*** 0.965** 0.965* 0.971 0.936

84 0.914*** 0.842*** 0.794*** 0.849*** 0.959** 0.960* 0.965 0.928

96 0.947** 0.872** 0.819** 0.851*** 0.951** 0.953** 0.955 0.918

108 0.978* 0.904** 0.845** 0.854*** 0.945*** 0.944** 0.946 0.907

120 1.004 0.936 0.872* 0.860*** 0.941*** 0.937*** 0.937 0.897

Notes: 1. This table reports MSFE-based statistics of DMA forecasts of bond yields at maturities ranging from 3 months
to 120 months, relative to the forecasts of Diebold and Li (2006) (DL) or TVP-M (similar to Bianchi Mumtaz and Surico
(2009)). The predictive period is between 1983:10 and 2013:11.
2. Statistical significance for the relative MSFE statistics is based on the p-value for the Diebold and Mariano (1995)
statistic; the statistic corresponds to the test of the null hypothesis that the competing DMA model has equal expected
square prediction error relative to the benchmark forecasting model (DL or TVP-M) against the alternative hypothesis
that the competing forecasting model has a lower expected square prediction error than the benchmark forecasting model.
*, ** and *** indicate significance at the 10%, 5%, and 1% levels, respectively.

3.4 Time-Varying Predictability and Macro-Finance Sources

Figure 4 shows six-month ahead Squared Forecasting Errors of DL and DMA across
the whole out-of-sample forecast period. It is evident that the DMA significantly and
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consistently outperforms the DL across all maturities. We detect a pattern that the
predictability of term structure models, DL in particular, tends to be procyclical. The
forecast errors are in general higher during periods when economic conditions deteriorate,
especially for short-term rates. Economic theories suggest that central banks can influence
short rates to achieve policy goals, so the deteriorated predictability implies unexpected or
abrupt changes in the behavior of policy makers. For long-term yields, the predictability
seems more acyclical, as the movements in long yields are affected not only by short rate
expectations but also by the expected risk compensation.

Figure 4: Squared Forecasting Errors for Yields of 3-, 12-, 60- and 120-Month Maturities
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Notes: These are 6 months ahead Squared Forecasting Errors for predicted yields from early 1983 to
late 2013. We calculate 9-month moving averages for clarity and plot the statistics for maturities of 3,
12, 60 and 120 months. The models are DMA (solid) and Diebold-Li (dashed and dotted).

As we have discussed earlier, the DL fails to account for a larger information set
and parameter instability, which reduces its forecasting performance. Additionally, our
approach allows for model uncertainty, and the large macro-finance VAR significantly
contributes to the superior performance of DMA during recession periods. It is of impor-
tance to include the large-size VAR, as the increase in the weight assigned to this model
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significantly reduces forecast errors of DMA when compared with the DL benchmark.11

Moreover, the DMA has better performance than TVP or TVP-M models especially for
short rates as shown in Table 3. As we have discussed, DMA allows the model to capture
the sudden changes, which in this case are potentially related to the Fed’s policy targets.

We are very interested in why the large-size model has distinctive performance dur-
ing contraction periods. The question is: What are the underlying economic sources
that contribute to the pricing factor movements? Following Koop, Pesaran and Potter
(1996) and Diebold and Yilmaz (2014), we conduct the generalized forecast error vari-
ance decomposition to evaluate the contributions of shocks to respective macro-finance
variables.12 Among 15 variables, our results in Figure 5 suggest that the most important
variables driving large-size VAR predictability are indicators of real activity and the stock
market. In particular, real activity and stock markets contribute to more than 80% of the
60-month forecast error variance of bond factors during the recent three recessions. There
is substantial time variation in the role of these variables, and the contributions of two
groups tend to be negatively correlated. Specifically, the economic content of Slope and
Curvature factors can be largely explained by real activity since the Great Moderation,
but the stock market condition is still indispensable. This observation is in line with
Kurmann and Otrok (2013) and Bansal, Connolly and Stivers (2014), but contrasts with
the evidence from the UK economy provided by Bianchi, Mumtaz and Surico (2009). In
the Nelson-Siegel framework, pricing factors are closely related to short rate expectations
and term premia, which we will discuss in details in the following.

Expectation Hypothesis and Term Premium Within our empirical framework we
shall set out the formal modeling of the term premia, which has been used to explain the
failure of the Expectations Hypothesis and provides important information for the con-
duct of monetary policy, see Gürkaynak and Wright (2012). The Expectations Hypothesis
(EH) consistent bond yield yt(τ)EH is given by:13

yt(τ)EH = 1
τ

τ−1∑
i=0

Etyt+i(1), (3.1)

where yt(τ) is the yield at time t for a bond of τ -period maturity. That is to say, the
EH consistent long yield is equal to the average of expected short yields Etyt+i(1). The

11The regression results are not shown for the sake of brevity but are available upon request.
12We encourage readers to consult the original papers for motivation and background. The generalized

variance decomposition is invariant to the ordering of the variables in the VAR, but sums of forecast
error variance contributions are not necessarily unity. Here we calculate the normalized weights which
add up to unity following Diebold and Yilmaz (2014).

13The expectation here is under the physical measure.
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Figure 5: Variance Decomposition of Bond Pricing Factors
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Notes:
1. This figure sets out the generalized forecast error variance decomposition of pricing
factors using the large-size VAR model. The upper panels and the bottom left panel
show the average contributions of our target variables to the forecast error variance of the
respective bond factors over time. At each point in time, the fractions are calculated based
on the 60-month forecast error variance. Real activity corresponds to the information of
Industrial Production Index and Total Industry Capacity Utilization, and Stock market
corresponds to the information of S&P 500 Stock Price Index and Wilshire 5000 Total
Market Index.
2. The lower right panel displays for each pricing factor the sum of the variance fractions
of the two groups of target variables shown in the previous panels. The shaded areas are
the recession periods based on NBER Recession Indicators.
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time-varying term premium is therefore,

TPt(τ) = yt(τ)− yt(τ)EH . (3.2)

In the large VAR system, both the short rate expectations and the term premia are
linear functions of pricing factors and macro and finance variables, see Diebold, Rude-
busch and Aruoba (2006). By the linearity of expectation, we can directly employ the
generalized variance decomposition for these quantities.

The patterns in variance decompositions displayed in Figure 6 have intuitive appeal,
revealing the relative importance of macro-finance variables in driving short rate expec-
tations and risk permia. Standard theory such as the Taylor rule suggests that policy
rates should react at least partially to real activity, and our evidence shows short rate ex-
pectations are indeed mainly driven by real activity indicators. In contrast, we find that
there is strong time variation regarding the main source of risk compensation required
by investors, and the underlying sources differ sharply for different horizons. In particu-
lar, short-term risk permia is largely explained by real activity shocks during recessions,
while long-term risk premia is much less sensitive to real activity during the same periods
and more related to the stock market condition in normal times. This observation is
interesting but not surprising: As suggested by finance theories, investors’ risk attitude
influences the demand for bonds and stocks, and Bansal, Connolly and Stivers (2014)
show there is a strong link between these two types of assets.

3.5 Model-Implied Term Premia

In this section we set out a visual comparison of our term premium estimates. We plot the
DMA time-varying risk premia from 1985 for a medium-term bond (maturity 36 months)
and a long-term bond (maturity 120 months) in Figure 7. For comparison, we also plot the
model-implied term premia estimated from no-arbitrage term structure models proposed
by Kim and Wright (2005), Wright (2011) and Bauer, Rudebusch and Wu (2014), all of
which use full-sample data.14 Note that we use monthly data when applying the methods
of Wright (2011) and Bauer, Rudebusch and Wu (2014), and the physical VAR dynamics
are all augmented with three macro variables as in our medium-size model in this paper.
As a result, the term premium measures from these two methods are similar, which helps
resolve a discrepancy indicated in Bauer, Rudebusch and Wu (2014).

14The comparison between the DMA term premia and recursively estimated term premia from dynamic
Nelson-Siegel is shown in Appendix C.4. The DMA approach seems to be more robust than the constant-
parameter dynamic Nelson-Siegel model, as the dynamic Nelson-Siegel model proposed by Diebold and
Li (2006) tends to overestimate the future short rates and hence underestimate the term premia.
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Figure 6: Variance Decomposition of Short Rate Expectations and Term Premia
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Notes:
This figure sets out the generalized forecast error variance decomposition of short rate
expectations and risk premia using the large-size VAR model. The left panels show at
each point in time, the average contributions of our target variables to the forecast error
variance of 10-year and 3-year short rate expectations, respectively. The right panels show
at each point in time, the average contributions of our target variables to the forecast
error variance of 10-year and 3-year risk premia, respectively. The time-varying fractions
are calculated based on the 60-month forecast error variance. Real activity corresponds to
the information of Industrial Production Index and Total Industry Capacity Utilization,
and Stock market corresponds to the information of S&P 500 Stock Price Index and
Wilshire 5000 Total Market Index. The shaded areas the recession periods based on
NBER Recession Indicators.
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It is worth emphasizing that DMA captures plausible term premia using conditional
information only. As it is shown in the upper panel of Figure 7, the 36-month term pre-
mium estimates of DMA are highly consistent with the full-sample estimates of Wright
(2011) and Bauer, Rudebusch and Wu (2014). In general the term premia displays coun-
tercyclical behavior, as they rise in and around US recessions, apart from the estimates
of Kim and Wright (2005). The difference between the estimates of Kim and Wright
(2005) (KW) and other models is due to the estimated expectation of future short rate.
As indicated in Christensen and Rudebusch (2012), in the KW measure the factor dy-
namics tend to display distinctively different persistence from other measures because
of the augmentation of survey data. According to the observations here, the expected
future short rates from the survey tend to be very stable, so the KW term premia has a
relatively lower variance and may display an acyclical pattern.

Figure 7: Time-Varying Term Premia of 36-and 120-Month Bonds
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Notes:
1. The top panel is the 36-month term premia and the bottom is the 120-month term premia. The EH
consistent 36- and 120-month bond yields are estimated using Eq. (3.1); we then calculate the term
premia using Eq. (3.2).
2. In addition to DMA, we use the whole sample to separately estimate two types of term premia
employing the methods proposed by Wright (2011) and Bauer, Rudebusch and Wu (2014). The Kim
and Wright (2005) term premia can be obtained from the Federal Reserve Board website.
3. Shaded areas are recession periods based on the NBER Recession Indicators. The unit is percentage.

Among all measures considered, the DMA term premia seems to be more sensitive
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to changes in the economic environment, which can be seen more clearly from the lower
panel of Figure 7 of the long-term term premia. The reason is that expectations of the
future short rates move flexibly in DMA and, hence, the 10-year term premia presents
a more significant countercyclical pattern. For example, the short rate was continuously
decreasing from 1990 to 1993 so the expectation of future short rates was also decreasing.
Long rates were relatively stable in contrast, which leads to the increasing risk premia
that peaked in 1993.

We can also observe that a divergence between the estimated term premia of DMA
and that of Wright (2011) and Bauer, Rudebusch and Wu (2014), lies in the financial
crisis period. Christensen, Lopez and Rudebusch (2010) indicate that during the financial
crisis, financial markets encountered intense selling pressure because of fears of credit and
liquidity risks. The surge in risk aversion creates increased global demand for safe and
highly liquid assets, for example, the nominal U.S. Treasury securities. This ‘flight-to-
quality’ could lead to a sharp decline in their yields and therefore result in downward
pressure on term premia. Bauer, Rudebusch and Wu (2014) argue, meanwhile, that the
procyclical flight-to-quality pressure could not completely offset the usually countercycli-
cal pattern of risk. Based on our estimates, the flight-to-quality demand is evident as
shown in the graphs. This makes a distinction between the financial crisis and the pre-
vious recessions, as global markets are more unified than ever before and hence capital
flows to a safe heaven.

The countercyclical pattern of term premia has been identified in previous literature,
such as Estrella and Mishkin (1998), Wright (2006), Kim (2009) and Wheelock and
Wohar (2009). D’Agostino, Giannone and Surico (2006) suggest that the term spread
may become a weaker indicator of the real economy after the Great Moderation, which
parallels the evidence shown in Figure 6. In this paper, we present positive evidence that
the ‘flight-to-quality’ demand potentially suppresses the countercyclical pattern of term
premia.

4 Conclusion

The Nelson-Siegel approach of yield curve modeling has been extended by Diebold and Li
(2006), Diebold, Rudebusch and Aruoba (2006) and Bianchi, Mumtaz and Surico (2009).
We further extend the literature using a Dynamic Model Averaging (DMA) approach with
the consideration of a large set of macro-finance factors, in order to better characterize
the nonlinear dynamics of yield factors and further improve yield forecasts. We explore
time-varying predictability of term structure models and unfold the time variation of
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economic sources that drive short rate expectations and risk premia. The DMA method
significantly improves the predictive accuracy for bond yields, short rates in particular,
and successfully identifies plausible dynamics of term premia in real time. We specifically
discuss the countercyclical behavior of term premia and reveal a distinct ’flight-to-quality’
demand in the recent financial crisis.

To correctly specify the interactions between the yield factors and macro-finance infor-
mation, realistic specifications are introduced to enhance this model, such as the settings
of unspanned macro risks and time-varying parameters, but these assumptions cause
econometric challenges in terms of model tractability. These challenges are addressed
here by bringing in a fast and simple estimation technique. The proposed model is be-
lieved to be robust, as it is highly consistent with the theoretical and empirical findings in
the previous yield curve literature. Future research could employ a one-step approach to
provide forecasts with higher accuracy, in which case a trade-off should be made between
predictive accuracy and estimation efficiency. Disentangling the real part of the term
structure from inflation expectations is meaningful and desirable, but it is beyond the
scope of this paper and will be considered for further work.
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Data Appendix

Table 6: List of Yields and Macro-Finance Variables
Series ID Description

TB 3- and 6-month Treasury Bills (Secondary Market Rate) [1]

ZCY Smoothed Zero-coupon Yield from Gürkaynak, Sack and Wright (2007) [1]

IND Industrial Production Index [5]

CPI Consumer Price Index for All Urban Consumers: All Items Less Food & Energy [5]

FED Effective Federal Funds Rate, End of Month [1]

SP S&P 500 Stock Price Index, End of Month [5]

TCU Capacity Utilization: Total Industry [1]

M1 M1 Money Stock [5]

TCC Total Consumer Credit Owned and Securitized, Outstanding (End of Month) [5]

LL Loans and Leases in Bank Credit, All Commercial Banks [5]

DOE DOE Imported Crude Oil Refinery Acquisition Cost [5]

MSP Median Sales Price for New Houses Sold in the United States [5]

TWX Trade Weighted U.S. Dollar Index: Major Currencies [1]

ED Eurodollar Spread: 3m Eurodollar Deposit Rate - 3m Treasury Bill Rate [1]

WIL Wilshire 5000 Total Market Index [5]

DYS Default Yield Spread: Moodys BAA-AAA [1]

NFCI National Financial Conditions Index [1]

Notes:
1. In square brackets [·] we have a code for data transformations used in this data set: [1] means original
series is used; [5] means log first-order difference is used to detrend and ensure stationarity. The series
are seasonally adjusted when appropriate.
2. Data are obtained from St. Louis Federal Reserve Economic Data [http://research.stlouisfed.org/],
spanning from Nov. 1971 to Nov. 2013. The smoothed zero-coupon yield is available on the Federal
Reserve Board website [http://www.federalreserve.gov/pubs/feds/2006/200628/200628abs.html/].
3. National Financial Conditions Index, provided by the Chicago Fed, is available on the website
[http://www.chicagofed.org/webpages/publications/nfci/].
4. The small-size VAR model includes no macro variables. The medium-size VAR model includes only
three macro variables: IND, CPI and FED. The large-size VAR model uses all the macro and financial
variables in this data list.
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Appendix A Econometric Methods

A.1 Bayesian Kalman Filter with Forgetting Factor

We conduct the Kalman filter estimation for the state space model with Eq. (2.3) and

Eq. (2.4):

zt = Xtβt + vt,

βt+1 = βt + µt,

where zt is an n×1 vector of variables, Xt = In⊗
[
z′t−1, ..., z

′
t−p

]′
, βt are VAR coefficients,

vt ∼ N (0,Σt) with Σt an n× n covariance matrix, and µt ∼ N (0, Qt).

Given that all the data from time 1 to t denoted as Dt, the Bayesian solution to

updating about the coefficients βt takes the form

p (βt|Dt) ∝ L (βt; zt) p (βt|Dt−1) ,

p (βt|Dt−1) =
∫
℘
p (βt|Dt−1, βt−1) p (βt−1|Dt−1) dβt−1,

where ℘ is the support of βt−1. The solution to this problem can be defined using a

Bayesian generalization of the typical Kalman filter recursions. Given an initial condition

β0 ∼ N (m0,Φ0) we can define (cf. West and Harrison (1997))15:

1. Posterior at time t− 1

βt−1|Dt−1 ∼ N (mt−1,Φt−1) ,

2. Prior at time t

βt|Dt−1 ∼ N
(
mt|t−1,Φt|t−1

)
,

15For a parameter θ we use the notation θt|s to denote the value of parameter θt given data up to time
s (i.e. D1:s) for s > t or s < t. For the special case where s = t, I use the notation θt|t = θt
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where mt|t−1 = mt−1 and Φt|t−1 = Φt−1 +Qt.

3. Posterior at time t

βt|Dt ∼ N (mt,Φt) , (A.1)

where mt = mt|t−1+ Φt|t−1X
′
t(V −1

t )′ṽt and Φt = Φt|t−1 − Φt|t−1X
′
t(V −1

t )′XtΦ′t|t−1,

with ṽt = zt−Xtmt|t−1 the prediction error and Vt = XtΦt|t−1X
′
t + Σt its covariance

matrix.

Following the discussion above, we need to find estimates for Σt and Qt in the formulas

above. We define the time t prior for Σt to be

Σt|Dt−1 ∼ iW (St−1, δnt−1) , (A.2)

while the posterior takes the form

Σt|Dt ∼ iW (St, nt) ,

where nt = δnt−1 +1 and St = δSt−1 +n−1
t

(
S0.5
t−1V

−0.5
t−1 ṽt|t−1ṽ

′
t|t−1V

−0.5
t−1 S0.5

t−1

)
. In this formu-

lation, vt is replaced with the one-step ahead prediction error ṽt|t−1 = zt−mt|t−1Xt. The

estimate for Σt is approximately equivalent numerically to the Exponentially Weighted

Moving Average (EWMA) filter Σ̂t = δΣ̂t−1 + (1− δ) vtv′t. The parameter δ is the decay

factor, where for 0 < δ < 1. In fact, Koop and Korobilis (2013) apply such a scheme

directly to the covariance matrix Σt, which results in a point estimate. In this case by

applying variance discounting methods to the scale matrix St, we are able to approximate

the full posterior distribution of Σt.

Regarding Qt, we use the forgetting factor approach in Koop and Korobilis (2013);

see also West and Harrison (1997) for a similar discounting approach. In this case Qt is

set to be proportionate to the filtered covariance Φt−1 = cov (βt−1|Dt−1) and takes the
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following form

Qt =
(
Λ−1 − 1

)
Φt−1, (A.3)

for a given forgetting factor Λ.

The brief interpretation of forgetting factors is that they control how much ‘recent

past’ information will be used. With the exponential decay for the forgetting factors,

if it takes a value of 0.99, the information 24 periods ago (two years for monthly data)

receives around 80% as much weight as the information of last period. If forgetting factor

takes 0.95, then forecast performance 24 periods ago receives only about 30% as much

weight. The similar implication holds for the decay factor.
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A.2 Probabilities for Dynamic Selection and Averaging

To obtain the desire probabilities for dynamic selection or averaging, we need updating

at each point in time. In papers such as Raftery, Kárnỳ and Ettler (2010) or Koop

and Korobilis (2012) the models are TVP regressions with different sets of explanatory

variables. The analogous result of the model prediction equation, when doing DMA or

DPS, is

p(βt−1|Dt−1) =
K∑
k=1

p(β(k)
t−1|Lt−1 = k,Dt−1)Pr(Lt−1 = k|Dt−1), (A.4)

where Lt−1 = k means the kth model16 is selected and p(β(k)
t−1|Lt−1 = k,Dt−1) is given by

the Kalman filter (Eq. A.1). To simplify notation, let π(l)
t|s = Pr(Lt = l|Ds).

The model updating equation is

π
(i)
t|t =

π
(i)
t|t−1p

(i)(zt|Dt−1)∑K
l=1 π

(l)
t|t−1p

(l)(zt|Dt−1)
, (A.5)

where p(i)(zt|Dt−1) is the predictive likelihood. Raftery, Kárnỳ and Ettler (2010) used

an empirically sensible simplification that

π
(i)
t|t−1 =

(
π

(i)
t−1|t−1

)α
∑K
l=1

(
π

(l)
t−1|t−1

)α , (A.6)

where 0 < α ≤ 1. A forgetting factor is also employed here, of which the meaning is

discussed in the last section. The huge advantage of using the forgetting factor α is that it

does not require an MCMC algorithm to draw transitions between models or a simulation

algorithm over model space.

When proceeding with Dynamic Model Selection, the model with the highest proba-

bility is the best model we would like to select. Alternatively, we can conduct Dynamic
16For example, the kth model in Dynamic Model Selection/Averaging, or the kth candidate γ value in

Dynamic Prior Selection.
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Model Averaging, which average the predictions of all models with respective probabili-

ties.
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Appendix B Interpretation of Factor Dynamics

We illustrate the factor dynamics in this section and try to shed light on the economic

implications of the latent factors. The extracted NS factors are shown in Figure 8. The

Level factor has a downward trend since the early 1980s. The Level factor also has

greater persistence compared with the other more volatile factors. The downward trend

in the Level factor is consistent with the descriptive statistics in Table 1 and the results

of Koopman, Mallee and Van der Wel (2010). The latter suggest a strong link between

the Level factor and (expected) inflation, as they share high persistence. Evans and

Marshall (2007) also indicate that there is a link between the level of yields and inflation

with structural VAR evidence. In particular, the Level factor fell significantly after the

financial crisis, which may indicate that the market had low inflation expectations. The

Level factor rises in 2013, potentially associated with rising inflation and the impact of

the Fed’s Quantitative Easing (QE) pattern.

Figure 8: Nelson-Siegel Factor Dynamics

Notes: The graph shows the Nelson-Siegel Level, Slope and Curvature factors, which are drawn from
Eq. (2.1). The shaded areas are recession periods according to the NBER Recession Indicators.
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The Slope factor tends to fall sharply within recession periods, as indicated in Figure

8 by the shaded areas. Therefore, this factor could be closely related to real activity. The

Slope factor is often considered as a proxy for the term spread, see Diebold, Rudebusch

and Aruoba (2006). It can also be considered as a proxy for the stance of monetary

policy, as the short end is influenced by policy rates.

Lastly, the Curvature factor is harder to interpret and Diebold and Rudebusch (2013)

indicate that this factor is less important than the other factors. On one hand, Litterman,

Scheinkman and Weiss (1991) link the Curvature factor to the volatility of the level factor,

via the argument of yield curve convexity, which can also be seen in Neftci (2004).17 On

the other hand, medium rates can be linked to expect short rates in the future, and

therefore should be linked to current and expected future policies, which may potentially

contain useful macro information missing in the first two factors.

17Generally, higher convexity means higher price-volatility or risk, and vice versa.
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Appendix C Additional Results

C.1 Forecasting Results

Figure 9: DMA Forecasts of Yields

Notes: These are 3 months ahead forecasts (95% error band) for yields against realized values with
maturities 6, 36, 60 and 120 months, from early 1975 to late 2013. The forecasts are two-step
forecasting using DMA, which can be summarized by Eq. (2.1), (2.3) and (2.4).
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C.2 Time-Varying Volatility

It has been indicated by Bianchi, Mumtaz and Surico (2009) that homoskedasticity is

a frequent and potentially inappropriate assumption in much of the macro-finance liter-

ature. Cieslak and Povala (2016) show that stochastic volatility can have a non-trivial

influence on the conditional distribution of interest rates. Piazzesi (2010) indicates that

fat tails in the distribution of bond factors can be modeled by specifying an appropriate

time-varying volatility. The DMA model allows for heteroskedastic variances and this as-

sumption is crucial for its good density forecast performance; this evidence is consistent

with Hautsch and Yang (2012).

The DMA not only provides more sensible results in terms of density forecasts, but

also captures the desirable evolutionary dynamics of the economic structure. Figure

10 shows the time-varying second moments of 3 month ahead forecasts from the DMA

model. The figure displays distinct time variation in the evolution of volatility. The

stable decline of volatility before the financial crisis matches the conclusions of Bianchi,

Mumtaz and Surico (2009), who refer to this empirical result as the ‘Great Moderation’ of

the term structure. We observe that yields with longer maturities have lower volatilities.

This feature is counter-intuitive. Theoretically, long yields are mainly driven by three

components: the expected future (real) short yields; inflation expectations; and the term

premia. Inflation expectations may change abruptly and frequently during a short period

of time, so do the expected future short yields. At the same time, term premia can also

be quite volatile. Therefore, summing up the movements of these three components, the

variance of long yields should be larger than the short yields; nevertheless, the empirical

result implies the opposite. As indicated in Duffee (2011b), the reason causing this result

is that the factor driving up the expected future short yields or inflation expectations

may drive down the term premia, thus, offsetting the variation in these components.

From the perspective of time dimension, the volatilities of yields (especially shorter-

term) are high in the 1980s, while the bond yield level is also relatively high. The high
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Figure 10: Time-Varying Second Moment

Notes: These are time-varying second moments of 3 months ahead forecasts for bonds at maturities 6,
36, 60 and 120 months, from early 1975 to late 2013. The variance of NS factors is estimated from Eq.
(A.2), and then the variances of yield forecasts generated by each candidate model in the DMA, can be
easily calculated as linear combinations of factor variances.
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volatilities are due to large forecast variances of forecast models as well as a high degree

of forecast dispersion in forecasts. It is clear that the volatilities are declining during

the Great Moderation, and therefore the variances of bond forecasts are rather small

between 1990 and 2007, except during the 2004-05 episode of ‘Greenspan’s Conundrum’.

In around 2009, the volatilities surge to a high level since the 1990’s, although the short

yields stay at a relatively low level (restricted by the zero lower bound) among all periods.

Even after the financial crisis, ambiguity in yield forecasts still exists as the volatilities

remain at a relatively high level.
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C.3 Robustness: Do We Need Strict Arbitrage-Free Restric-

tions?

As we have discussed in Section 2, we impose NS restrictions on the pricing dynamics

and leave the physical dynamics unconstrained. By allowing for parameter and model

uncertainty in the physical dynamics, we are able to acquire significant predictive gains.

The sources of these gains are also revealed in the last section.

Our DMA approach does not explicitly impose ‘hard’ arbitrage-free restrictions. From

a theoretical perspective, Filipović (1999) and Björk and Christensen (1999) show that

the Nelson-Siegel family does not impose the restrictions necessary to eliminate opportu-

nities for riskless arbitrage. From a practical perspective, our implementation allows all

bond yields to be priced with errors, which naturally breaks their original assumptions

of the Nelson-Siegel family in their papers. Therefore, the potential loss of not impos-

ing arbitrage-free restrictions may be mitigated. The reason is that our focus here is

not on the dynamic structure of market price of risks. Duffee (2014) indicates that the

no-arbitrage restrictions are unimportant, if a model aims to pin down physical dynam-

ics but not equivalent-martingale dynamics that specify the pricing of risk. In order to

capture expectations of investors, we aim to improve forecasts of the interest rate term

structure. Joslin, Singleton and Zhu (2011) show that no-arbitrage cross-sectional restric-

tions are irrelevant for out-of-sample forecasts if the factor dynamics are unrestricted. In

practice, the arbitrage-free restrictions are not important in terms of forecasting in mod-

els assuming bond yields are priced with errors, see for example, Coroneo, Nyholm and

Vidova-Koleva (2011) and Carriero and Giacomini (2011).

To ensure the robustness of our DMA approach, we extend the three-factor arbitrage-

free Nelson-Siegel model proposed by Christensen, Diebold and Rudebusch (2011) and

evaluate the forecast performance of the arbitrage-free version of DMA. The key difference

between arbitrage-free DMA and DMA is a ‘yield-adjustment term’, which only depends

on the maturity and factor volatility. See Christensen, Diebold and Rudebusch (2011) and

48



Diebold and Rudebusch (2013) for more details. The forecast performances of two models

are very close, implying that the DMA is almost arbitrage-free, which is consistent with

theoretical evidence in Feunou et al. (2014) and Krippner (2015) that the NS models are

near arbitrage-free. Hence, following Duffee (2014), we choose not to impose arbitrage-

free restrictions to avoid potential misspecification.
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C.4 Term Premia of Diebold-Li and DMA

Figure 11: Time-Varying Term Premia of 36-and 120-Month Bonds
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Notes:
1. The top panel is the 36-month term premia and the bottom is the 120-month term premia. The EH
consistent 36- and 120-month bond yields are estimated using Eq. (3.1); we then calculate the term
premia using Eq. (3.2).
2. In addition to DMA, we plot the recursively estimated term premia employing the methods
proposed by Diebold and Li (2006).
3. Shaded areas are recession periods based on the NBER Recession Indicators. The unit is percentage.
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